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Abstract

Uninephrectomy is not associated with major adverse events in cardiovascular and renal
functions of live kidney donors. The effect of high salt diet on the quality of life of live kidney
donors is largely unknown. Hence in this study, we aimed to determine the effect of high salt
diet on the alterations of renin-angiotensin system and microRNAs leading to CV and renal
dysfunction in uninephrectomized rats. In order to mimic clinical scenario, uninephrecto-
mized male Sprague Dawley rats were fed initially with normal pellet diet for 12 weeks and
then for 20 weeks with high salt (10% w/w NaCl) diet. At the end of the study, biochemical,
functional, histological and molecular parameters were measured. High salt diet feeding
resulted in renal dysfunction & fibrosis, decreased baroreflex sensitivity, increased in vivo
cardiovascular reactivity to angiotensin Il owing to upregulation of angiotensin Il type 1
receptors and L-type calcium channels leading to cardiovascular dysfunction in uninephrec-
tomized rats (UNX+HSD) worse than that of normal (binephric) rats fed with high salt

diet (HSD). Protein expression of functional and hypertrophic protein markers revealed
decreased SERCA, p-AMPK and increased p-AKT. Interestingly, levels of miR-25, miR-451
and miR-155 increased and miR-99 decreased in heart of uninephrectomized rats fed

with high salt. However, circulating miR-25 and miR-451 levels decreased and miR-99b
increased in these animals. Our study points out that since tissue and circulating levels of
miRNAs are not similar, caution must be exercised during the usage of miRs as diagnostic
or prognostic biomarkers. To our knowledge, we are the first to show that epigenetic alter-
ations result in cardiac dysfunction in uninephrectomized rats fed with high salt diet.

Introduction

Globally, cardiovascular diseases (CVDs)—ischemic heart disease and cerebrovascular disease
are the number-one and two death-causing diseases for the past decade [1, 2]. With the
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Abbreviations: AHR, change in heart rate; ALVSP,
change in left ventricular systolic pressure; AMAP,
change in mean arterial pressure; Ang Il
angiotensin II; AT1R, angiotensin Il type 1 receptor;
BRS, baroreflex sensitivity; CV, cardiovascular;
CVD, cardiovascular diseases; DTZ, diltiazem;
LTCC, L-type calcium channels; RAS, renin-
angiotensin system.

exception of very insignificant genetic predisposition, the risk factors of CVDs are lifestyle-
acquired including increased intake of salt, fructose, fat-rich foods, alcohol, smoking, physical
inactivity, stress, etc. [3, 4].

Patients with both the kidneys in critical condition as in chronic end-stage renal disease,
uncontrolled renal calculi etc., require a healthy kidney from living donors, rather than cadav-
ers [5, 6]. Majority of the reports did not find any major renal or cardiovascular complications
in donor nephrectomized people even after many years of surgery [7, 8]. However, there are
no reports showing the effect of diet-induced renal or cardiovascular complications in these
donor nephrectomized patients.

High salt consumption causes pressure-dependent and independent cardiovascular and
renal complications [9]. In Indian diet, high salt is consumed in the form of salt used in cook-
ing, pickles, fast foods, junk foods, processed and ready-made foods, salt added at the table
directly [10]. Since Salt loading is known to affect renin-angiotensin system (RAS) [11], we
hypothesized that the concomitant condition of uninephrectomy (reduced nephron number)
and high salt intake may aggravate CV and renal complications. In addition, to our knowledge,
so far, no data is available regarding the activity of local RAS (kidney, heart and blood vessels)
under high salt intake in uninephrectomy condition. Hence to address this, in the present
study, we used in vivo Ang II-induced cardiovascular reactivity (rather than conventional ex
vivo organ bath for blood vessel and Langendorff system for heart).

Several reports suggest the role of miRNAs in diseases like cancer, metabolic, inflammatory,
neurological and cardiovascular diseases [12]. Circulating miR-208a and miR-126 were found
to be significantly and consistently altered in the plasma under different cardiac pathological
conditions, like acute myocardial infarction, heart failure and coronary artery disease [13].
Roles of miR-25 [14], miR-155 [15] & miR-451 [16] in various murine CVDs have been
reported but their role in high salt diet-induced CV complications in uninephrectomized rats
is not yet reported. High salt diet is known to induce cardiac hypertrophy and fibrosis [17, 18]
but its effect on CV and renal functions in uninephrectomy is not known. In order to get
insight into the quality of life of live kidney donors consuming high salt, the present study was
designed to study the involvement of RAS and miRs in mediating CV and renal dysfunction.

Materials and methods
Animals and experimental design

Adult male Sprague Dawley rats of 200-250g body weight were procured from the Central Ani-
mal Facility of the institute and housed 3 rats/cage under standard environmental conditions
(temperature: 20 + 1°C, humidity: 50 + 10%; and 12 h light/dark cycle) with access to food and
water ad libitum. All protocols were approved by the Institutional Animal Ethics Committee
and experiments performed in accordance with the guidelines of the Committee for the Pur-
pose of Control and Supervision of Experiments on Animals (CPCSEA) (IAEC 12/11), India
and complied with the NIH guidelines (Guide for the care and use of laboratory animals). All
the studies involving animals were reported in accordance with ARRIVE guidelines [19]. All
the groups were planned in such a way that each group after diet switching from normal pellet
diet to high salt diet would contain 5-6 animals and no mortality was observed during surgery.
Animals were fed normal pellet for 12 weeks after UNX surgery to mimic the actual clinical
setting in which donor nephrectomised people will be on strict diet control at least for a certain
period after surgery upon physician/surgeon’s advice. Sham surgery was performed in the
Control animals in the same manner of uninephrectomy surgery except that ligations and
excision of kidneys were not performed. Then normal and uninephrectomized animals were
randomized into 4 groups—normal control (Ctrl) and uninephrectomized rats (UNX) fed
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with normal pellet diet, normal (HSD) and uninephrectomized rats fed with high salt diet
(10% w/w NaCl) (UNX+HSD) [20, 21] for 20 weeks till the end of the experiment. At the end
of the study, immediately after performing haemodynamic experiments using urethane anes-
thesia, animals were euthanized by exsanguination and organs were collected for further
experiments.

Uninephrectomy surgery

Animals were injected with saline (20 ml/kg, s.c.) to prevent the fluid loss due to evaporation
from cut ends or the peritoneal fluid loss during laparotomy [22] and then anaesthetized using
ketamine + xylazine (70 mg/kg + 7 mg/kg, i.p). After the loss of pedal pain, corneal reflexes, a
half-inch incision was given on the left flank portion of abdomen and kidney was pulled out of
the abdomen by holding the perirenal fat at the lower pole with blunt forceps, separating kid-
ney from the surrounding fat and supra renal gland, ligation of renal artery & vein and ureter
~0.5cm below the level of hilum with a non-absorbable surgical suturing thread and kidney
was snap resected. Then skeletal muscle and skin layers were sutured separately with absorb-
able and non-absorbable sutures respectively and the animal was allowed to recover by placing
in a solitary cage under the heat of 60W lamp.

After nephrectomy, topical (Betadine™) antiseptic and parenteral (Augmentin™, 324 mg/kg,
i.p.) antibiotics were given to prevent postsurgical infection and analgesic to alleviate pain.
Antiseptic was applied daily for 7-10 days for the effective healing of the surgical incision.

Biochemical parameters

Animals were fasted overnight; blood was collected from tail vein and centrifuged at 4°C,
2500xg for 10 mins for separation of plasma. Different biochemical parameters were measured
as per the manufacturer’s instructions. Glucose (GOD-POD), lipid profile—triacylglycerols
(LPL-GK-GPO-POD), cholesterol (CHE-CHO-POD), kidney function tests (KFT)—albumin
(BCG), blood urea nitrogen (BUN) (Urease), creatinine (Jaffe’s initial rate method) (Accurex
Biomedical Pvt. Ltd., Mumbai, India; Crest Biosystems, Goa, India), creatinine in urine (Jaffe’s
end-point method), sodium (Uranyl acetate/ferrocyanide method), potassium (Turbidometry)
(Crest Biosystems, Goa, India) and angiotensin II (Competitive-ELISA) (Elabscience Biotech-
nology Co. Ltd, WuHan, China).

Haemodynamic parameters—Basal and stimulated

Rat was injected with urethane (1.2 g/kg, i.p) and anesthesia was confirmed with the loss of
pedal, tail pain and corneal reflexes. Animal was restrained in its supine position by fastening
the limbs on a dissection board maintained at a constant temperature of 37°C. Neck region of
the animal was clipped off hair, disinfected with 70% alcohol. Location of left jugular vein was
felt with the pulse felt at the level of clavicle (collar bone), exposed and cannulated for adminis-
tration of drugs for in vivo vascular reactivity measurement. Then, an incision of ~1 cm in the
neck just to the right of sagittal axis, and right carotid artery was exposed by blunt dissection
of the para tracheal muscles and a carotid arterial intubation was done with a heparinised (40
IU/mL) saline—filled cannula fitted with a 3-way stopcock to a pressure transducer (MLT844
Physiological Pressure Transducer, ADInstruments, Australia), previously calibrated, and con-
nected to the data acquisition system (PowerLab, ADInstruments, Australia), which is con-
nected to a computer where Invasive Blood Pressure (IBP) is displayed. After 20 mins of
stabilisation period, acute changes in mean arterial pressure (MAP) to graded doses of angio-
tensin II (Sigma-Aldrich) were taken in order—20, 40, 80, 160, 320 ng/kg with relaxation
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period between the successive doses. Relaxation period was taken as the time for the MAP to
return to basal level.

For measurement of left ventricular systolic pressure (LVSP), heparinised (40 IU/ mL)
saline—filled cannula in the right carotid artery was advanced carefully into the left ventricle
till the increased magnitude of invasive blood pressure (with max. SBP and DBP ~0 mm Hg)
signal observed on the PC attached to the Data acquisition system (PowerLab, ADInstru-
ments, Bella Vista, Australia). Basal LVSP was taken after a stabilisation period of 10 mins
and in vivo cardiac reactivity to Ang II (20, 40, 80, 160, 320 ng/kg) was measured giving
relaxation between the successive doses. Relaxation period was taken as the time for the
LVSP to return to basal level. Haemodynamic data was analysed with LabChart 7 (ADInstru-
ments, Australia).

Acute response of the heart and blood vessel to 160 pg/kg diltiazem (DTZ) (Marion Labs)
and mixture of diltiazem and 160 ng/kg angiotensin II was measured by injecting bolus doses
and quantified in the manner same as that followed for Ang II.

Baroreflex sensitivity (BRS)

Baroreflex sensitivity (BRS) was measured as described by Khaliq et al. by administering
increasing doses of vasoconstrictor phenylephrine (10, 20, 30 ug/kg) (Sigma-Aldrich) as bolus
ramp infusions [23]. The duration of drug infusion and relaxation period (5 mins) between
consecutive doses were kept constant for all the animals. The resultant change in heart rate
(AHR) i.e., bradycardia at corresponding increment in mean arterial pressure (AMAP) was
measured and AHR/AMAP (beats/min/mmHg), the index of BRS was plotted against the dose
of phenylephrine.

Histology and immunohistochemistry

Thoracic aorta, kidney and heart were fixed in 10% v/v formal saline, embedded in paraffin,
5 pm transverse sections were prepared and mounted on slides previously coated with
Mayer’s albumin. Sections were stained with hematoxylin & eosin for structural changes and
picrosirius red, which selectively stains collagen red, for fibrosis. For immunohistochemistry,
paraffin sections were processed, antigen was retrieved by incubating the slides in EDTA
buffer, pH 8 at 95°C for 15 mins, peroxidase blocked with 3% v/v H,O,, blocked with 3% w/v
bovine serum albumin to prevent non-specific binding and incubated with primary antibody
(sc-1173, 1:50 v/v dilution) and anti-rabbit IgG-HRP labelled secondary antibody and devel-
oped using 3,3’-diaminobenzidine (Novolink™ DAB, Cat# RE7230-K, Leica Biosystems New-
castle Ltd, UK) which renders the protein of interest positive areas brown. Coverslip was
mounted with the help of DPX and observed at 400X, 1000X magnification using OLYMPUS
BX51 microscope and the images were captured with OLYMPUS DP 72 camera attached to
the microscope. Histological images were blinded and quantified using ImageJ software
(NIH, USA).

Western blotting of heart and kidney

Protein isolation and western blotting was performed as previously described [24]. Briefly, left
ventricle of hearts and kidneys were thawed, minced and homogenized in lysis buffer contain-
ing surfactants, protease and phosphatase inhibitors. Protein samples were resolved using 8%
and 10% w/v sodium dodecyl sulfate-polyacrylamide gels depending on the molecular weight
of desired proteins. These were then electrotransferred to nitrocellulose membranes and were
incubated with below mentioned antibodies—ACE2 (rabbit pAb, Cat# sc-20998), p-AMPK
(rabbit pAb, sc-33524), AMPK (rabbit pAb, sc-25792), p-AKT (Rabbit pAb, SAB4300042),
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AKT (rabbit pAb, SAB4500802), actin (goat pAb, sc-1616, SantaCruz Biotechnology, Inc., CA,
USA), SERCA = ATP2A2 (rabbit pAb, Cat# HPA062605-100UL, Sigma-Aldrich, MO, USA).
The antigen-primary antibody complexes were incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies (SantaCruz Biotechnology, Inc., CA, USA) and were visual-
ized using enhanced chemiluminescence substrate (Invitrogen, CA, USA) and ECL hyperfilm
(GE Healthcare Pvt. Ltd., UK). Blots were scanned and analyzed using Image] software (NIH,
USA).

RT-gPCR of mRNA in heart

Total RNA was isolated from heart by homogenising and extracting in TRIzol Reagent (Invi-
trogen, ThermoFisher Scientific, CA, USA), chloroform/isopropanol, precipitated and dis-
persed in RN Ase-free water. The quality and integrity of RNA was assured by measuring 260/
280 ratio (NanoDrop ND-100, Thermo Scientific, USA) and running agarose gel electrophore-
sis respectively. Reverse transcription of mRNA was performed using commercial cDNA syn-
thesis kit (Verso cDNA synthesis kit, Thermo Scientific, Cat# AB-1453/A). Quantitative real-
time PCR was performed in LightCycler 2.0 (Roche, Switzerland) using SYBR green master
mix (SYBR Premix Ex Taq II, Cat#RR820A, TaKaRa Bio Inc., Otsu, Japan,), specific forward
and reverse primers designed by NCBI Primer-BLAST (Agtrla: Forward- 5’ ~-GGATTCGTGG
CTTGAGTCCT-3’,Reverse- 5’ ~-TCACTTTCTGGGAGGGTTGT-3"; Agtr2: Forward- 5’ -
GAACAGAATTACCCGTGACCA-3’,Reverse- 5’ ~ATGAATGCCAACACAACAGC-3"), synthe-
sized commercially (Eurofins Scientific, Bengaluru, India) and the specificity of reaction was
assessed by analysing melting curve of PCR product. The relative gene expression was quanti-
fied by 2"**“* method and normalised with18S rRNA.

RT-gPCR of miRNA in heart and plasma

Left ventricle portion of heart was homogenized in a proprietary buffer and miRNA was iso-
lated using commercially available kits (PureLink™ miRNA Isolation kit, Cat# K1570-01, Invi-
trogen, CA, USA for heart and miRCURY RNA Isolation Kit-Biofluids, Cat#300112, Exiqon,
MA, USA for plasma), cDNA was synthesized using miRCURY LNA™ Universal RT micro-
RNA PCR, Cat#203301, Exiqon, MA, USA in 2720 Thermal Cycler (Applied Biosystems, CA,
USA), purified using PureLink™ Quick PCR Purification Kit, (Cat# K310001,Invitrogen, Post-
straPe, Germany) and PCR was run in LightCycler 2.0 (Roche, Basel, Switzerland) using
readymade specific forward and reverse primer mix (TagMan® MicroRNA Assays, Applied
Biosystems, CA, USA; microRNA LNA™ PCR primer sets, Exiqon, MA, USA) and the amplifi-
cation curves were analyzed using 2" method. Micro RNAs quantified were hsa-miR-25-3p
(Cat# 204361), mmu-miR-155-5p (Cat# 205930), hsa-miR-99b-3p (Cat# 204064) and mmu-
miR-451(Cat# 204734) and normalized with RNU5G (a small nuclear RNA) in heart and hsa-
miR-30e-5p (Cat# 204714) in plasma.

Statistical analysis

All the data were expressed as mean + SEM. For determining statistical significance, means of
two groups, were compared using t-test and multiple groups using one way ANOVA followed
by Bonferroni post hoc test. For analyzing baroreflex sensitivity and in vivo cardiovascular
reactivity to angiotensin II, phenylephrine data, two-way ANOVA followed by Bonferroni
post hoc test were used. Values were considered statistically significant if P<0.05. Statistical
software used was GraphPad Prism 5.01.
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Results

High salt diet deranges kidney function and instigates renal and cardiac
hypertrophy

There was no significant difference between normal control (Ctrl) and uninephrectomized
(UNX) rats in terms of % BW change, plasma albumin, creatinine as long as the animals were
on normal diet (Table 1). After 20 weeks of high salt diet feeding, polyphagia, polydipsia, poly-
uria, wasting, lipolysis, increased systemic angiotensin II, renal dysfunction & cardiac hyper-
trophy were observed in rats fed with high salt diet (HSD) and uninephrectomized rats fed
with high salt diet (UNX+HSD) compared to Ctrl and UNX groups (Table 2).

High salt diet worsens basal haemodynamics in uninephrectomized rats

Systolic blood pressure remained unchanged in all the groups despite feeding high salt diet to
normal binephric (HSD) and uninephrectomized rats (UNX+HSD) (Fig 1A). Heart rate (HR),
left ventricular systolic pressure (LVSP) and maximum rate of LVP decay during isovolumetric
relaxation (-dP/dt) decreased significantly in uninephrectomized rats fed with high salt diet
(UNX+HSD) compared to Ctrl and UNX (Fig 1B, 1C and 1F). Except +dP/dst, all other param-
eters of haemodynamics were similar in Ctrl and UNX groups. High salt diet significantly
elevated left ventricular end diastolic pressure (LVEDP) and reduced maximum rate of left
ventricular pressure (LVP) rise during isovolumetric contraction (+dP/dt) in rats fed with
high salt diet (HSD), UNX+HSD groups compared to their respective control animals (Fig 1D
and 1E) indicating worsened CV function.

Parasympathetic component of baroreflex sensitivity (BRS) is altered by
high salt feeding

BRS is helpful in assessing the development and progression of CVDs [25]. Parasympathetic
component of the baroreflex was measured as the ratio of reflex bradycardia response to dose-
dependent increase in mean arterial pressure (AHR/AMAP) by phenylephrine. The slope of
BRS plot significantly decreased indicating aberrant parasympathetic activity (vagal stimula-
tion) in the heart of UNX+HSD rats (Fig 2A). Uninephrectomy or high salt diet alone did not
bring any excursion in the BRS or AMAP in response to phenylephrine. Though the phenyl-
ephrine-induced increase in MAP was not statistically significant, it was frank indicating esca-
lated adrenergic nervous system in vasculature (Fig 2B).

High salt feeding increases in vivo acute cardiovascular reactivity to
angiotensin Il

In order to check the activity of local RAS in vasculature and heart, we measured the change in
mean arterial pressure (AMAP) and left ventricular systolic pressure (ALVSP) in response to

Table 1. General parameters, plasma kidney function tests, glycemic and lipid profile post-uninephrectomy during normal pellet diet feeding.

Time point
Parameter Ctrl
% wt. change 43.85+3.02
Albumin (umol/L) 435 +20.3
BUN (mmol/L) 5.83+1.36
Creatinine (umol/L) 69.83+1.77
BUN/Creatinine 17.76 £ 1.57

Week 4 Week 8 Week 12
UNX Ctrl UNX Ctrl UNX
51.86+2.70 64.27 £ 3.89 73.83+4.48 74.8 £ 4.60 78.43+7.03
421.95+7.25 507.5+15.95 484.3+13.05 532.15+4.35 533.6 +4.35
6.18+0.84 5.13+0.74 5.40+0.39 6.20+0.42 7.34+£0.45
69.84 £6.19 97.24 £ 16.80 12553+ 14.14 87.516+7.80 99 +5.304
20.62+2.48 15.81£0.57 13.78 £ 0.81 18.29 +1.58 19.22+1.75

Values were mean + S.E.M of 10-12 animals in Ctrl and 12 animals in UNX. Ctrl, normal control rats; UNX, uninephrectomized group.

https://doi.org/10.1371/journal.pone.0180490.t001
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Table 2. General parameters, kidney function tests, glycemia, lipids, systemic RAS, morphometry at the end of the study after 20 weeks of high

salt diet feeding.

Parameter

Feed intake (g/24 h)

% ABW

Water intake (mL/24 h)

Urine output (mL/24 h)
Plasma albumin (umol/L)
Plasma BUN (mmol/L)
Plasma Creatinine (umol/L)
Urine albumin (umol/L)

Urine UN (mmol/L)

Urine Creatinine (umol/L)
Urine sodium (mmol/L)

Urine potassium (mmol/L)
Plasma Glucose (mmol/L)
Plasma triacylglycerols (mmol/L)
AUC of IPGTT (mmol/L*min)
Plasma Angiotensin Il (pmol/L)
Kidney wt. (g)

Kidney wt. index (mg/g)
Heart wt. (g)

Heart wt. index (mg/qg)

Ctrl

22+1.155
24.15+2.638
37.67+3.18
101
527.8+7.25
4.82+0.30
132.6+11.5
906.25 + 189.95
1157.03+61.18
16283.28 + 926.43
718.5+78.51
379.6 £15.39
6.41+0.22
0.71+0.03
1202.6 £ 82.88
409.70 £ 55.35
1.42+0.04
2.79+0.13
1.36+£0.04
2.64+£0.03

HSD

55+ 14*

2.501 £ 4.224%**
111.3£18.17**
38.83+5.51*
526.35+7.25
8.06 £0.11%***
213.04 +£20.33*
977.3+108.75
299.45 + 39.95%**
3610.26 + 1749.44***
1590 £71.41*
184.3 £ 6.59**
6.23+0.16

0.37 £0.04**
1055.38 + 39.68
174.46 £21.91***
1.45+0.11

3.68 £0.23*
1.25+0.07

3.17 £0.15%*

UNX

24 +0.5774
11.6+3.76

24 +0.5774
15.5+3.5
479.95+20.3
8.32 £ 0.42***
122.88 + 18.56
1041.1 +336.4
1156.32 + 81.57
12915.24 + 2096.85
1134 £ 139.20
371.5+55.22
6.56+0.15
0.67+0.14
1078.73 £ 104.83
262.51 £43.58
1.95+0.07**
4.64 £ 0.05***
1.24+0.13
3.01+0.10

UNX+HSD

36.67 +4.667*

-8.609 + 2.753***Y
191.3 + 6.25* ¥ *SSUUU
79+ 19**SU

493+8.7

10.45 + 0.39***SSSULU
217.46 + 18.56%Y
887.4 + 308.85
126.38 + 11.74%*xU0U
987.43 + 204.20%* **UY
2088 + 188.10% **SUU
70.67 + 4.43***U0V
5.97+0.29
0.31+0.02%**V
1037.62 + 293.39
315.41 + 18.76***VV
2.17 +0.13**5S
5.81+0.11*#*SSSUU
1.20+0.06

3.28 +0.14*

Values were mean + S.E.M of 5-6 animals in all the groups. Ctrl, normal control rats; HSD, normal rats fed with high salt diet; UNX, uninephrectomized rats;
UNX+HSD, uninephrectomized rats fed with high salt diet.

*P<0.05,

**P<0.01,

***P<0.001 vs. Control;
SP<0.05,

SSp<0.01,

S8Sp<0.001 vs HSD;
Up<0.05,

Up<o.01,

UUUP<0.001 vs. UNX.

https://doi.org/10.1371/journal.pone.0180490.t002

acute bolus doses of Ang II (20-320 ng/kg) respectively in vivo. The magnitude of CV reactiv-
ity observed in HSD, UNX was similar to that of Ctrl. High salt diet drastically increased the in
vivo cardiac (Fig 2C) and vascular (Fig 2D) reactivity to exogenous Ang II at all the doses in
UNX+HSD compared to that of the Ctrl and UNX.

LTCCs upregulation by high salt in heart and vasculature are involved in
the increased Ang |- mediated cardiovascular reactivity

We thought of quantifying calcium signaling, to a certain extent, because calcium ions are cru-
cial to the functioning of heart to contract and relax in a programmed process called excita-
tion-contraction coupling [26]. Diltiazem (DTZ), an L-type calcium channel (LTCC)
antagonist which exerts action both on cardiac and smooth muscle was used to get an insight
into the expression of LTCCs in both heart and blood vessel. No deviation of ALVSP and
AMAP in response to diltiazem was observed in UNX indicating no change in the expression
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Fig 1. Basal haemodynamic parameters. A) SBP, B) HR, C) LVSP, D) LVEDP, E) +dP/dt, F)—dP/dt. SBP, systolic blood pressure; HR, heart rate;
LVSP, left ventricular systolic pressure; LVEDP, left ventricular end- diastolic pressure; +dP/dt, maximum rate of LVP rise during isovolumetric contraction;
-dP/dt, maximum rate of LVP decay during isovolumetric relaxation. Ctrl, normal control rats; HSD, normal rats fed with high salt diet; UNX,
uninephrectomized rats; UNX+HSD, uninephrectomized rats fed with high salt diet. N = 5-6; *P<0.05, **P<0.01, ***P<0.001 vs. Control; SP<0.05,
SSP<0.01 vs. HSD; “P<0.05, VYP<0.01, “WYP<0.001 vs. UNX.

https://doi.org/10.1371/journal.pone.0180490.9001

of LTCCs. HSD rats showed increased ALVSP in comparison to Ctrl. Upon DTZ infusion,
UNX+HSD rats displayed marked drop in the LVSP and MAP levels compared to Control
and UNX indicating the upregulation of LTCCs in heart and vasculature respectively (Fig 2E).
Ang IT was also co-administered with DTZ, to determine the LTCCs activation coupled with
ATIR [27]. Ang II overcame the calcium channel blockade activity of DTZ as evident from the
increased ALVSP and AMAP in UNX+HSD in both cardiac and vascular and HSD in cardiac
alone (Fig 2F).

High salt feeding increases AT1R in the heart and aorta of rats

To evaluate whether the enormously increased in vivo cardiac and vascular reactivity to Ang II
is because of upregulated AT1R, we checked its expression in heart and aortic musculature
using immunohistochemistry. No change in the expression of vascular and cardiac AT1R was
observed in UNX compared to Ctrl. We observed that AT1 receptor significantly upregulated
in the heart and aorta of normal and uninephrectomized rats fed with high salt as evident from
the increased DAB-positive area (Fig 3A and 3E). In order to further validate the results of
immunohistochemistry, we performed real time PCR of Agtrla and Agtr2 mRNAs, which
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reactivity to Ang Il (20-320 ng/kg), D) In vivo vascular reactivity to Ang Il (20—-320 ng/kg). E) In vivo cardiac and vascular responses to DTZ (160 pg/kg)
respectively. F) In vivo cardiac and vascular response to DTZ (160 pg/kg) + Ang Il (160 ng/kg) respectively. Ctrl, normal control rats; HSD, normal rats
fed with high salt diet; UNX, uninephrectomized rats; UNX+HSD, uninephrectomized rats fed with high salt diet. ALVSP, change in left ventricular
systolic pressure, AMAP, change in mean arterial pressure; Ang Il, Angiotensin II; N = 4; #*P<0.05, **P<0.01, ***P<0.001 vs. Control; SP<0.05 vs. HSD;

UP<0.05, YUP<0.01, “YYP<0.001 vs. UNX.

https://doi.org/10.1371/journal.pone.0180490.9002

encode angiotensin II type 1 (AT1R) and type 2 (AT2R) receptors respectively in the heart. We
found that the mRNA expression of AT1R in UNX+HSD heart increased substantially match-
ing with AT1R in immune-stained heart sections (Fig 3C). However, no change was observed
in the expression of Agtr2 mRNA in any of the groups (Fig 3D).

High salt feeding initiates hypertrophy and fibrosis of kidney, heart and
aorta

Uninephrectomy significantly increased the glomerular size and decreased glomerular count
compared to that of Ctrl. The capsular space between the Bowman’s capsule and the glomeru-
lus and fibrosis in the kidney of UNX is same as that of Ctrl. UNX+HSD group characterized
the features of both high salt diet and uninephrectomy in terms of capsular space and glomeru-
lar size respectively and also exhibited highest fibrosis compared to that of Ctrl, HSD and
UNZX. Nuclei count in heart showed a remarkable decrease in the UNX+HSD group compared
to that of Ctrl and UNX. High salt diet augmented fibrosis in HSD and UNX+HSD groups
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https://doi.org/10.1371/journal.pone.0180490.g003

compared to that of Ctrl and UNX groups respectively in the heart (Fig 4). Nuclei count in
aorta did not change in any of the groups and high salt diet markedly elevated fibrosis in UNX
+HSD compared to that of all the remaining groups (Fig 4).

Expression of AKT, SERCA and AMPK are altered by high salt feeding

No change in the expression of p-AKT, SERCA, p-PTEN and p-AMPK was observed in UNX
compared to Ctrl. Reduced expression of SERCA was observed in all the animals fed with high
salt diet and UNX+HSD displayed significant decrease compared to UNX and HSD (Fig 5A
and 5B).

Increased AKT and decreased AMPK contribute to pathological cardiac hypertrophy in
adult hearts [28, 29]. Our results show marked increase in the expression of active form of
AKT1 in the animals fed with high salt diet i.e., HSD and UNX+HSD. PTEN is an upstream
phosphatase which targets p-AKT and its expression was found to be decreased significantly in
the animals (HSD, UNX+HSD) where the surge of p-AKT was observed. Phosphorylated
AMPK was significantly reduced in the hearts of normal and uninephrectomized animals fed
with high salt (Fig 5A and 5B). ACE2, the protective component of RAS, was significantly
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dampened in the kidneys of high salt fed rats-HSD and UNX+HSD compared to Ctrl and
UNX (Fig 5C).

High salt feeding alters micro RNA levels (miR-25, -155, -99b, -451)
which regulate SERCA, AKT and AMPK

As we observed changes in the protein expression of SERCA, AKT and AMPK, we questioned
ourselves whether there would be change in the upstream epigenetic miRs regulating the
expression of these proteins and proceeded further to analyse the miRs-25, -99b, -155, -451 in
heart. miR-25, which targets SERCA?2 [14], was found to be increased in the animals fed with
high salt diet. miR-155 and miR-451 upregulated in HSD and UNX+HSD rats (Fig 5D). miR-
99, which regulates the expression of AKT [30] along with miR-155 [31], got downregulated in
HSD, UNX and UNX+HSD (Fig 5E). miR-25, -155, -451 were unaltered in UNX compared to
Ctrl. The reason for downregulation of miR-99b in UNX is not known.

To check whether the pattern of miRs obtained in heart is correlating with that of plasma or
not, we assessed the levels of miR-25, -99b, -155, and 451 in plasma. miR-155 was not detected
in plasma may be because of its low level of expression. miR-25 and 451 were decreased and
miR-99b increased in the plasma of HSD and UNX+HSD groups compared to their controls
—Ctrl and UNX respectively (Fig 5F).

Discussion

Consumption of high sodium in the form of high dietary intake of salt (sodium chloride) has
increased enormously across the globe posing the people at risk for both pressure-dependent
and independent deleterious effects on various systems. With the increasing demand of renal
transplants for patients suffering from ESRD, renal carcinoma etc, the numbers of live kidney
donors are also rising alarmingly. To get an insight into the CV and renal functions of such
live kidney donors consuming high salt diet, the present study was carried out to investigate
the effect of high salt diet on the cardiac, vascular and renal functions in uninephrectomized
rats with emphasis on renin angiotensin system (RAS) and epigenetic alterations. High salt
elicited cardiovascular and renal-dysfunction and fibrosis, independent of hypertension, in
binephric and uninephrectomized rats. To the best of our knowledge, we are the first to inves-
tigate the effect of high salt feeding on epigenetic alterations, the levels of tissue and circulating
miRNAs and changes in local & systemic RAS in uninephrectomized rats. Our work is differ-
ent from previous work [32, 33] as we initiated high salt diet feeding after a certain period of
normal diet feeding post uninephrectomy, and hence mimics the clinical setting of live kidney
donors in a better way.

In compliance with the previous reports in animals [34, 35] and humans [36], we did not
observe any anomalies in the kidney function tests as long as the animals were on normal pellet
diet. However, inclusion of high salt diet resulted in abnormal kidney function. It is well estab-
lished that the renal hypertrophy of the remnant kidney after the ablation of the other kidney
is compensatory (adaptive/physiological) but not pathological [37] and this phenomenon is
independent of calcineurin, transforming growth factor-p1, reactive oxygen species, NAD(P)
H oxidase 4 and local RAS components [38], all of which are proved to be upregulated in dia-
betic nephropathy or in other forms of renal injury. UNX+HSD exhibited highest fibrosis and
capsular space compared to that of Ctrl, HSD and UNX. The extent of derangement of bio-
chemical, morphometric parameters and most other molecular intricacies was highest in UNX
+HSD indicating that high salt diet worsens end-organ damage in uninephric condition than
that of binephric condition, a proof implicating that uninephrectomy sensitizes the animal for
high salt dietary intervention.
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Contrary to the generalised notion of salt-sensitive hypertension, only one-third of the
humans show salt-sensitivity to blood pressure [39]. In line with other preclinical reports [40,
41], we also did not observe any change in SBP by high salt diet. Regulation of blood pressure
is pleiotropic. Unchanged SBP in UNX+HSD can be attributed to the significant decrease in
plasma Ang II levels (depressed systemic RAS) and a commensurate surge in the in vivo car-
diovascular reactivity to Ang II (mediated by increased AT1R) and “pressure natriuresis” [42],
which was observed in our study in the form of increased sodium in urine. Despite high salt
intake, hypertension does not arise until ‘equilibrium between local and systemic arms of RAS’
[40] and ‘renal excretion of excess sodium from the body’ [42] are not hampered. Though
hypertension was not observed in our study, we observed pressure-independent deleterious
effects on cardiac, vasculature and renal tissue. High salt is known to exert pressure-indepen-
dent deleterious effects on cardiovascular and renal systems [9]. Baroreflex sensitivity (BRS) is
a measure of the development and progression of CVDs [25]. It is the compensatory feedback
mechanism instigated in response to change in blood pressure i.e., heart rate (HR) is decreased
by the activation of parasympathetic nervous system in response to increased blood pressure;
HR is increased by the activation of sympathetic nervous system in response to decreased
blood pressure. We provide evidence that the parasympathetic component of BRS is signifi-
cantly dampened in UNX+HSD group indicating the development of CV dysfunction.

Alterations in cardiovascular reactivity to Ang II can be explained by assuming that Ang II
binds to AT1R and mediates vasoconstriction via calcium mobilization by directly transacti-
vating LTCCs, store (sarcoplasmic reticulum)-operated calcium influx or indirectly by activat-
ing myosin phosphatase pathways-RhoA/Rho-kinase pathway [43, 44]. Our data shows AT1R
is upregulated in heart and aorta of HSD and UNX+HSD rats, suggesting us that activation of
local RAS is responsible for increased cardiac and vascular reactivity to Ang II. The same was
confirmed from the increased expression of ATIR at protein and mRNA levels in heart. Con-
current with the increased expression of AT1R in heart, aorta and reduced expression of ACE2
in kidney, we observed cardiac, vascular aortic and renal fibrosis in high-salt fed uninephrecto-
mized animals. Activation of any of the components of the pressor arm [AnglII (angiotensin
IT)/ACE (angiotensin-converting enzyme)/AT1Rs (AnglI type 1 receptors)] of renin angioten-
sin system (RAS) instigates cardiovascular and renal fibrosis [45-47]. Further, with a specific
L-type calcium channel blocker, diltiazem (DTZ, 160 pg/kg), UNX+HSD animals displayed a
significant dip in the LVSP and MAP indicating the upregulation of LTCCs in both cardiac
muscle and vascular smooth muscle respectively. LTCCs upregulation was reported in hyper-
trophic cardiomyopathy, dysrhythmias and failing heart [48]. The extent of LTCCs upregula-
tion in HSD and UNX+HSD was profound that for the given dose of DTZ 160 pg/kg + Ang II
160 ng/kg, some left over LTCCs (even after blockade by diltiazem) are still reactive to Ang II.

We also observed increased left ventricular end diastolic pressure (LVEDP) in normal
(HSD) as well as in uninephrectomized rats (UNX+HSD) fed with high salt diet. LVEDP
reflects cardiac compliance and is elevated in LV disease associated with or without reduced
LV ejection fraction. Increased LVEDP can be explained by decreased expression of SERCA2
[the sarco/endoplasmic reticulum (SR/ER) Ca** ATPase required for pumping back of cyto-
solic Ca** into the lumen of SR/ER to elicit the contraction phase of next cardiac cycle],
observed in HSD and UNX+HSD. Declined cardiac function in heart failure is attributed to
decreased SERCA2, which in turn is due to increased endogenous miR-25 in mice and humans
[14]. Hence, we checked the expression of miR-25, which targets SERCA?2 in the heart and
interestingly, we observed its level increased in HSD and UNX+HSD demonstrating the
involvement of miR-25 in escalating LVEDP in these groups. Several reports suggest reduced
activity and expression of SERCA leads to increased LVEDP in diabetic cardiomyopathy and
heart failure [49, 50].
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Individuals with acute or chronic kidney disease are predisposed to CVD and heart failure
via activation of RAS and sympathetic nervous system [51]. We also observed cardiac fibrosis
in HSD and UNX+HSD, which supports our data of increased cardiac reactivity to angiotensin
I1. Cardiac fibrosis was associated with corresponding alterations in the expression of p-AKT
and p-AMPK. Increased p-AKT [28] and decreased p-AMPK [52] were positively correlated to
cardiac hypertrophy in experimental animal studies. We were interested to check whether the
alterations in the expression of these proteins are epigenetically regulated and explored, from
the literature, the miRNAs that regulate directly or indirectly the expression of SERCA, AMPK,
AKT to be miRs-25, 451, 155 and 99b. It has been reported that miR-155 downregulates the
expression of PTEN, which in turn dephosphorylates p-AKT [31]. In our study in cardiac tis-
sue, increased level of miR-155 downregulated PTEN, augmenting p-AKT in HSD and UNX
+HSD animals. In the experimental model of wound healing, miR-99b was shown to affect the
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Fig 6. Probable mechanism showing high salt diet intake evokes cardiac dysfunction in uninephrectomy. UNX combined with HSD intake
upregulates AT1R, LTCCs leading to increased cardiovascular reactivity and decreased BRS; upregulates miR-25, miR-155 and miR-451 and
downregulates miR-99b affecting SERCA2, AKT and AMPK leading to impaired excitation-coupling cycle, fibrosis and hypertrophy culminating in cardiac
dysfunction.

https://doi.org/10.1371/journal.pone.0180490.g006
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expression of AKT [30]. Level of miR-99b coincided with the level of p-AKT1 in heart of HSD,
UNX+HSD rats. In glioma cells, miR-451 targets CAB39 [53], a binding partner of LKB1 [54],
which in turn phosphorylates and activates AMPK [55]. Our data also shows a surge of miR-
451 and a proportionate dip in p-AMPK in the heart of HSD and UNX+HSD animals.

To utilize epigenetic alterations as biomarkers for cardiac dysfunction, circulating levels of
microRNAs, were also measured in plasma. Several reports indicate both positive [56] as well
as negative [57] correlation between the tissue and circulating miRs. However, we failed to
observe any positive correlation between the tissue and circulating levels of miR-25, -99b and
-451 in our study. Most plausible explanation for this is that some microRNAs are retained/
secreted selectively by the affected tissue to contribute to the pathophysiology of disease.

This study identifies that epigenetic alterations by high salt intake culminate in cardiac
injury not only in normal (binephric) people but also in live kidney donors and CV & renal
injury is worsened more in the latter than the former. Our results also indicate that live kidney
donors do not face any major CV and renal dysfunction as long as they are on normal diet but
can be predisposed to it upon excursion from normal diet. Contributing factors for cardiac
dysfunction include epigenetic alterations and local RAS activation.

Conclusion

Effect of high salt diet on the quality of life of kidney donors is largely unknown. In the present
study, we show that high salt diet feeding led to cardiovascular and renal dysfunction in unine-
phrectomized rats implicating epigenetic alterations (microRNAs (miRs)) and renin angioten-
sin system (RAS). In a nutshell, our study demonstrated that uninephrectomy per se caused no
adverse effects, but sensitized the animals to dietary manipulation (high salt diet feeding) cul-
minating in exacerbated cardiac, vascular and renal dysfunction manifested by decreased bar-
oreflex sensitivity, increased in vivo cardiovascular reactivity to Ang II and fibrosis in cardiac,
vascular and renal tissue. This cardiac dysfunction is attributed to the activation of local

RAS, altered cardiac miRNA-25, -99b, -155, -451 and their corresponding targeted proteins—
SERCA2, p-AKT, and p-AMPK (Fig 6). Since the pattern of circulating miRs showed a pattern
exactly opposite to that of the heart, caution must be exercised in utilizing them as clinical
biomarkers.
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