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Few genome-wide association studies (GWAS) of type 2
diabetes (T2D) have been conducted in U.S. Hispanics/
Latinos of diverse backgrounds who are disproportion-
ately affected by diabetes. We conducted a GWAS in
2,499 T2D case subjects and 5,247 control subjects from
six Hispanic/Latino background groups in the Hispanic
Community Health Study/Study of Latinos (HCHS/SOL).
Our GWAS identified two known loci (TCF7L2 and KCNQ1)
reaching genome-wide significance levels. Conditional
analysis on known index single nucleotide polymor-
phisms (SNPs) indicated an additional independent signal
at KCNQ1, represented by an African ancestry–specific
variant, rs1049549 (odds ratio 1.49 [95% CI 1.27–1.75]).
This association was consistent across Hispanic/Latino
background groups and replicated in the MEta-analysis
of type 2 DIabetes in African Americans (MEDIA) Consor-
tium. Among 80 previously known index SNPs at T2D loci,
66 SNPs showed consistency with the reported direction
of associations and 14 SNPs significantly generalized to
the HCHS/SOL. A genetic risk score based on these 80
index SNPs was significantly associated with T2D (odds

ratio 1.07 [1.06–1.09] per risk allele), with a stronger ef-
fect observed in nonobese than in obese individuals. Our
study identified a novel independent signal suggesting
an African ancestry–specific allele at KCNQ1 for T2D.
Associations between previously identified loci and T2D
were generally shown in a large cohort of U.S. Hispanics/
Latinos.

U.S. Hispanics/Latinos, who now make up the nation’s
largest minority group, are disproportionately affected by
diabetes (1). Our recent data from the Hispanic Commu-
nity Health Study/Study of Latinos (HCHS/SOL) showed a
diabetes prevalence of ;17% in Hispanic adults (2). Pre-
vious genome-wide association studies (GWAS) have iden-
tified a number of type 2 diabetes (T2D) susceptibility loci
primarily in populations of European ancestry (3). Few
GWAS have been conducted in Hispanic/Latino popula-
tions (mostly comprising individuals of Mexican origin)
and identified novel T2D loci (e.g., SLC16A11) (4,5). To
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further understand the genetic basis of T2D in U.S. Hispanics/
Latinos of diverse backgrounds, we conducted a GWAS
including 2,499 T2D case subjects and 5,247 control sub-
jects from the HCHS/SOL with the purpose of 1) searching
for novel T2D loci and 2) examining previously known T2D
loci in U.S. Hispanics/Latinos.

RESEARCH DESIGN AND METHODS

Participants
The HCHS/SOL is a population-based study of 16,415
Hispanic/Latino adults, 18–74 years old, living in four U.S.
metropolitan areas (Bronx, NY; Chicago, IL; Miami, FL; and
San Diego, CA) (6,7). A comprehensive battery of inter-
views relating to personal and family characteristics and
health status and behaviors, as well as a clinical assessment
with blood draw, were conducted at an in-person clinic
baseline visit during 2008–2011. The study was approved
by the institutional review boards at all participating insti-
tutions, and all participants gave written informed consent.
The analyses described here included 7,746 individuals
comprising 2,499 T2D case subjects and 5,247 control sub-
jects who consented to participation in genetic studies
(Supplementary Table 1).

Ascertainment of T2D
Individuals with T2D were defined as those with fasting
time .8 h and fasting glucose levels $126 mg/dL, fasting
#8 h and fasting glucose $200 mg/dL, post–oral glucose
tolerance test glucose $200 mg/dL, HbA1c $6.5% (48
mmol/mol), or on current treatment with antihyperglycemia
medications. Control subjects were defined as those with
fasting time .8 h and fasting glucose levels ,100 mg/dL,
post–oral glucose tolerance test glucose ,140 mg/dL, and
HbA1c ,5.6% (38 mmol/mol). Individuals with intermediate
phenotypes (prediabetes) were excluded from this analysis.

Genotyping and Imputation
Genotyping was performed with an Illumina custom array
(15041502 B3), which consists of the Illumina Omni 2.5M
array (HumanOmni2.5-8 v1.1) plus ;150,000 custom
single nucleotide polymorphisms (SNPs), with the quality
control performed at HCHS/SOL Genetic Analysis Center
(8). Genome-wide imputation was carried out using the
1000 Genomes Project phase 1 reference panel SHAPEIT2
and IMPUTE2 software, as described previously (8). An
iterative procedure was used to simultaneously estimate
principal components (PCs) reflecting population structure
and kinship coefficients measuring familial relatedness
(8). Genetic analysis groups (Hispanic/Latino background
groups: Cuban, Dominican, Puerto Rican, Mexican, Central
American, or South American) were constructed based on a
combination of self-identified Hispanic/Latino background
and genetic similarity (8).

Statistical Analysis

GWAS
We used the generalized linear mixed model association test
(GMMAT) (9) to test SNP–T2D genome-wide associations

using the score test applied on a logistic model. Our study
had a power of 80% to detect a genetic variant that could
explain 0.64% variance of T2D on a liability scale, at the
genome-wide significance level (P , 5.0 3 1028). Corre-
lations between participants were accounted for by incor-
porating covariance matrices corresponding to genetic
relatedness (kinship), household, and census block group
as random effects. The model also included center, age,
sex, the first five PCs to adjust for ancestry (8), and sam-
pling weights (10).

Conditional Analysis and Haplotype Analysis
Conditional analyses were performed at the KCNQ1 locus
using GMMAT, with known index SNP and lead SNPs as
covariates. We identified haplotypes of KCNQ1 based on
four SNPs using the phased imputation data. Haplotypes
that appeared at least 50 times in both case and control
subjects were tested for associations with T2D using
GMMAT, with the most common haplotype as a reference.

Known Index SNP Analysis
For 80 known index SNPs identified and/or summarized in
previous studies (4,11–14), we used GMMAT to estimate
the odds ratios (ORs) and 95% CI per risk allele of each
SNP on T2D. We calculated post hoc power for these
80 SNPs using a previously reported method (15), under
the risk allele frequencies and effect sizes of SNPs observed
in the HCHS/SOL, at a P of 6.25 3 1024 (Bonferroni
correction for 80 SNPs). To study whether these associa-
tions vary by Hispanic/Latino groups, we included SNP 3
group interaction terms (as fixed effects) in the models.
Binomial tests were conducted to examine whether the
observed consistency of 80 known T2D index SNPs with
the previously reported associations is due to chance. We
tested these 80 known index SNPs for generalization in the
HCHS/SOL by calculating false discovery rate–controlling r
values, to account for multiple testing of the generalization
null hypothesis (16).

Genetic Risk Score
An unweighted genetic risk score (GRS) was constructed
for each participant by summing all risk allele dosages of
80 known T2D index SNPs. To test potential differences
between two sets of T2D SNPs according to their possible
biological categories (17), two sub-GRSs were calculated
based on 36 b-cell function–related SNPs and 18 insulin
resistance–related SNPs, respectively. Similar GMMAT mod-
els were used to examine the ORs and 95% CI per unit of
the GRSs on T2D in all samples, and subgroups were strat-
ified by age-group (dichotomized at median: 45 years old),
sex, BMI status (dichotomized at the cutoff for obesity:
30 kg/m2), and Hispanic/Latino background.

RESULTS

In a GWAS of T2D including all individuals, there was no
evidence of genomic inflation due to population stratifica-
tion (l = 0.99; Supplementary Fig. 1). There were two
genome-wide significant T2D loci (P , 5.0 3 1028), and

1420 Genetics of T2D in Hispanics Diabetes Volume 66, May 2017

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1150/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1150/-/DC1


both are known: TCF7L2 (lead SNP rs7903146, P = 1.3 3
10211) and KCNQ1 (lead SNP rs2283228, P = 8.43 10213)
(Supplementary Fig. 2). Further adjustment for BMI did not
change the results materially.

We then evaluated association results at 80 known T2D
loci to examine whether lead SNPs in the HCHS/SOL are
different from the reported index SNPs. There were eight
loci with lead SNPs of P , 6.25 3 1024 (Bonferroni
adjustment for 80 tested loci), four of which (TCF7L2,
INS-IGF2, KCNQ1, and MTNR1B) reached significance after
correction for the number of independent SNPs calculated
using the simpleM methods (18) at the respective locus
(Supplementary Fig. 3). The observed lead SNPs in the
HCHS/SOL were identical or in moderate-to-high linkage
disequilibrium (LD) (r2 . 0.5) with known index SNPs at
these loci, except SNP rs1049549 at INS-IGF2 and SNP
rs2283228 at KCNQ1 (r2 , 0.2 with known index SNPs).
Of note, SNP rs1049549 is located between the INS-IGF2
and KCNQ1 genes and relatively closer to KCNQ1 than to
INS-IGF2. Thus, rs1049549 was considered as a SNP at the
KCNQ1 locus in our following analyses.

Conditional analyses at the KCNQ1 locus also yielded
two additional independent signals represented by SNP
rs2283228/rs2237896 (in high LD with r2 = 0.83) and SNP
rs1049549, respectively (Fig. 1 and Supplementary Table 2).
A potentially novel signal represented by SNP rs1049549
showed a significant association with T2D (OR 1.49 [95%
CI 1.27–1.75]; P = 5.5 3 1026) in primary analysis (Fig. 1A),
and the result did not change materially after conditioning
on index SNP rs163184 (Fig. 1B) or after conditioning on
both index SNP rs163184 and lead SNP rs2237896 (Fig.
1C). In addition, there was another signal represented by
SNP rs3888647 showing varied associations with T2D in
primary analysis and conditional analyses (Supplementary
Table 2). This might be due to the correlations between
this SNP and SNPs rs2283228/rs2237896 (Supplemen-
tary Table 3), indicating that this might not be an inde-
pendent signal.

Haplotype analyses of the KCNQ1 locus based on four
SNPs, rs1049549, rs163184, rs2237896, and rs3888647,
further supported the independence of SNP rs1049549
in association with T2D (Supplementary Table 4). The
most common haplotype T-G-G-G in the HCHS/SOL (fre-
quency 0.30) has nonrisk allele (C allele) of rs1049549
and risk alleles (G alleles) of other three SNPs for T2D.
The haplotype C-G-G-G, with the risk allele (C allele) of
rs1049549, showed a significant association with in-
creased T2D risk compared with the haplotype T-G-G-G
(P = 9.6 31024).

Associations between SNP rs1049549 and T2D were
highly consistent across Hispanic/Latino background groups
(I2 = 0; Pheterogeneity = 0.77) (Fig. 2). Previously inferred local
ancestry estimates in the HCHS/SOL (19) indicated that
this C allele is an African ancestry–specific allele, with rela-
tive high frequency in African ancestry (minor allele fre-
quency [MAF] 0.32) and very low frequency in European
ancestry and Native American ancestry (MAF ,0.02). We
replicated this association in the MEta-analysis of type 2
DIabetes in African Americans (MEDIA) Consortium (11).
A proxy SNP rs7124991 (r2 = 1 with rs1049549 in both
Hispanics and Africans; MAF 0.23 in African Americans)
was significantly associated with T2D (P = 0.006).

Table 1 provides information on consistency of 80 index
SNPs at known T2D loci between the HCHS/SOL and
previous studies. A total of 69 SNPs showed consistency
with the previously reported direction of associations
(binomial test P = 8.67 3 10212). Characteristics of
80 known index SNPs, SNP–T2D associations, and post
hoc power calculation in the HCHS/SOL are shown in
Supplementary Table 5. There were no significant in-
teractions between these SNPs and Hispanic/Latino
backgrounds on T2D (all Pinteraction . 0.05). In the gen-
eralization analysis, 14 index SNPs were generalized to
the HCHS/SOL.

The total GRS based on 80 known index SNPs showed a
highly significant association with T2D (OR 1.07 [95% CI

Figure 1—Regional association plots for the KCNQ1 locus in the HCHS/SOL. A: Primary analysis. B: Conditional analysis on the index SNP
rs163184. C: Second conditional analysis on the index SNP rs163184 and the conditional lead SNP rs2237896. Values of r2 for LD were
estimated in the HCHS/SOL.
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1.06–1.08] per risk allele; P = 2.31 3 10239) (Table 2).
Association between GRS and T2D was stronger in non-
obese (BMI ,30 kg/m2) compared with obese (BMI $30
kg/m2) individuals (OR 1.10 [95% CI 1.08–1.11] vs. 1.06
[1.04–1.08]; Pinteraction = 2.84 3 1023). Obesity status
showed significant interactions with the b-cell function
GRS (Pinteraction = 8.55 3 1025) but not the insulin resis-
tance GRS (Pinteraction=0.34). We did not find significant
interactions between the GRSs and age, sex, or Hispanic/
Latino background on T2D (all Pinteraction . 0.05). Another
GRS based on 66 SNPs that did not pass generalization
testing also showed a significant association with T2D
(P = 6.12 3 10214).

DISCUSSION

In this GWAS of T2D in U.S. Hispanics/Latinos, we
identified an independent association signal represented
by an African ancestry–specific variant, SNP rs1049549, in
addition to two known association signals at the KCNQ1
locus (20–22). Consistent results across different Hispanic/
Latino background groups and successful replication in
African Americans from the MEDIA Consortium (11)
strengthened the reliability of this observed association.
SNP rs1049549 is located at the 39 untranslated region
of CD81,;3.3 kb upstream of TSSC4 and;4.8 kb upstream
of KCNQ1, which often contains regulatory elements
(ENCODE databases can be found in the University of Cal-
ifornia, Santa Cruz, Genome Browser at https://genome.ucsc.
edu/). Further examination indicated that SNP rs1049549 is
in a high LD with a set of SNPs (r2 . 0.8) clustered with
regulatory elements, such as the transcription factor binding
regions, DNase I hypersensitivity sites, and H3K27Ac mark.

It is not surprising that only 14 known index SNPs
formally generalized to the HCHS/SOL, due to limited power
of our study. Top SNPs, TCF7L2 rs7903146 and KCNQ1
rs2283228, in our study explained 0.28% and 0.33% variance
of T2D, respectively, indicating that our GWAS was under-
powered. However, we demonstrated that both the GRS
based on all 80 known index SNPs and the GRS that excluded
generalized SNPs showed highly significant associations with
T2D. The observed effect of the GRS in U.S. Hispanics/
Latinos (;7% increased risk of T2D per allele) is very

Figure 2—Associations between SNP rs1049549 at KCNQ1 and T2D across Hispanic/Latino background groups. Data are ORs (95% CI)
for each minor allele of rs1049549 on T2D, adjusted for age, sex, center, sampling weights, relatedness, and population structure (kinship
coefficients and eigenvectors). Overall results were combined by fixed-effects meta-analysis and did not account for low-level relatedness
between groups.

Table 1—Consistency of the direction of effects of 80 known
index SNPs on T2D between the HCHS/SOL and previously
reported studies

Results in the
HCHS/SOL

Consistent
SNPs/total SNPs (%)

Binomial
test P

SNPs showed
consistency of direction 69/80 (86.3) 8.67 3 10212

SNPs showed
P , 0.05 27/80 (33.8) 7.56 3 10216

SNPs showed
P , 6.25 3 1024* 10/80 (12.5) 1.43 3 10220

*Bonferroni corrected significance in the current analysis
(0.05/80 SNPs).
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similar to those observed in two large studies of Euro-
peans (23) and Chinese (17). Consistent with previous
studies (17,23), we found a stronger genetic association
with T2D in leaner individuals, which might be driven by
b-cell function–related variants (17).

One unique feature of our study is the diversity of
Hispanic/Latino backgrounds, which have been rarely in-
vestigated in previous T2D GWAS (4,5). This provides both
challenges and advantages for genetic association studies.
Heterogeneity among diverse Hispanic/Latino groups may
increase genomic inflation, confounding effects, or other
artifacts and decrease statistical power (24), although appro-
priate statistical approaches have been applied to account
for heterogeneous variances among groups in our genetic
association analyses (8). On the other hand, the diversity of
Hispanic/Latino groups with different ancestries provides
opportunities to identify potential ancestry-specific alleles
(e.g., the newly identified African ancestry–specific allele at
KCNQ1 in this study) and/or group-specific genetic effects
in relation to human diseases (25). Our study, the largest
study of U.S. Hispanics/Latinos of diverse backgrounds to
date, is still limited by inadequate sample size. Additional
studies of U.S. Hispanics/Latinos are clearly needed to fill
this gap.

In summary, our study identified a potentially novel
independent signal suggesting an African ancestry–specific
allele at KCNQ1 for T2D and provides evidence for the
similarity of known genetic predisposition to T2D between
U.S. Hispanics/Latinos and other populations. Larger meta-
analyses of T2D GWAS efforts are needed to confirm our
findings and identify more T2D loci among this under-
studied population.
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