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Abstract
Background and Objective  Human epidermal growth factor receptor 2 (HER2) protein overexpression is one of the most 
significant biomarkers for breast cancer diagnostics, treatment prediction, and prognostics. The high accessibility of HER2 
inhibitors in routine clinical practice directly translates into the diagnostic need for precise and robust marker identification. 
Even though multigene next-generation sequencing methodologies have slowly taken over the field of single-biomarker 
molecular tests, the copy number alterations such as amplification of the HER2-coding ERBB2 gene are hard to validate on 
next-generation sequencing platforms as they are characterized by chromosomal structural heterogeneity, polysomy, and 
genomic context of ploidy. In our study, we tested the approach of using whole genome sequencing instead of next-generation 
sequencing panels to determine HER2 status in the clinical set-up.
Methods  We used a large dataset of 876 patients with breast cancer whole genomes with curated clinical data and an addi-
tional set of 551 patients’ external genomic data. We used the decision-tree-based algorithm for optimization of the diagnostic 
tool for HER2 status assessment by whole genome sequencing.
Results  The most efficient approach to assess HER2 status in whole genome sequencing data was the ploidy-corrected copy 
number, utilizing ERBB2 copy number and mean tumor ploidy. The classifier achieved sensitivity of 91.18% and specificity 
of 98.69% on the internal validation dataset and 89.86% and 96.06% on the external data, which is similar to other next-
generation sequencing methods, currently tested in the clinic.
Conclusions  We provide evidence that the HER2 status may be reliably determined by whole genome sequencing and 
is applicable across different laboratory protocols and pipelines. We suggest using the ploidy-corrected copy number for 
diagnostic purposes.
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Key Points 

Whole genome sequencing is a reliable method for 
clinical human epidermal growth factor receptor 2 status 
assessment.

The ploidy-corrected copy number value is the most 
accurate biomarker for genetic testing with high con-
cordance to gold standard immunohistochemistry and 
fluorescence in situ hybridization.

Short-read whole genome sequencing for human epider-
mal growth factor receptor 2 assessment is consistent 
across different platforms and wet lab protocols.

1  Introduction
Human epidermal growth factor receptor 2 (HER2) is an 
important biomarker for targeted therapy in breast cancer 
(BC). Patients with an overexpression of the receptor were 
considered the worst prognosis group before HER2 inhibi-
tors were introduced into clinical practice [1]. Currently, the 
first and second generation of these drugs slow down dis-
ease progression, improving the outcomes in HER2-positive 
subgroups of BCs. Therefore, it is crucial to pinpoint the 
HER2-overexpression status accurately and precisely [2].

The molecular mechanism of HER2 overexpression is, 
in most cases, amplification of a 17q12 chromosome region 
containing the HER2 coding ERBB2 gene. The reference 
method for the assessment of ERBB2 amplification is immu-
nohistochemistry (IHC) coupled with fluorescence in situ 
hybridization (FISH) [3]. Currently, diagnostic companies 
and medical services are beginning to offer novel next-
generation sequencing (NGS) assays, detecting dozens of 
actionable biomarkers in a single test. They are trying to 
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incorporate the ERBB2 copy number (ERBB2 CN) into their 
portfolio as well. Unfortunately, ERBB2 amplification sta-
tus cannot be easily determined by establishing a simple 
threshold for negative and positive values, as the genomic 
context of chromosome 17 copy number and tumor ploidy1 
are interrelated with ERBB2 CN [4]. First, duplication or 
triplication of the whole chromosome set (polyploidy) or just 
a subset of chromosomes (aneuploidy) is a common feature 
of BC [5, 6]. However, changes in ploidy may not be associ-
ated with an overexpression of the ERBB2 gene, as average 
global transcript levels remain unchanged. On the contrary, 
Newcombe et al. noted a decrease in HER2 expression in 
recurrent polyploid BC cells [7]. Second, the isolated dele-
tion or duplication events of chromosome 17 may influence 
the ERBB2 transcription [8, 9]. The gain of an additional 
copy of chromosome 17, called polysomy, is correlated with 
tumor ploidy and is considered its surrogate in the FISH test, 
but discrepancies between these parameters are in part the 
reason for inaccuracy in ERBB2 amplification detection [10].

As it is not feasible to determine ploidy in conventional 
FISH, the ratio between ERBB2 CN and chromosome 17 
centromeric probe (CEP17) CN serves as a diagnostic cri-
terion in dual-probe assays, recommended by the official 
American Society of Clinical Oncology/College of Ameri-
can Pathologists (ASCO/CAP) clinical practice guidelines 
for diagnostics of HER2 in patients with BC [3].

In contrast, whole genome sequencing (WGS) is capable 
of acquiring absolute ERBB2 CN, CEP17 CN, and mean 
ploidy of tumor cells simultaneously. Moreover, WGS can 
confirm the presence of the neoplastic cell in the sample, 
providing quality control of the material for analyses [11]. 
As WGS is mainly based on polymerase chain reaction-free 
methodology, it preserves the original proportions of DNA 
fragments, in contrast to enrichment or PCR-based NGS 
panels, which may distort the original proportions of DNA 
fragments and skew the quantification [12].

The purpose of this study was to determine the feasibil-
ity of accurately distinguishing between HER2-positive and 
HER2-negative cases of BC based on matched tumor-normal 
WGS. To date, there have been only a few studies evaluating 
the clinical utility of NGS testing of ERBB2 gene status, 
including the WGS method [4, 11, 13–15]. Some of them 
directly address the clinical need to verify the relevance of 
their findings for patient management, reporting the overall 
concordance between IHC/FISH and NGS at about a 90% 
level.

Our study operates on the large population-based cohort 
of 876 BCs from publicly available databases and additional 
external secondary data from 551 patients, supplied with the 
final clinical HER2 status based on ASCO/CAP guidelines 

and targeted treatment information, which serves to validate 
metastatic sample status. We analyzed the whole cohort of 
patients, aiming to establish the criteria for WGS ERBB2 
status assessment as close to the gold standard as possible, 
optimized for both sensitivity and precision with a bias-free 
machine learning approach. We also provide the proof of 
concept that genomic data, acquired on different platforms 
with different chemistry, yield sufficiently uniform results 
for molecular diagnostics of ERBB2 amplification by WGS.

2 � Materials and Methods

2.1 � Sample Choice

Matched tumor-normal genomes from 876 patients with 
BC sequenced within three large Genomic Consortia (119, 
International Cancer Genome Consortium; 70, The Cancer 
Genome Atlas; 688, Hartwig Medical Foundation [HMF]) 
were downloaded from controlled-access databases after 
meeting formal criteria [13, 16–18]. The samples were 
sequenced using a low PCR amplification or PCR-free 
library preparation protocols and paired-end 100–150 base-
pair Illumina reads with a 350–550 base-pair insert size (for 
details, see Table 1 of the Electronic Supplementary Mate-
rial [ESM]). For analyses of primary tumor samples, we 
included the datasets with clinical HER2 status described 
as positive or negative, according to ASCO/CAP guidelines 
2007–18 (depending on the year the original study was con-
ducted, see Table 1 of the ESM). For metastatic/advanced 
tumor samples from the HMF database, metadata on HER2 
status were available only for primary tumors, the IHC/FISH 
status for sequenced sample from the second biopsy was 
not provided. Because of the high rate of conversion from 
HER2-negative to HER2-positive status (and vice versa) 
during the cancer evolution [4, 11], in metastatic cancers, 
we have taken into consideration also the patients’ treatment 
metadata and discarded all samples for which treatment his-
tory (pre-biopsy and post-biopsy) was discordant with initial 
HER2 status (e.g., if trastuzumab was included in any line of 
treatment even though HER2 status was reported negative). 
For details on discarded samples, see the ESM.

Additional genomic data from an external pipeline were 
also used for validation purposes. Secondary data, derived 
from 560 BC genomes, were previously published by Nik-
Zainal et al. [13]. From these data, we have extracted the 
complete information about clinical HER2 status, ploidy, 
purity, ERBB2 CN, and CEP17 CN of 551 patients. These 
data are also available in the ESM.

1  In the context of this study, we use the term ‘ploidy’ to describe the 
mean number of whole chromosome sets.
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As there were no new tissue/DNA/RNA samples pro-
cessed, the written consent of each subject is in posses-
sion of data providers. The primary data were collected in 
accordance with the standards set by the Declaration of Hel-
sinki and the highest data security standards of ISO 27001.

2.2 � Whole‑Genome Data Processing

The files downloaded from HMF, The Cancer Genome 
Atlas, and the International Cancer Genome Consortium 
were analyzed using publicly available, open-source soft-
ware embedded within an in-house pipeline (Fig. 1) imple-
mented using Ruffus [19]. The analysis started with FASTQ 
file extraction from the BAM/CRAM files using Broad 
Institutes’ Picard tools [20]. Tumor samples with cover-
age exceeding 75× were downsampled with Seqtk version 
1.3-r106 [21] to approximately 60× mean coverage. Next, 
all reads were trimmed using cutadapt version 2.10 [22] 
and mapped to the GRCh37 genome using Sanger’s Can-
cerit CGPMAP pipeline version 3.0.0 [23]. Samples with 
uniquely mapped read coverage below 20× for either tumor 
or normal genomes were excluded from the analysis [24, 
25]. Mean tumor sample coverage across all datasets after 
downsampling was 48×, reference blood/EBV-transformed 
lymphocyte sample mean coverage was 36× (detailed data 
are provided in Table 2 and Fig. 1 of the ESM).

Variant calling was performed using Sanger’s Cancerit 
CGPWGS pipeline version 2.0.1 [23], and specifically copy 
number variants, purity, and ploidy were identified with 
ascatNgs [26]. Identified variants were annotated using 
Ensembl VEP version 102 [27].

The external validation data of Sanger’s Institute were 
processed by the Wellcome Sanger Institute as described 
in the original study, with a key step of copy number vari-
ant calling performed with ascatNgs [26]. The samples with 
incomplete/missing/inconsistent clinical data, failed process-
ing, or a low depth of coverage were discarded (see Fig. 2 
and the ESM).

2.3 � Analyzed Parameters and Method Validation

In the study, we used clinical data on HER2 status accord-
ing to ASCO/CAP recommendations. In the case of HMF 
metastatic/advanced tumors, pathomorphological evalua-
tion data were available only at the point of diagnosis and 
were not supplied for actual WGS biopsies. HER2 status 
may shift in metastatic cancers, and without the information 
about the latest HER2 assessment, samples from HMF could 
have been wrongly labeled. To tackle this problem, we have 
also evaluated the metadata of the presence of targeted treat-
ment with HER2 inhibitors in these samples and excluded all 

discrepant instances, in which therapy of metastatic cancer 
was not in compliance with initial HER2 status.

Based on ASCAT copy number alteration calling, ERBB2 
(NC_000017.10:37844167_37886679) and the uniquely 
mapped 8250 bp sequence adjacent to CEP17 (NC_0000
17.10:22236000_22244250), copy numbers were extracted 
along with ploidy and purity estimation for all the tumor 
samples. The data were used to create three features for 
HER2 status assessment: absolute ERBB2 CN, ERBB2 CN-n 
(ploidy-adjusted ERBB2 CN), and ERBB2 CN/CEP17 CN 
ratio. Based on these features, a machine learning-based 
classifier was constructed, which determined the best 
approach for HER2 status discrimination. Six hundred and 
fourteen samples from the datasets were used as a training 
set (discovery cohort), the remaining 264 samples served 
as a validation hold-out set for the classifier and were not 
analyzed a priori. An additional external dataset processed 
by Wellcome Sanger Institute consisted of 551 samples, for 
which the same coordinates were used for extracting CEP17 
CN and ERBB2 CN.

A decision tree-based classifier was chosen after compar-
ing the effectiveness of logistic regression, random forest, 
and decision-tree models. After tuning the hyperparameters 

Fig. 1   Summary of the in-house pipeline used for data extraction and 
processing
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of each classifier, all three approaches achieve nearly identi-
cal performance, with the most robust decision tree model 
performing the best on average (for more details, see the 
ESM).

For the decision-tree-based modeling, the discovery 
cohort was randomly split into a training (75%) and a test 
set (25%). As the number of samples in IHC/FISH HER2-
positive and HER2-negative groups was unbalanced (there 
were almost eight times less HER2-positive samples than 
HER2-negative samples), we added class weights (8:1) for 
compensation. After constructing the model, we measured 
its performance on 264 samples from the validation set. We 
used accuracy, precision, and recall along with the F1 score. 
Cohen’s Kappa score was estimated to evaluate the non-
randomness of classification.

To show how each of the three features influences the 
classifier’s performance alone, we have established the 
same parameters independently for each of them as well 
and compared all the approaches with random data classi-
fication methods (Fig. 3). To further test the validity of our 
results, we decided to evaluate whether differences in tumor 

purity, heterogeneity of ploidy, or differences in mean depth 
of coverage had any deteriorative effects on the correctness 
of the results. For these experiments, we divided the samples 
into two near-equinumerous groups for each comparison and 
evaluated the differences in the tests’ performance.

As the most simplistic model with one feature and a pre-
determined threshold was optimal, it was then used instead 
of ML to establish HER2 status for the test set and the exter-
nal data. For analytical validation, we have determined the 
overall predictive value, positive predictive value (PPV), and 
negative predictive value (NPV) with confidence intervals 
(CIs) separately for the test set as well as for an external 
Sanger dataset of 551 patients (Table 1).

3 � Results

In the analyzed dataset, 159 patients were categorized as 
triple-negative BC (18%), among HER2-negative patients, 
ER+/HER− accounted for 599 (88%). One hundred and 
ten samples (13%) were identified by clinical testing as 

Fig. 2   Samples and data qualified for the study
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HER2 positive, among them: 74 ER+/HER2+ (8%), 36 
ER−/HER2+ (4%). For eight patients, ER status was 
unavailable.

HER2 positivity was slightly underrepresented in favor 
of triple-negative BC in comparison with statistics for the 
Caucasian population (18%), which may be an accidental 
or sampling bias related to the Genomic Consortia’s sam-
ple collection process, or an effect of discarding datasets 
with incomplete clinical data. The decision-tree machine 
learning approach has demonstrated the best discrimina-
tion between HER2-positive and HER2-negative cases 
based on a single-parameter, ploidy-corrected ERBB2 
CN with a threshold of 2.265 (Fig. 3). The decision tree 
algorithm was evaluated in a three-fold cross-validation 
repeated ten times to estimate the mean value and stand-
ard deviation for each metric. The results were as follows: 
accuracy = 96.7% (± 0.87%), precision = 86% (± 5%), 
recall = 89% (± 6%), Cohen’s Kappa = 85% (± 3.7%), 
and F1 = 87% (± 3%). A high value of Cohen’s Kappa 

strongly indicates that our model classifies samples in a 
non-random manner.

The learning curve displayed no further improvement 
with sample numbers exceeding 150 instances; therefore, 
we believe the results display the best reflection of the bio-
logical phenomenon of HER2 amplification we could extract 
from genomic data. Moreover, a principal component analy-
sis of the dataset (Fig. 4) has shown a very good and robust 
separation of data into two groups, representing differences 
in HER2 status.

As data distribution across depths of coverage, tumor 
purities, and ploidies was not normal (Tables  2–3 and 
Figs. 1–2 of the ESM), we decided to compare the accuracy 
distributions for these parameters with the Wilcoxon signed-
rank test. The evaluation of results across data coverages has 
shown no significant differences (p > 0.05) between groups.

The comparison of low vs high purity also has not yielded 
significant differences (p > 0.05). However, there is a sig-
nificant decrease in the mean accuracy of the test from 0.97 

Fig. 3   Training set cross-
validation accuracy comparison 
between three features used 
to determine human epider-
mal growth factor receptor 2 
(HER2) amplification status 
in whole genome sequenc-
ing (WGS) data. Because of a 
class imbalance, the plot also 
includes a reference classifier 
assigning all samples to the 
majority class (DummyMost-
Frequent), which serves as a 
simple baseline

Table 1   Analytical validation of the whole genome sequencing ploidy-corrected ERBB2 CN on internal hold-out and the external dataset

TP true positive, TN true negative, FP false positive, FN false negative, PPV positive predictive value, NPV negative predictive value

Dataset No. of samples TP TN FP FN Sensitivity % (95% CI) Specificity % (95% CI) Accuracy (%) PPV (%) NPV (%)

Holdout 263 31 226 3 3 91.18% (76.32–98.14%) 98.69% (96.22–99.73%) 97.56 92.47 98.45
External (Sanger) 551 62 463 19 7 89.86% (80.21–95.82%) 96.06% (93.91–97.61%) 95.13 80.09 98.17
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Fig. 4   Principal component 
analysis of the dataset with six 
features: purity, ploidy, ERBB2 
CN, CEP17 CN, ERBB2 CN/
CEP17 CN ratio, and ploidy-
corrected ERBB2 CN

Fig. 5   Wilcoxon test comparison of means between distributions of accuracies in: A high vs low coverage data (threshold ×49), B high vs low 
ploidy data (threshold 3), and C high and low purity data (threshold 0.6)
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to 0.94, dependent on an increased tumor ploidy above two 
(p = 5.1 × 10-6) (Fig. 5).

As the best classification of samples was achieved by a 
single feature approach, the final classifier was reduced to 
a single feature. The use of the ML approach was there-
fore not necessary for further analyses of HER2 status in 
the analytical validation step, thus a simple threshold was 
used instead. The analytical validation of the ploidy-cor-
rected ERBB2_CN method gave the diagnostic sensitivity 
of 91.18% (95% CI 76.32–98.14) and specificity of 98.69% 
(95% CI 96.22–99.73) for the hold-out dataset. In the exter-
nal dataset, sensitivity was 89.86% (95% CI 80.21–95.82) 
and specificity was 96.06% (95% CI 93.91–97.61). For 
details, see Table 1.

4 � Discussion

Decreasing NGS prices and increasing availability of this 
technology in medical practice have encouraged the transi-
tion from conventional cytogenetic and molecular methods 
to NGS in contemporary oncology. However, the evidence 
on the reliability of NGS techniques in the clinical use for 
copy number detection is still very limited. As the HER2 
protein is one of the most significant biomarkers for BC 
diagnostics, targeted treatment response prediction, and 
prognostics, there were several attempts to show the appli-
cability of NGS techniques in this indication.

The largest analytical validation study was conducted 
by Memorial Sloan Kettering on their proprietary MSK-
IMPACT Assay [4]. This hybrid-capture-based panel NGS 
test was analyzed in 213 BC samples and evaluated in a clin-
ical setting on further 599 samples. The cut-off for a positive 
result was established based solely on ERBB2 CN, adjusted 
to the background and normal signal of diploid genomes 
(defined as a ‘fold change’ of 1.5). The group reported 95% 
specificity and 100% sensitivity on > 10% of tumor content, 
with IHC/FISH evaluated by the newest2018 guidelines, and 
a dual-probe FISH assay [4]. In 2020, a continuation of the 
study exploited the borderline cases with excellent concord-
ance [15]. Several other studies have also proven the clinical 
value of panel NGS for HER2 testing in BC and other solid 
tumors, with the same strategy of fold change determina-
tion, using either Illumina [1–3, 8] or Ion Torrent short-read 
methodology [9]. Another approach to define the ERBB2 
amplification by panel NGS was using a cut-off of 2 stand-
ard deviations from the median depth of coverage across 
on-target data in a pool of samples [28, 29]. The question 
remains how universal this strategy is depending on the size 
of the panel used by different groups. The ‘resolution’ deter-
mined by the number of on-target sites and the presence of 

additional single nucleotide variant (SNV) targeting probes 
scattered across the genome (SNV ‘backbone’) greatly influ-
ence the ability to properly call the copy number alterations 
and normalize the data. The choice of the ‘panel of nor-
mals’ for data normalization may also influence the output, 
as different populations vary in inborn copy number vari-
ants. Hence, panel NGS strategies for normalizing any copy 
number variation in cancer should be cautiously validated 
for different methodologies, pipelines, and populations.

As new long-read sequencing technologies gain popu-
larity, new methods of copy number detection in cancer 
are emerging. Nattestad et al. have described the high effi-
ciency of PacBio SMRT technology in ERBB2 amplifica-
tion detection in cell lines [30]. The main advantage of 
using this technique is the ability to explain the structure 
of a particular rearrangement. However useful, this fea-
ture may not be crucial from the diagnostic point of view. 
Moreover, the technology was not tested in patient samples 
yet, especially in degraded formalin-fixed paraffin embed-
ded (FFPE) material [30].

There are also attempts to use cell-free/plasma DNA as 
starting material for copy number determination in NGS 
[31], and approaches to use targeted RNA sequencing on 
tumor tissue derived from FFPE [32]. The drawbacks of 
these methods are the quantity and/or quality of initial 
material—plasma DNA is lacking stability and FFPE 
blocks present uneven degradation of RNA. In terms of 
routine diagnostics, these methods are still too inaccurate 
and hard to standardize to embrace them at present.

However, data on clinical WGS utility for HER2 status 
assessment are scarce. There have only been two small 
clinical validation studies with direct comparison to the 
orthogonal methods. The first, released by Hartwig Medi-
cal Foundation, was a part of a WGS pan-cancer validation 
study. The ERBB2 status was evaluated on only 16 samples 
with the overall concordance of 93%. The HMF group 
compared ploidy and chromosome 17 CN with absolute 
CN of ERBB2 but did not draw any conclusions because 
of the small sample size [11]. The second, performed by 
King’s College Hospital in London, was performed on 145 
BC samples with only 27 positives for amplified HER2. 
With the four discrepant samples, the sensitivity in the 
UK cohort was 88% and specificity was 98% [28]. The 
method itself has a big advantage over panel NGS as it 
may be universally used for different biomarkers in differ-
ent cancers by using adequate bioinformatics pipelines. 
Moreover, library preparation is straightforward and repro-
ducible, as is variant calling. The vast amounts of informa-
tion extracted from the WGS analysis may serve as both a 
foundation for basic cancer science and a universal pan-
cancer diagnostic tool. The main drawback of the method 
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is the necessity to use fresh tissue, preserving big quan-
tities (> 1 µg) of high-molecular-weight DNA. Second, 
the accurate variant calling in WGS requires also using a 
germline reference, a non-cancerous patient material, e.g., 
DNA isolated from the peripheral blood sample. Last, the 
analysis of big data generated from WGS experiments is 
challenging in terms of computational power and storage.

We attempted to systematically determine the criteria 
for WGS of ERBB2 CN in matched-normal tumor samples. 
Our strategy was to gather publicly available BC datasets 
with reliable clinical metadata and analyze them uniformly 
with a minimal 20× depth of coverage. We have chosen 
such a sensitivity threshold based on AscatNGS algorithm 
doccumentation, recommending at least t for accurate CN 
alterations calling (https://​github.​com/​cance​rit/​ascat​Ngs).

Our machine learning approach, based on the decision 
tree classifier, agnostically chose the optimal approach of 
HER2 status assessment to be ploidy-corrected ERBB2 CN 
over ERBB2 CN/CEP17 CN ratio and absolute ERBB2 CN. 
To measure the test’s reliability, we used Cohen’s kappa 
coefficient. The high value of 85% rules out the possibility of 
the data agreement occurring by chance. To further test the 
superiority of the ploidy-corrected approach, we compared 
the results for the three features in a separate external data-
set from the Wellcome Sanger Institute, which confirmed 
our observations: the accuracy and precision were 0.952813 
and 0.765432, vs 0.724138 and 0.306977, vs 0.945554 and 
0.724138 for absolute ERBB2 CN, ERBB2 CN/CEP17 CN 
ratio, and ploidy-corrected ERBB2 CN, respectively (for fur-
ther details, see the project’s GitHub repository).

This is, to the best of our knowledge, the first and the larg-
est study of its type utilizing machine learning approaches 
to evaluate diagnostic criteria of a genomic test. In the con-
text of traditional HER2 status determination, first proof-
of-concept ML-based solutions for robust FISH and IHC 
assessment are already tested in a clinical set-up [33, 34].

The ML approach is an emerging field of medicine, 
improving the efficiency of pathomorphological assess-
ment [35], radiology [36], and clinical chemistry [37]. In 
the field of BC diagnostics, genomics and transcriptomics 
ML is being applied to distinguish between intrinsic BC 
subtypes with different prognoses [38], identify new poten-
tial biomarkers, or repurpose the existing biomarkers. These 
strategies perform well in the scientific environment but 
may only be used in the clinical setting after well-planned 
validation, showing concordance and stability of the tests. 
The potential limitation of using ML-based classifiers in 
medicine lies in the complexity and explainability of the 
results in the clinical set-up. This complexity led to the for-
mulation of strict European Union and US Food and Drug 

Administration regulations for ML-based medical devices, 
which requires adherence to a set of tightly supervised rules. 
Nonetheless, ML classifiers are now widely used in medical 
genomics in biomarker discovery and refinement, providing 
unbiased solutions that can be then evaluated in the tradi-
tional validation process.

Our results prove that WGS may be a reliable method for 
HER2 diagnostics. We hypothesize that it could be imple-
mented as a stand-alone test or in combination with IHC 
instead of FISH or other NGS-based methods in routine 
clinical practice. With a diagnostic sensitivity of 91.18% 
and a specificity of 98.69%, determined on unselected and 
heterogeneous groups of patients and validated on additional 
external data, we conclude that the technology is mature 
enough for prospective, multicenter, analytical, and clinical 
validation.

Our results do not deviate relevantly from those reported 
by other groups focusing on ERBB2 NGS testing; how-
ever, the diagnostic sensitivity is still not optimal. It can be 
improved by optimizing the threshold value, which might 
increase the sensitivity by compromising the specificity. In 
this study, we aimed for a reduction in the false-positive 
error rate; however, balancing between type I and type II 
errors should be left to the decisions of oncologists and 
regulatory bodies after careful assessment of clinical con-
sequences of both strategies.

The limitation of the study in the context of sensitivity is 
also the large CI, as there were few HER2+ samples in the 
test set. However, the external validation results strongly 
support the high sensitivity of WGS.

Several other factors might contribute to a slightly lower 
analytical sensitivity of our solution in comparison with 
panel NGS sensitivity reported by other groups. We suspect 
that heterogenous evaluation of IHC/FISH results, made on 
the basis of different issues of ASCO/CAP guidelines, may 
have contributed to the discrepancy in the results. Addition-
ally, there was some heterogeneity in the WGS raw data, 
acquired on different equipment by different genomic con-
sortia. There were differences in the tumor sample collec-
tion, DNA extraction, and library preparation methods. All 
these pre-analytical and analytical factors must have con-
tributed to the greater variation in HER2 results than in the 
single-facility method with uniform IHC/FISH evaluation 
methodology and a single laboratory protocol for sample 
management. Even so, the WGS method exhibits robustness 
and effectiveness, which is a great advantage, allowing for 
a low-cost external, even worldwide quality-control assess-
ment program to be held out in the near future.

Other factors lowering the sensitivity are changes in 
HER2 status, which could have occurred in metastatic 

https://github.com/cancerit/ascatNgs
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tumors from the HMF dataset. In these instances, we could 
not directly evaluate the correctness of IHC/FISH data 
because they came from the primary biopsy, not the biopsy 
corresponding with the sample used for WGS. The shift 
between IHC-positive and IHC-negative status is reported in 
up to 11.5% of HER2-negative cancers (conversion to HER2 
positive) and in 37% of those initially positive (conversion 
to HER2 negative in the presence of selective pressure of 
trastuzumab) [4, 11].

The metastatic nature of HMF samples may have also con-
tributed to lower than population numbers of HER2-positive 
cases in our cohort, as they tend to have better outcomes and 
might have been recruited less often to the study. The algo-
rithm of patients’ qualification to first-line targeted therapy in 
all genomic consortia mentioned above could also have been 
somehow related to this under-representation.

Some of the discrepancies may have come from tumor sub-
clonality, which is a common serious diagnostic issue. The sig-
nal from a small proportion of HER2 amplified cells may be 
below the resolution of WGS at 30–60× depth of coverage [13].

The spatial intra-tumor heterogeneity may have also contrib-
uted to false-negative/positive results when there were differ-
ences in sampling locations between tissue collected for FFPE 
blocks and WGS (e.g., different distant metastases are sampled). 
In addition, overexpression of HER2 is not always based on 
ERBB2 amplification, as an estimated 3–10% of non-amplified 
tumors exhibit high overexpression [39]. Even though there is 
currently no known genomic background of this phenomenon, 
WGS could potentially detect alterations in HER2 regula-
tory pathways, leading to overexpression, which could further 
improve WGS diagnostic power.

We may not forget that our results are compared to the BC 
diagnostic gold standard (IHC and FISH) and some issues of 
these tests may influence our results. There will always be a 
‘diagnostic gray zone’ in which the prediction of response is 
not optimal, even though ASCO/CAP struggles to refine and 
evaluate their guidelines systematically [3]. Our classifica-
tion tends to gradually worsen when ERBB2 CN is decreas-
ing below 6 copies especially in tumors with higher ploidies. 
We cannot provide the data on the patient outcomes in these 
cases, but some authors made observations that polysomic 
tumors are not a homogenous group and they display differ-
ent responses to trastuzumab and different clinicopathologi-
cal features [40, 41]. As classical methods do not distinguish 
between polysomy and polyploidy, it might be reasonable to 
evaluate whether these two entities differ in terms of their 
properties and anti-HER2 drug response.

To tackle this issue, a prospective WGS study with an up-
to-date pathomorphological HER2 evaluation according to the 

newest ASCO/CAP guidelines should be performed. It might 
not only evaluate the single biomarker concordance but would 
analyze the treatment response and try to seek new meaning-
ful correlations with a vast number of genomic alterations, e.g., 
ploidy or complexity of chromosome 17 rearrangements.

The current knowledge on ERBB2 genetics is still based 
on methods established in the 20th century. We believe new 
potent tools such as ML and WGS present a vast array of 
solutions and opportunities to help improve the diagnostics 
and treatment of HER2-positive BC, and allow us to move 
into the 21st century.

5 � Conclusions

We provide evidence that the ERBB2 status can be reliably 
determined by WGS methodology, which may be included in 
a comprehensive test for BC diagnostics. The 20% of tumor 
purity and 20× depth of coverage are sufficient to ensure good 
quality of genomic data in most instances. Given good concord-
ance of a WGS with routinely used methods, we suggest that 
assessment by a WGS method may be an alternative to other 
NGS-based methods as well as FISH-based diagnostic tools. 
Hence, it should be subjected to evaluation by ASCO/CAP in 
the future updates of the HER2 testing recommendations. In 
our work, we have also proven that short-read WGS technology 
bears great potential for establishing a harmonized global quality 
assessment program for ERBB2 detection, as the outputs of het-
erogeneous data gathered from four different genomic consortia 
show a high degree of concordance between methodologies and 
pipelines.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s40291-​021-​00571-1.
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