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Abstract

Fragment assembly is a powerful method of protein structure prediction that builds protein models from a pool of
candidate fragments taken from known structures. Stochastic sampling is subsequently used to refine the models. The
structures are first represented as coarse-grained models and then as all-atom models for computational efficiency. Many
models have to be generated independently due to the stochastic nature of the sampling methods used to search for the
global minimum in a complex energy landscape. In this paper we present EdaFoldAA, a fragment-based approach which
shares information between the generated models and steers the search towards native-like regions. A distribution over
fragments is estimated from a pool of low energy all-atom models. This iteratively-refined distribution is used to guide the
selection of fragments during the building of models for subsequent rounds of structure prediction. The use of an
estimation of distribution algorithm enabled EdaFoldAA to reach lower energy levels and to generate a higher percentage
of near-native models. EdaFoldAA uses an all-atom energy function and produces models with atomic resolution. We
observed an improvement in energy-driven blind selection of models on a benchmark of 20 in comparison with the Rosetta
AbInitioRelax protocol.
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Introduction

The prediction of protein structures from their sequences has

been a subject of intense research ever since the seminal work of

Anfinsen [1]. Based on the principle that form follows function, the

three-dimensional (3D) structure of a protein provides critical clues

to its function. Moreover, the knowledge of a protein structure

facilitates the design of therapeutic agents that modify its function.

There are two main challenges that a protein structure prediction

(PSP) method has to face: the inaccuracy in energy functions and

the size of the search space. The inaccuracy in energy functions

make identification of near-native models a difficult task. A study

suggests that in some cases the native structure does not belong to

the global minimum basin [2], and it was estimated that for over

50% of the tested targets, a better sampling of the search space

may lead to successful predictions. Inaccuracies in the energy

functions combined with the huge size of the conformational space

give rise to sampling issues. Many methods have been proposed to

deal with these problems. One idea was to reduce the search space

by assembling the structure from a pool of experimentally

determined structural fragments [3]. This fragment assembly

approach has become one of the most popular methods for protein

structure prediction due to the success of Rosetta [4,5,6]. Rosetta

employs a two stage strategy: fragment assembly followed by all-

atom refinement. During the fragment assembly, the protein

models are represented by backbone atoms and centroid of side

chains (coarse-grained sampling). Once the models are assembled,

the structure representation is switched to all-atom: side chains are

added and packed by minimizing an all-atom knowledge-based

energy function [7].

Many other fragment-based approaches have been proposed.

The Quark method, which was successful in recent CASP

experiments [8], uses variable length fragments and replica

exchange Monte Carlo for sampling [9]. Profesy attempts to

improve the conformational sampling efficiency by using Confor-

mational Space Annealing [10]. SimFold introduces the concept

of reversible fragment insertion, where local structures created by

the junction of two proteins fragments can be reused later on

during the sampling process [11]. Undertaker combines variable

length fragments and fold recognition analysis. It uses a genetic

algorithm for sampling [12]. FragFold combines supersecondary

structural fragments built from several sequential secondary

structures with small fragments. The models are assembled using

a genetic algorithm and simulated annealing [13]. Some

probabilistic methods estimate the joint angle distribution by a

mixture model of particular distributions [14,15]. Among them,

Fragment-HMM uses protein fragments to obtain a first estimation

of the torsion angle distributions using the cosine model, a bi-

variate von Mises distribution. The cosine models are used as

hidden nodes in a position-specific hidden Markov Model which is

then used to sample a sequence of torsion angle pairs. The method

then uses the generated protein models as new input to refine the

joint angle distributions and iterates until convergence. The

incorporation of information from prior rounds has been shown to

be beneficial for the prediction of protein secondary and tertiary

structures [16,17]. Using the principle of sequential stabilization,
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Adhikari et al. has demonstrated that the accuracy of predicted

structures can be greatly improved using a process of progressive

learning and structural stabilization found in prior round of

folding.

Fragment-based methods such as Rosetta need to generate a

huge number of models in order to find a correct structure. The

rugged nature of the energy landscape, due to the inaccuracy of

the energy functions and the size of the search space, necessitates

the use of stochastic sampling methods. Recently, we have

proposed a method (EdaFoldCG ) that takes advantage of the large

size of the data-set by enabling communications between

predictions during the sampling [18]. The idea was that if some

fragments occur more often in low energy models, then these

fragments are more likely to resemble the native structure. Using

an Estimation of Distribution Algorithm (EDA), EdaFoldCG

iteratively updates the probabilities of inserting fragments in new

models according to their frequency in low energy models. The

results obtained with EdaFoldCG were promising, and show that

the method is able to enhance the proportion of near-native

structures in the pool of protein models on a benchmark of 20
proteins. However, it employed coarse-grained models to estimate

fragment probabilities. As a result, some high quality models could

not be identified and the sampling was misguided on a few targets

because of energy function inaccuracy. Also, as its aim was to

study the sampling dynamics at a coarse-grained level, it lacks the

ability to produce all-atom models.

In this paper, we describe a new method (EdaFoldAA) that

estimates probability mass functions of fragments from all-atom

models instead of coarse-grained models as EdaFoldCG . Our new

protocol relies on Rosetta’s all-atom energy in order to rank the

models during the estimation of distribution step of the algorithm

and the all-atom models produced show notable improvements

over EdaFoldCG and Rosetta AbInitioRelax. The gain in

accuracy provided by the all-atom energy function had several

positive effects on the sampling; the closest structure to native in

the pool of models, the proportion of near-native models and the

accuracy of lowest energy models improved on average, and on a

majority of the 20 proteins in our benchmark.

Results

EdaFoldAA favors fragments from the library that are closer to

native fragments. The probability of selecting each of the 25 9-

residue fragments at iteration 4 of EdaFoldAA is plotted against the

CaRMSD of each fragment to the native structure for 3 fragment

windows of PDB codes 1ogw, 1dtj and 1bq9 in Figure 1. Pearson

product moment correlation coefficient shows anti-correlation

between probabilities and CaRMSD to native, putting in evidence

that native-like fragments usually get a high probability of being

selected and vice versa. The average CaRMSD of fragments to

native weighted by their probability of being selected at iterations

1 and 4 is plotted for the same PDB codes in Figure 2. Overall, the

average probability weighted CaRMSD shows improvement from

iteration 1 to 4 in all of the 3 cases.

EdaFoldAA can successively generate lower energy models after

each iteration. The distributions of the energies of the models

generated by EdaFoldAA at iterations 1 and 4 and by Rosetta
were shown in Figure 3. The measures were made with two

protein targets, PDB codes 1bq9 and 1ogw. Whereas the

distributions of EdaFoldAA’s iteration 1 and Rosetta have the

same shape and suggest that the two methods sample similar

regions of the search space and in equal proportions, the curve

describing the iteration 4 is different. In both cases, EdaFoldAA

favors the sampling of low energy basins of the search space. For

1bq9, even though the shape of the curves are the same, we note

that the curve at iteration 1 from EdaFoldAA already shifts a little

towards lower energies.

The improvement in lower energy basins sampling achieved by

EdaFoldAA translates into better quality models with lower

CaRMSD (C-alpha Root Mean Square Deviation) to native. This

can be seen from Figure 4, which plots the distribution of decoys as

a function of CaRMSD to native. The results match with the

observations made at energy level. At first iteration, EdaFoldAA

sample similar regions of the search space. As a shift at iteration 1
for 1bq9 was observed, it can be seen in this figure that EdaFoldAA

produces models closer to the native structure even at iteration 1.

The distributions change at iteration 4. In both cases, regions

closer to the native structure are thoroughly sampled at this stage.

The algorithm is particularly efficient for 1bq9. This efficiency of

the algorithm could be due to the shape of the fitness landscape

induced by Rosetta all-atom energy. Since EdaFoldAA favors the

insertion of fragments which have been identified as being helpful

in minimizing the energy, a good correlation between the lowest

energies and CaRMSD to native is one reason for improved

performance.

The quality of models have been improved by estimating

probability mass functions of fragments based on all-atom energy

instead of coarse-grained energy. The distribution of energies as a

function of CaRMSD to native for all models generated at

iteration 1 and 4 produced by EdaFoldAA for one target, 1bq9, are

shown in Figure 5. In addition, it also shows the scatter plot

between energy and CaRMSD to native for the same target with

EdaFoldCG which was using Rosetta’s coarse-grained energy.

This figure revealed the critical importance of the energy function

in our process. In EdaFoldCG , even though some good models

were discovered, the sampling process was misled by the

inaccuracies of the coarse-grained energy function. As a result,

EdaFoldCG enhanced the search in the wrong region at about 9 Å

from the native structure. The high number of low energy

misfolded models complicates the identification of the high quality

ones. Once we use the all-atom energy in our process, the fitness

landscape changes. This time, the algorithm can discover

unprecedented energy levels which correspond to models located

at about 1 Å CaRMSD from the native structure. This suggests

that using a more accurate energy function for the periodic

estimation of distributions in EdaFoldAA improves the sampling.

We know that turning coarse-grained models into all-atom

models dramatically modifies the landscape, but it is unclear if

using the all-atom energy to drive EdaFoldAA’s sampling is more

efficient. We performed some control experiments for which we

used EdaFoldCG to generate coarse-grained models, and turned

them into all-atom models with Rosetta’s fast Relax protocol as a

final step. The results were then compared with those from our

new EdaFoldAA algorithm which includes fast Relax at each

iterative step. The same number of models was produced with

each method for 5 protein sequences and each protocol’s ability to

produce near-native models was examined. Table 1 shows that

EdaFoldAA systematically produced models with smaller

CaRMSD to the native structure, and EdaFoldAA also generated

a higher proportion of near-native models than EdaFoldCG . This

result shows that switching the models to an all-atom represen-

tation at each iteration of our algorithm and modifying the

probabilities of subsequent fragment selection according to

Rosetta’s all-atom energy function improves the accuracy of

EdaFoldAA.

EdaFoldAA can generate a higher proportion of near-native

models on average. The Table 2 shows a comparison of the

CaRMSD to native that each method can reach. The average
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lowest 1 CaRMSD and 1% CaRMSD to native are shown. In

addition, the CaRMSD to native of the best model is shown. The

analysis of the proportion and quality of near-native models

produced by EdaFoldAA and Rosetta shows that EdaFoldAA can

generate a higher proportion of near-native models on average.

The best model generated by each method without selection

considerations is also slightly better on average for EdaFoldAA.

Table S1 shows that the trend is similar when looking at

AARMSD (All-Atom Root Mean Square Deviation) values. The

trend is the same whether we compare CaRMSD or AARMSD.

The improvement of low quality models away from native is

probably not very meaningful. Models with CaRMSD less than

3 Å from native structure could potentially be used as templates

for solving crystal structures by molecular replacement [19]. A

global view of the ability of each method to produce and identify

near-native models was given in Figure 6. The percentage of

models within 3 Å CaRMSD of the native structure for the 100
lowest energies were computed. For each target, the difference

between the percentage of near-native models obtained from

EdaFoldAA’s and Rosetta’s dataset was plotted. This difference is

in favor of EdaFoldAA for all points above the 0 straight line. It is

in favor of Rosetta for all points under it. A majority of the points

are above the straight line, which confirms that EdaFoldAA

improves the quality of the lowest energy models. The percentage

of models generated closer than 3 Å CaRMSD from the native

structure amongst the 500 lowest energies in EdaFoldAA’s and

Rosetta’s datasets was analyzed in details and illustrated in Figure

S1. Measurements range from models within 1 Å to less than 3 Å

from native by steps of 0:2 Å. EdaFoldAA was able to produce a

higher percentage of models at less than 3 Å for 11 targets.

Rosetta outperforms EdaFoldAA on 7 targets. Neither of the two

methods was able to generate near-native models within the 500
lowest energies on the same two targets: PDB codes 3nzl and

4ubp.

The improved distribution of low energy models has enabled

the ‘‘blind selection’’ of better models amongst all generated by

EdaFoldAA. The ‘‘blind selection’’ results with energy as a

selection criterion for EdaFoldAA and Rosetta are shown in

Table 3. Two results, the first and best predictions, are presented.

The first prediction is the model with the lowest energy in the

dataset whereas the best prediction is the best model out of the 5
lowest energies. Both first and best prediction of EdaFoldAA

improves over Rosetta of about 0:7 Å either when looking at

CaRMSD or AARMSD (See Table S2 for AARMSD values).

Finally, the improved ‘‘blind selection’’ of models is due to the

iterative estimation of distribution over the fragments. A compar-

ison of the blind selection ability of EdaFoldAA at iterations 1 and

4 is given in Table 4. The first and best of 5 predictions are shown

for models taken from iteration 1 alone and iteration 4 alone. As

stated in the method section, EdaFoldAA produces one quarter of

Figure 1. Estimation of distribution: the probability of selecting each of the 25 9-residue fragments at iteration 4 is plotted against
the CaRMSD of each fragment to the native structure for 3 fragment windows of PDB codes 1ogw, 1dtj and 1bq9. The Pearson
correlation coefficient (R) between probabilities and CaRMSD to native structure is given for each fragment window.
doi:10.1371/journal.pone.0068954.g001

Efficient Sampling in Protein Structure Prediction

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68954



Figure 2. Average probability weighted CaRMSD : for each fragment window, the average of the CaRMSD of each fragment
weighted by the probability of selecting it is plotted for iterations 1 and 4. The average over all fragments windows at iterations 1 and 4
shows an overall improvement on all cases: PDB codes 1ogw, 1dtj and 1bq9.
doi:10.1371/journal.pone.0068954.g002
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the total number of models at each iteration. The results show an

improvement of 1:1 Å on average for the first prediction and over

0:8 Å on average for the best prediction. For comparison, one

quarter of the final models generated by Rosetta AbInitioRelax

was randomly selected. The results show that Rosetta performs

slightly better than EdaFoldAA at iteration 1, when no information

is shared to produce the models. This result suggests that the

sampling algorithm of Rosetta is more efficient than ours. The

same trend was observed when looking at AARMSD values (see

Table S3). Nevertheless, EdaFoldAA outperforms Rosetta on this

benchmark thanks to the use of EDA. Fragment-based approaches

appear to gain considerable advantage from sharing information

between predictions.

Discussion

The identification of near-native models is challenging due to

the inaccuracy of the energy function. In our previous commu-

nication, we presented EdaFoldCG which focused on enrichment

of the near-native structures at a coarse-grained level. We have

demonstrated that the improved coarse-grained models can lead to

better all-atom models by refining the top quality coarse-grained

models into all-atom models [18]. However, the question of how

top quality coarse-grained models are identified was not addressed.

We were focused on the generation rather than the identification

of good models, believing that it is pointless trying to identify good

models if they are not generated to begin with. Here we show that

it is not necessary to identify good coarse-grained models for

refinement into all-atom models. Our new method takes all of the

coarse-grained models and refines them into all-atom models. By

interlacing all-atom representation of models and coarse-grained

sampling, EdaFoldAA is able to enrich the proportion of near-

native structures in the lowest energy all-atom models. Therefore,

we have demonstrated here that the improved coarse-grained

models can lead to better all-atom models without the need to

identify good coarse-grained models.

EdaFoldAA uses the lowest energy all-atom models for the

estimation of fragment distributions, whereas EdaFoldCG uses the

lowest energy coarse-grained models for the estimation of

fragment distributions. The estimated fragment distributions are

used for the assembly of coarse-grained models in both methods. It

is generally considered that the all-atom energy function is more

accurate than the coarse-grained energy function. The all-atom

models should be better than coarse-grained models given that the

former has the benefit of complete side-chains taken into

consideration. Therefore, it makes sense to derive probability

mass functions of fragments from the refined all-atom models, and

then to use these probabilities to guide the assembly of fragments.

We have found that quality of coarse-grained models generated by

EdaFoldAA has been improved over those generated by

EdaFoldCG for the same target. By using this strategy, we benefit

from the speed of the coarse-grained energy function during the

sampling and of the accuracy of the all-atom energy which is

helpful to guide the search in subsequent coarse-grained sampling

rounds. Our results show the efficiency of this protocol for blind

selection of models: at iteration 4 the quality of the lowest energy

model and of the closest structure to native out of the top 5 lowest

energy models dramatically improves over iteration 1.

The fragment assembly approach requires the generation of a

huge number of models in order to produce a satisfactory solution.

This is due to the stochastic nature of the sampling methods and to

the inaccuracy of knowledge-based energy functions. The predic-

tions are typically independent and modern technology allows

massive parallelization of the computation. In this paper, we show

that sharing information between these independent predictions

can improve the quality of final results. The estimation of

distribution over the fragment library relying on each fragment’s

frequency in low energy models allows EdaFoldAA to significantly

improve its performance in 4 iterations. The amount of

communications remains small, and the effective parallelization

ratio is around 98%. Our study suggests that the gain in

performances is independent of the sampling method. Therefore,

estimation of distribution can possibly increase the efficiency of

any fragment-based approach.

The computation time required for the implementation of the

estimation of distribution algorithm, including the encoding and

decoding of fragments, the calculation of the probability mass

functions and the sampling of fragments with Roulette wheels, is a

small fraction of the time used for the generation of each model. In

a previous communication, we reported that EdaFoldCG was 2.5

times slower than Rosetta. This was derived from the comparison

of the times it took for the generation of equal numbers of coarse-

grained models by both methods. The difference was due to our

implementation of the simulated annealing and iterated hill

Figure 3. Histograms of energy distribution: comparison between iterations 1, 4 of EdaFoldAA and Rosetta for 1bq9 (left) and 1ogw
(right). The estimation of distribution algorithm allows EdaFoldAA to increase the performance from iteration 1 to iteration 4.
doi:10.1371/journal.pone.0068954.g003
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climbing protocols in the coarse-grained model generation step is

less efficient than the Monte Carlo search protocol in Rosetta.

However, the extra time that EdaFoldAA spent on the coarse-

grained model generation did not produce better results than

Rosetta when EDA was not used as shown in Table 4. The quality

of all-atom models from ‘‘iteration 1’’ without EDA was

Figure 4. Histograms of CaRMSD to native distribution: comparison between iterations 1, 4 of EdaFoldAA and Rosetta for 1bq9 (left)
and 1ogw (right). Whereas the distributions look identical between iteration 1 and Rosetta, at iteration 4 the distribution has shifted towards native
structure.
doi:10.1371/journal.pone.0068954.g004

Figure 5. Fitness landscapes at iterations 1 and 4 with coarse-grained models (top, EdaFoldCG) and all-atom models (bottom,
EdaFoldAA) for 1bq9.
doi:10.1371/journal.pone.0068954.g005
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comparable or slightly worse than that of Rosetta for both first

prediction and best prediction. It is only when EDA was used that

the all-atom models were improved as shown from ‘‘iteration 4’’ in

Table 4 compared to Rosetta as well as ‘‘iteration 1’’. Since our

goal is to evaluate the impact of EDA on the all-atom models due

to the improved coarse-grained model sampling and the comput-

ing time required for the implementation of EDA is negligibly

small, the same number of all-atoms models were generated when

comparing the performance of EdaFoldAA and Rosetta in this

paper.

The incorporation of information from prior rounds in an

iterative process has been shown previously to be a powerful

technique applicable to protein structure prediction. The principle

of sequential stabilization applied to protein folding is such an

example [17]. The TerItFix method uses the statistics of folding

trajectories garnered from prior rounds to bias subsequent

sampling of backbone dihedral angles, tertiary contacts and

hydrogen bonds. There were no fragments used in the TerItFix
method.

Even though Fragment-HMM and EdaFoldAA both use iterative

strategies and are similar in the sense that they use information on

generated models to refine estimations, the two methods differ in

many ways. First, whereas Fragment-HMM estimates a distribution

over the torsion angles assuming it follows a bi-variate von Mises

distribution, EdaFoldAA estimates a distribution over the fragment

library starting from a uniform distribution. Then, the sampling

method is different: Fragment-HMM uses a position specific hidden

Markov Model and EdaFoldAA uses simulated annealing and

iterated hill climbing. Also, even though Fragment-HMM initially

uses fragments to estimate distributions at the first iteration, it

doesn’t use fragments during the sampling, unlike EdaFoldAA.

Finally, Fragment-HMM iterates until converging on one final

model, whereas EdaFoldAA generates a diverse set of models, out

of which the best ones will be selected.

The competition between global and local interactions plays a

critical role in protein folding as well as structure prediction. This

has been exploited for improving protein secondary and tertiary

structure predictions using the principle of sequential stabilization

[16,17]. The identification of good quality fragments using the

estimation of distribution algorithms implemented in EdaFoldAA

considers global interactions since the distributions are derived

from the lowest energy all-atom models, whereas the initial

fragment library is obtained by sequence homology that only takes

into account local interactions of the residues within the fragment

window. As the quality of all-atom models improve after each

iteration, the global interactions are more accurately represented,

which enables the good quality fragments being identified.

However, unlike TerItFix which can identify novel interactions

as they have been generated and bias sampling towards those

novel interactions, EdaFoldAA seeks only to bias existing fragments

in the library, although novel fragments have been generated in

the structure prediction process. The identification of novel

fragments and bias the sampling towards good quality novel

fragments will be an interesting direction for future exploration.

Our study also showed some deficiencies in EdaFoldAA’s

sampling method. It fails to perform as well as Rosetta when no

information is shared between the models (i.e. at iteration 1). This

observation leaves room for improvement of our method. Beyond

the improvement of our heuristic sampling methods, future work

will focus on other ways of sharing information between

predictions.

Methods

EdaFoldAA is a fragment-based protein structure prediction

algorithm. Similarly to Rosetta [7], it has two stages. First, 9-mers

(followed by 3-mers) are assembled together to create coarse-

Table 1. Comparison of all-atom models generated using
fragment distributions estimated from all-atom models versus
coarse-grained models.

1% CaRMSD (Å) 1% CaRMSD (Å) Best model (Å)

Target EdaFoldAA EdaFoldCG EdaFoldAA EdaFoldCG EdaFoldAA EdaFoldCG

1di2 0.70 0.75 0.86 0.99 0.51 0.54

1scj 3.26 3.14 4.08 3.44 2.35 2.41

1tig 3.28 3.33 3.74 3.74 1.75 2.17

4ubp 4.13 4.27 4.90 5.16 3.03 3.04

1acf 3.20 3.67 3.94 4.32 2.20 2.44

1% CaRMSD is the average over the 1% lowest CaRMSD to native models.
Similarly, 1% CaRMSD is the average over the 1% lowest CaRMSD to native
models. Best model is the single lowest CaRMSD to native model. EdaFoldCG is
a dataset of models obtained by generating coarse-grained EdaFoldCG

followed by Rosetta’s fast Relax protocol. In EdaFoldAA , the fast Relax protocol
is embedded in each iteration and contributes to the estimation of
distributions. Data in bold are statistically better with a confidence greater than
95% according to the Student’s t-test.
doi:10.1371/journal.pone.0068954.t001

Table 2. Comparison of all-atom models generated by
EdaFoldAA and Rosetta.

1% CaRMSD (Å) 1% CaRMSD (Å) Best model (Å)

Target EdaFoldAA Rosetta EdaFoldAA Rosetta EdaFoldAA Rosetta

1bq9 1.29 3.33 1.75 4.51 0.98 2.27

1di2 0.70 0.91 0.86 1.43 0.51 0.59

1scj 3.26 3.53 4.08 4.22 2.35 2.42

1hz5 2.26 2.21 2.52 2.46 1.24 1.78

1cc8 2.09 2.46 2.40 3.13 1.72 1.77

1ctf 3.44 3.09 4.36 3.76 2.70 2.40

1ig5 2.24 2.29 2.61 2.68 1.69 1.74

1dtj 2.46 2.41 3.56 3.47 1.35 1.47

1ogw 2.25 2.67 2.72 3.10 1.33 1.79

1dcj 2.55 2.68 3.02 3.38 2.00 1.65

2ci2 3.18 2.95 4.81 4.15 2.24 2.07

3nzl 3.63 3.83 4.11 4.45 3.07 2.96

1a19 2.90 3.28 3.55 4.34 2.20 1.99

1tig 3.28 3.20 3.74 3.89 1.75 2.31

1bm8 3.76 3.58 4.79 4.55 2.84 2.43

4ubp 4.13 3.86 4.90 4.70 3.03 2.48

1m6t 1.22 1.46 1.42 1.84 1.01 1.08

1iib 2.92 3.30 4.00 4.82 1.85 1.89

1acf 3.20 4.55 3.94 5.85 2.20 2.77

3chy 3.51 3.82 4.63 4.93 2.18 2.52

Average 2.72 2.97 3.39 3.79 1.91 2.02

1% CaRMSD is the average over the 1% lowest CaRMSD to native models.
Similarly, 1% CaRMSD is the average over the 1% lowest CaRMSD to native
models. Best model is the single lowest CaRMSD to native model. Data in bold
are statistically better with a confidence greater than 95% according to the
Student’s t-test.
doi:10.1371/journal.pone.0068954.t002
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grained models. 9-mers and 3-mers are taken from a fragment

library which is created from protein structures available in the

PDB. The fragment library we used was constructed using

Rosetta’s fragment picking method [20]. When creating this

library, proteins that shared more than 30% sequence identity

with the target sequence were removed in order to remove any

favorable bias. During the second stage, models are represented in

atomic detail, and side chains are packed to minimize an all-atom

energy function. The Rosetta Relax protocol was used to perform

this operation.

EdaFoldAA’s protocol is described in Table 5 (Algorithm 1). It is

an iterative algorithm using the concept of EDA to gather

information between initially independent predictions. The

concept of EDA is used to influence the probability of selecting

fragments from the library. A fraction of the final model set (25%)

is generated at each iteration. At iteration 1, there is a uniform

distribution over the library and every fragment has the same

probability of being selected. At each iteration, a fraction of the

lowest energy models (10%) is selected as a sample set. To

compute the energy, all the models are relaxed in their all-atom

representation via Rosetta Relax protocol. We keep track of the

links between coarse-grained and all-atom representations of a

model so that we can retrieve which fragments were used to

generate which all-atom model. The probabilities of selecting

fragments for insertion during subsequent iterations are modified

according to the observed distribution of fragments used in the

sample set. The sampling is influenced by the probability mass

function defined over the fragment library. Still, each iteration

starts with models in extended conformation. Models generated at

a given iteration are stored in the final set and are not reused for

subsequent iterations. EdaFoldAA inherits its sampling engine

from EdaFoldCG [18]. The sampling is performed using an

alternation of simulated annealing [21] and iterated hill climbing

[22]. The estimation of distribution is handled by the function

estimate pmf and is computed by the following formula:

Figure 6. Percentage of near native models: 100 lowest energy models were selected from EdaFoldAA’s and Rosetta’s datasets. The
percentage of models less than 3 Å away from native in terms of CaRMSD was computed. The differences in percentages between EdaFoldAA and
Rosetta are plotted.
doi:10.1371/journal.pone.0068954.g006

Table 3. Comparison of best all-atom models selected based
on energy.

First prediction (Å) Best prediction (Å)

Target EdaFoldAA Rosetta EdaFoldAA Rosetta

1bq9 1.55 4.32 1.38 4.32

1di2 1.00 1.23 0.76 0.86

1scj 7.74 7.23 3.61 6.36

1hz5 3.21 3.51 3.00 3.18

1cc8 3.89 8.28 3.66 3.29

1ctf 7.05 4.84 4.58 2.76

1ig5 6.46 2.64 3.63 2.64

1dtj 1.72 1.72 1.69 1.72

1ogw 2.47 2.71 2.47 2.71

1dcj 5.02 3.02 2.50 2.56

2ci2 7.73 8.47 6.77 6.41

3nzl 5.95 5.80 5.95 5.33

1a19 2.73 3.76 2.73 3.10

1tig 4.07 3.92 3.69 3.72

1bm8 9.03 3.73 3.44 3.73

4ubp 10.48 10.50 5.87 8.51

1m6t 1.99 1.94 1.34 1.88

1iib 2.50 15.28 2.50 9.46

1acf 3.60 2.77 3.00 2.77

3chy 4.38 12.37 4.38 5.38

Average 4.63 5.40 3.35 4.04

The first prediction is the model with the lowest energy. The best prediction is
the best model out of the five lowest energies. The CaRMSD to native structure
for predicted models are shown.
doi:10.1371/journal.pone.0068954.t003
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Pi
t~k � Pi

t{1z(1{k) �Di
t

where t is the current iteration, Pi the probability of fragment i, Di

the observed frequency of fragment i and k[½0,1� a conservation

rate (k = 0.6 in our experiments).

The performance of EdaFoldAA was measured on a dataset of

20 protein sequences, which were used in our previous studies

[18]. We performed 4 iterations of EdaFoldAA for each target.

The models used during the estimation phase (iterations 1, 2 and

3) are part of the final model set: 25% of the final models are

generated at each iteration. The number of models generated

(same for Rosetta and EdaFoldAA) depends on the length of the

target sequence: 250,000 for PDB codes 1m6t, 1iib, 1acf, 3chy and

300,000 for all other targets. CaRMSD calculations were

performed with the ranker tool from Durandal [23]. All-atom

RMSD, referred to as AARMSD in the following, were computed

with the LSQKAB program from the CCP4 Software Suite

[24,25]. Rosetta Version 3.2 was used for performance compar-

isons.

Conclusions

We present an estimation of distribution-based protein structure

prediction algorithm which generates models with atomic details.

The use of Rosetta’s fast Relax protocol in the iterative process of

EdaFoldAA allows the estimation of distributions over the protein

fragment libraries according to an all-atom energy function.

Energy distribution and CaRMSD to native histograms revealed

that our protocol can reach lower energies and generate more

accurate models after 4 iterations. A comparison with Rosetta
AbInitioRelax shows that EdaFoldAA is able to produce more

accurate models and a higher percentage of near-native structures.

The proportion of near-native structures in the low energy range

also improves on a majority of targets. As a result, energy-driven

blind selection of models is more efficient: EdaFoldAA selects more

accurate models when looking at the lowest or the top 5 lowest

energies in our dataset on a benchmark of 20 protein targets.

Authors’ Information

EdaFoldAA is released under the GNU General Public License.

It can be downloaded from http://www.riken.jp/zhangiru/

software.html.

Supporting Information

Figure S1 Models distribution as a function of CaRMSD
to native for the lowest 500 energies in EdaFoldAA and
Rosetta datasets.
(TIF)

Table S1 Comparison of all-atom models generated by
EdaFoldAA and Rosetta. 1% AARMSD is the average over the

1% lowest AARMSD to native models. Similarly, 1% AARMSD

is the average over the 1% lowest AARMSD to native models.

Best model is the single lowest AARMSD to native model. All

mean differences are statistically significant with a confidence

greater than 95% according to the Student’s t-test.

(PDF)

Table S2 Comparison of best all-atom models selected
based on energy. The first prediction is the model with the lowest

energy. The best prediction is the best model out of the five lowest

energies. All results are shown as AARMSD to native structure.

(PDF)

Table 4. Blind selection ability of all-atom models generated
by EdaFoldAA at iterations 1 and 4.

First prediction (Å) Best prediction (Å)

Target Iter. 1 Iter. 4 Rosetta Iter. 1 Iter. 4 Rosetta

1bq9 6.28 1.38 9.41 2.86 1.11 6.20

1di2 1.37 0.85 1.05 0.92 0.76 0.94

1scj 3.61 7.87 7.23 3.61 2.64 6.36

1hz5 3.39 3.24 3.98 2.98 3.15 3.21

1cc8 3.86 3.49 8.28 3.26 3.03 2.80

1ctf 5.81 7.05 4.84 4.78 5.62 3.39

1ig5 3.11 6.46 2.95 2.62 6.35 2.71

1dtj 3.22 1.68 1.72 1.69 1.65 1.72

1ogw 3.29 2.78 2.71 3.08 2.68 2.71

1dcj 2.85 5.02 3.90 2.85 2.68 2.68

2ci2 7.49 7.73 7.20 7.14 6.77 7.20

3nzl 10.87 11.42 5.80 5.58 5.50 4.99

1a19 6.77 3.82 3.76 3.26 2.75 3.10

1tig 4.60 3.69 4.29 3.91 3.69 4.29

1bm8 9.13 9.03 4.06 9.13 3.44 3.17

4ubp 9.23 11.39 10.50 5.93 7.64 7.74

1m6t 2.21 1.93 1.88 1.57 1.34 1.36

1iib 9.87 2.50 15.28 9.79 2.50 6.98

1acf 10.43 3.60 8.59 4.25 3.00 5.42

3chy 13.96 4.38 9.08 7.89 4.38 5.84

Average 6.07 4.97 5.83 4.35 3.54 4.15

The first prediction is the model with the lowest energy. The best prediction is
the best model out of the five lowest energies. All results are shown as CaRMSD
to native structure. Models produced at iteration 1 alone and iteration 4 alone
are compared. For comparison, the columns Rosetta show the same data
obtained from a sample of Rosetta models randomly picked from Rosetta’s
prediction results.
doi:10.1371/journal.pone.0068954.t004

Table 5. Algorithm 1: EdaFoldAA (comments are enclosed
between braces).

input : s {sequence of the target protein}

input : n {number of minimization steps}

output : p {set of potential solutions}

pmf/init with uniform distributions()

p/sample and minimize(s,pmf ) {first iteration}

p/fast relax(p)

for i in ½1::n{1� do

pmf/estimate pmf (p)

p/p|sample and minimize(s,pmf ) {remaining iterations}

p/fast relax(p)

end for

return p

doi:10.1371/journal.pone.0068954.t005
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Table S3 Blind selection ability of all-atom models
generated by EdaFoldAA at iterations 1 and 4. The first

prediction is the model with the lowest energy. The best prediction

is the best model out of the five lowest energies. All results are

shown as AARMSD to native structure. Models produced at

iteration 1 alone and iteration 4 alone are compared. For

comparison, the columns Rosetta show the same data obtained

from a sample of Rosetta models randomly picked from Rosetta’s

prediction results.

(PDF)
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