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Abstract

Aedes aegypti is the primary vector of dengue, chikungunya, Zika, and urban yellow fever.

Insecticides are often the most effective tools to rapidly decrease the density of vector popu-

lations, especially during arbovirus disease outbreaks. However, the intense use of insecti-

cides, particularly pyrethroids, has selected for resistant mosquito populations worldwide.

Mutations in the voltage gated sodium channel (NaV) are among the principal mechanisms

of resistance to pyrethroids and DDT, also known as “knockdown resistance,” kdr. Here we

report studies on the origin and dispersion of kdr haplotypes in samples of Ae. aegypti from

its worldwide distribution. We amplified the IIS6 and IIIS6 NaV segments from pools of Ae.

aegypti populations from 15 countries, in South and North America, Africa, Asia, Pacific,

and Australia. The amplicons were barcoded and sequenced using NGS Ion Torrent. Output

data were filtered and analyzed using the bioinformatic pipeline Seekdeep to determine fre-

quencies of the IIS6 and IIIS6 haplotypes per population. Phylogenetic relationships among

the haplotypes were used to infer whether the kdr mutations have a single or multiple origin.

We found 26 and 18 haplotypes, respectively for the IIS6 and IIIS6 segments, among which

were the known kdr mutations 989P, 1011M, 1016I and 1016G (IIS6), 1520I, and 1534C

(IIIS6). The highest diversity of haplotypes was found in African samples. Kdr mutations

1011M and 1016I were found only in American and African populations, 989P + 1016G and

1520I + 1534C in Asia, while 1534C was present in samples from all continents, except Aus-

tralia. Based primarily on the intron sequence, IIS6 haplotypes were subdivided into two

well-defined clades (A and B). Subsequent phasing of the IIS6 + IIIS6 haplotypes indicates

two distinct origins for the 1534C kdr mutation. These results provide evidence of kdr muta-

tions arising de novo at specific locations within the Ae. aegypti geographic distribution. In

addition, our results suggest that the 1534C kdr mutation had at least two independent ori-

gins. We can thus conclude that insecticide selection pressure with DDT and more recently

with pyrethroids is selecting for independent convergent mutations in NaV.
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Author summary

Insecticide resistance is a global threat for the control of Aedes aegypti, the mosquito vec-

tor of aboviruses such as dengue, chikungunya and Zika. Mutations in the voltage gated

sodium channel (NaV), known as kdr, are one of the principal mechanisms related to

resistance to pyrethroids, the class of insecticide most employed worldwide inside and

around residences. We investigate whether the same kdr mutations found in Ae. aegypti
populations from distinct regions of the world have a common origin and subsequently

dispersed or if they emerged in unrelated populations at distinct moments. By evaluating

the sequences of two fragments of the NaV gene, obtained from DNA collections of Ae.
aegypti from several countries, we found at least two independent origins for the F1534C

kdr mutation in American, African and Asian populations. There was no evidence for

multiple origins of the common kdr mutations V1016I and P989S + V1016G, which were

exclusive to American and Asian populations. Our results increase our knowledge of

insecticide resistance evolution in one of the main arboviral mosquito vectors of major

global diseases.

Introduction

Aedes aegypti is considered one of the most successful invasive species worldwide. Originally

from Africa and now found throughout the tropics and subtropics, i t has been divided into

two subspecies Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf). The subspecies

Aaa, hereafter referred simply as Ae. aegypti, spread to the five continents, starting from Africa

to the Americas during the human slave trade that began in the 1500’s, and later (1800’s) from

the Americas to Asia and Australia [1]. Ae. aegypti is generally referred to as the yellow fever

mosquito, as it was the vector of yellow fever virus in the urban cycle of the disease in the

Americas until the first half of the last century and more recently in West Africa [2]. Vaccina-

tion against yellow fever and intense vector control eliminated the urban cycle of the disease in

most countries by mid-20th Century [3]. However, decreasing entomological surveillance

along with rapid increases in urbanization and demographic changes has led to the re-estab-

lishment of this species. Currently Ae. aegypti occurs on six continents [4], reaching high den-

sities in urban centers of tropical and subtropical cities and acts as the primary vector of

viruses causing dengue, chikungunya and, Zika, as well as re-emerging yellow fever [5]. Today,

the risk of epidemic arboviral diseases is the highest in history [6] and it is predicted that in

response to increased urbanization and climate change, 2.25 billion more people (or 60% of

global population) will be at risk of dengue in 2080 compared to 2015 [7].

The first line of effective control of Ae. aegypti should be improvement of sanitary infra-

structure, with insecticides employed as a complementary tool during high density infestation

and arboviruses epidemic seasons [8]. However, insecticides have been extensively used as the

primary front of action, even during low-density seasons, increasing selection for resistance.

Insecticide resistance is now recognized as a major threat for the control of arboviral diseases

and has likely contributed to their re-emergence and spread. Important knowledge gaps

remain on mosquito insecticide resistance, including its global distribution, dynamics, mecha-

nisms, fitness costs, and impact on vector control [9].

In contrast to the numerous insecticidal compounds available for agriculture, only a few

classes of insecticides are permitted for public health purposes, such as larvicides in drinkable

water tanks. Fewer are approved for spatial spraying against adult mosquitoes, for example,
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only pyrethroids are recommended for indoor spraying [10] and treatment of mosquito nets

[11]. Pyrethroids are the most frequently used insecticides globally, due to their low toxicity to

mammals, limited impact on the environment, and rapid effects on insects. This rapid action

is known as the knockdown effect, which includes intense nerve firings, followed by paralysis

and death. DDT has similar effects, as both compounds interact with the voltage gated sodium

channel (NaV), a transmembrane protein of neuron axons [12]. Common mechanisms of

resistance against pyrethroids include an increased expression of detoxifying enzyme genes,

especially P450 cyp genes, or single nucleotide polymorphisms (SNPs) in the pyrethroid target

NaV gene, known as kdr (knockdown resistance).
The Ae. aegypti NaV protein contains 2061 aa (amino acids) [13], with four similar domains

(I-IV), each composed of six transmembrane segments (S1-S6) Fig 1. The first kdr mutation

was identified in Musca domestica, at the 1014 aa site in the IIS6 segment [14]. In several other

insects, including mosquitoes of the genus Anopheles and Culex, kdr mutations were identified

at the same site. Mutations at several other NaV sites have also been classified as kdr mutations

due to a correlated resistance to pyrethroids and/or DDT. The principal kdr mutations

described in Ae. aegypti are V410L (IS6), P989S (in the link IIS5-S6), I1011M, V1016I and

V1016G (IIS6), T1520I and F1534C (IIIS6) [9].

Some of these mutations, such as F1534C, are present in multiple populations around the

world. This could be the due to a single origin event that spread widely or a consequence of

multiple independent events. The same mutation could arise independently if there were func-

tional restrictions on the number of resistance-inducing substitutions that would retain proper

physiological function of the sodium channel, as is the case of the L1014F in An. gambiae [15].

Here, we use a next generation sequencing approach to explore the variation in the nucleotide

regions encoding part of the IIS6 and IIIS6 segments of the NaV of Ae. aegypti, where the most

important kdr mutations are found. We then reconstruct the evolutionary relationships

among haplotypes to determine the origin of worldwide kdr mutations in Ae. aegypti.

Methods

The Ion Torrent PGM platform (Thermo Fisher Scientific Inc.) was used to sequence ~400

bases of the IIS6 and IIIS6 segments of the voltage gated sodium channel gene of Aedes aegypti
(AaNaV), which contain most of the described kdr mutations.

DNA amplification

Ae. aegypti DNA was obtained from the nucleic acid collection maintained at the Powell lab at

the Ecology and Evolutionary Biology Department of Yale University; generated from previous

studies [16–18]. An aliquot of 1 μL (~30 ng) from single mosquito DNA preparations from the

same population samples were pooled. Each pool contained an average of 30 samples (see S1

Table). Pooled DNA was then used to amplify segments IIS6 and IIIS6 of the NaV gene in sepa-

rate PCR reactions, with the Phusion High-Fidelity DNA Polymerase PCR kit (New England

BioLabs). Each reaction consisted of 40 μL, containing 1X Phusion Hf buffer, 200 μM dNTP,

3% DMSO, 0.4 U Polymerase, 1.0 μM of each primer, 2 μL of pooled DNA and H2O q.s. 40 μL.

The primers employed were 5para6: CGGGTATTATGCGGCGAGTG x 3para3: TGGA-

CAAAAGCAAGGCTAAG for the IIS6 segment, and AegNaVfor8: GTGGGAAAGCAGCC-

GATTCGC x AegNaVrev6: TGTTGAACCCGATGAACAAC for IIIS6 segment (all primers

described in 5’to 3’orientation) (Fig 1). Thermocycling conditions were 93˚C/30”followed by

35 cycles of 98˚C/15”, 60˚C/30” and 72˚C/60”, with a final extension of 72˚C/5’, for both reac-

tions. The PCR products were run on a 3% agarose LE electrophoresis gel, and 400 bp bands

were excised and purified with the QIAquick PCR Purification Kit (QIAGEN), following
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manufacturer instructions. Purified DNA was quantified in a 2100 Bioanalyzer instrument

(Agilent Technologies Inc.). Purified PCR amplicons for the two NaV segments from the same

population were pooled in equimolar concentrations for library preparation.

NGS Library preparation

We barcoded each population using the Ion Plus Fragment Library Kit (Thermo Fischer Scien-

tific Inc.). Briefly, the pooled amplicons of each population were end repaired and purified

with magnetic AMPure XP beads (Agencourt, Beckman Coulter), before ligation to adapters

(Ion P1 Adapter and Ion Xpress Barcode X) and nick repair. The list of barcode sequences and

their respective populations are presented in S1 Table. Libraries were then purified with mag-

netic beads and quantified with a High Sensitivity DNA chip in a 2100 Bioanalyzer (Agilent

Technologies Inc.). Next, libraries were PCR amplified with Platinum PCR SuperMix High

fidelity (100 μL), Library Amplification Primer Mix (5 μL), unamplified library (10 μL) and

low TE buffer (15 μL), in five cycles, according to the conditions indicated in the manufacturer

protocol. Amplified barcoded libraries were purified with magnetic beads and molar concen-

trations measured with the High Sensitivity DNA Kit (Agilent Technologies Inc.) in the Bioa-

nalyzer. We then pooled 100 pM of each library to prepare the sequencing template. Two

pooled templates were prepared, the first with library containing barcodes 1 to 48 and the sec-

ond with 49 to 96.

Enriched template preparation by emulsion PCR (emPCR)

First, the template-positive Ion Sphere Particle (ISP) was prepared with the kit Ion PGM Tem-

plate OT2 400 kit (ThermoFischer), using the Ion OneTouche 2 Instrument. Then, the result-

ing template-positive ISP suspension was enriched in the Ion OneTouch ES system,

continuing the procedures indicated in the same kit. Both procedures followed the manufac-

turer protocol.

Fig 1. Scheme of the voltage gated sodium channel. The IIS6 and IIIS6 segments are highlighted, indicating the primers (arrows showing orientation) used to amplify

their corresponding DNA regions in this study. The kdr mutation sites previously found in Aedes aegypti in these segments (989, 1011, 1016, 1532 and 1534) are also

indicated.

https://doi.org/10.1371/journal.pntd.0008219.g001
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Sequencing

The enriched template-positive ISP was sequenced using the PGM Sequencing 400 kit

(Thermo Fischer Scientific Inc.), as per manufacturer protocol. Two runs were performed, one

for each pooled library template, both with an Ion 318 Chip v2.

Data analysis

Raw sequencing data was de-multiplexed, clustered and analyzed using the software package

SeekDeep [19] (http://baileylab.umassmed.edu/SeekDeep). See details in S1 Text. All data gen-

erated or analyzed during this study are included in this published article and the Sequence

Read Archive available at www.ncbi.nlm.nih.gov/sra (SRA Accession number: PRJNA579141,

Biosample number: SAMN13092781). Haplotypes were aligned by Muscle in the Geneious

software V 11.1.5 [20]. The alignments were submitted to a TCS analysis in PopArt [21] to

reconstruct the haplotype networks. Phylogenetic trees were built employing the maximum

likelihood model in MEGA 7 [22].

We first evaluated genetic diversity, built the haplotypic network, and performed phyloge-

netic analyses for each segment independently. The haplotypes were named as 2s6 or 3s6 (in

reference to IIS6 and IIIS6 segments, respectively), followed by an identifying number. As evi-

dent in the Results section, the IIS6 haplotypes were grouped into A or B clades. Accordingly,

we added A or B, following 2s6, to the names of IIS6 haplotypes. Although IIS6 and IIIS6 seg-

ments are ~ 44.5 Kb apart, since linkage disequilibrium in Ae. aegypti is about 50–80 Kb [dis-

tance at which correlation is halved from maximum [23, 24]], we expect variation in the two

segments to be correlated. As we could not phase the haplotypes when both segments were

polymorphic, haplotypes phase could be determined only in populations monomorphic for

one of the two segments. In these cases, phased haplotypes were noted with the prefix “Phased”
followed by their respective IIS6 and IIIS6 haplotype designations.

Temporal variation

As sequences of several Ae. aegypti populations from Brazil spanning 2001 to 2015 were avail-

able, we evaluated whether the frequencies of the observed NaV haplotypes increased or

decreased over time in this country.

Results

Quality filtering

After quality filtering we obtained IIS6 and IIIS6 segment sequences for 79 and 71 populations,

respectively. Specifics on the number of sequences used for each locality are listed in S2 Table.

Haplotype analyses

Spatial analyses. Analyses of the IIS6 segment resulted in 26 haplotypes, ranging from

324 to 352 bp, among which 16 were exclusive to a single population (private alleles), all in

Africa (S3 Table). The sequences of these haplotypes were submitted to Genebank (accession

numbers: MN602753-MN602778) and their frequencies per locality are reported in S3 Table

and S1 Fig. An alignment of the haplotypes (S2 Fig) revealed that the intron had insertions and

deletions (indels). The maximum likelihood tree groups these haplotypes into two well sup-

ported clades (S3 Fig), Clade A (N = 6) and Clade B (N = 20), consistent with previous reports

[25]. Eighteen of the 20 haplotypes in Clade B are exclusive to Africa. Exon regions were con-

served, with four non-synonymous substitutions in codons 989 (TCC/CCC: S/P), 1011 (ATG/

ATA: I/M) and 1016 (GTA/ATA/GGA: V/I/G). All non-synonymous substitutions have been
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previously described as kdr mutations [9]. There were four codons with synonymous substitu-

tions: amino acid 993 (TTG/TGC, haplotype 2S6_B_21) and 1002 (ATT/ATA, haplotype

2S6_B_24) in Clade B; and 1000 + 1016 (respectively GTA/GTG and TCC/TCT in the same

haplotype 2S6_A_19) in clade A (Fig 2).

The most common haplotype was the 2S6_B_00 (Clade B), found in 69 out of 79 popula-

tions. However, among the seven African populations sampled, only Sedhiou (Senegal) had

this haplotype. Also in Clade B, the 2s6_B_04 haplotype was found in Africa (Kenya), Australia

and Brazil. Interestingly, the oldest samples (2001–2009) from Brazil contained this haplotype.

In clade A, only six haplotypes were detected. The 2S6_A_03 allele was present in all conti-

nents included in the analysis. All haplotypes containing a kdr allele were placed in clade A:

2S6_A_01 (1011M), 2S6_A_02 (1016I) and 2S6_A_06 (989P + 1016G), all identical to the

2S6_A_03 haplotype and differing only at the site that defines kdr. Haplotype 2S6_A_01 was

found in populations from Brazil, Colombia, and Dominica; the 2S6_A_02 in Brazil, Colom-

bia, Haiti, Dominica, Mexico, USA and Senegal; and 2S6_A_06 only in Asian populations:

Saudi Arabia, Thailand and Philippines. We did not find any haplotype carrying only the 989P

or 1016G alone. The other two haplotypes in clade A, 2S6_A_19 and 2S6_A_22, were exclusive

to African localities (Cameroon and Senegal, respectively).

A IIS6 haplotype network analysis shows the three kdr haplotypes (2s6_A_01, 2s6_A_02

and 2s6_A_06) directly linked to the 2s6_A_03 haplotype (Fig 2). The 2s6_A_03 haplotype

was widely distributed, present in Americas (Tucson, Haiti, Venezuela and Brazil), Africa

(Sedhiou and Nairobi), Asia (Cebu) and Pacific (Hawaii), and Australia (S6 Fig). The results of

the network analyses together with the wide distribution of the 2s6_A_03 haplotype suggests a

single origin, with an haplotype similar to 2s6_A_03 as the likely ancestor of the kdr haplotypes

with derived SNPs in sites 989, 1011 and 1016.

Similar analyses with sequences of the IIIS6 segment reveled 18 haplotypes between 353

and 354 bp. Nine of the haplotypes only occurred in a single population. Out of these nine, six

belonged to African populations (S3 Table). Sequences are available on GenBank (accession

numbers: MN602779-MN602796). The greatest variation was observed inside the intron, with

18 variable sites, and 11 SNPs found in the exons (seven synonymous and four non-synony-

mous (S4 and S5 Figs). The most frequent haplotype (3s6_00) was found in all continents and

eleven haplotypes were specific to Africa. Haplotype 3s6_02 and 3s6_03 were found in three

(Africa, South America, and Asia) and two (Africa and South America) continents, respec-

tively. Four haplotypes presented non-synonymous substitution: 3s6_01 (1534C, found in

Africa, Americas and Asia), 3s6_13 (1520I + 1534C, in Asia), 3s6_11 (1523T, in Haiti) and

3s6_17(1605A, a novel SNP found in Brazil). Contrary to the phylogenetic analyses for the IIS6

segment haplotypes, a ML tree using the IIIS6 segment haplotypes did not provide support for

distinct clades (S6 Fig).

The TSC haplotype network analysis for the IIIS6 haplotypes is consistent with a single ori-

gin of the 1534C kdr mutation, which despite occurring worldwide, it was only found in two

IIIS6 haplotypes (3s6_01 and 3s6_13). This network also implies that the Asian 1520I + 1534C

haplotype (3s6_13) originated from 3s6_01 (Fig 3). The frequencies of both IIS6 and IIIS6 hap-

lotypes with and without a known kdr SNP in each population are represented in Fig 4.

Reconstructing Nav evolution by merging information of IIS6 and IIIS6

haplotypes

The variable intron in the haplotypes of the IIS6 segment, which grouped the sequences in

clades A and B was usedto determine if the kdr mutations in this segment had single or multi-

ple origins. As 1011M, 1016I and 989P + 1016G were present in single haplotypes, there was
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no evidence of multiple origins of these kdr mutations. In the IIIS6 segment, the intron was

not highly variable and although the kdr 1534C was present in two haplotypes, they were iden-

tical except for a difference in one nucleotide (3s6_01 and 3s6_13). This is consistent with a

single origin for the kdr 1534C mutation. We phased IIS6 and IIIS6 to combine the variability

from both segments, and thus increase our analysis power. The phasing could only be deter-

mined in populations which haplotypes were monomorphic in at least one of the segments,

because it is not possible to indicate which haplotypes are on the same chromosome when

populations were polymorphic in both segments. Six populations (Puerto Rico, New Orleans,

Iguala, Amacuzac and Ribeirão Preto) satisfied this condition of being monomorphic for

IIIS6, all presenting the kdr 1534C haplotype 3s6_01, and two IIS6 haplotypes: 2s6_B_00 and

the kdr 1016I 2s6_A_02 (Fig 5A). Therefore, in these cases the only possible phased haplotypes

were 2S6_B_00 + 3s6_01 (Phased_00B-01) and 2S6_A_02 + 3s6_01 (Phased_02A-01). As

2s6_B_00 and 2s6_A_02 are in clades A and B, respectively (see Fig 2), and both phased

Fig 2. Haplotype Network of nucleotides corresponding to the IIS6 segment of the voltage gated sodium channel gene of Aedes aegypti populations from diverse

continents. The network was designed based on the genealogies calculated by the TCS method [21]. Each dot represents a haplotype, connected by lines in which each

tick mark indicates a mutational step between connected haplotypes. Lines are color-coded to indicate Clade A (purple) or Clade B (green). Dot colors indicate

haplotypes with (red) or without (blue) kdr mutations. A schematic representation of the clade with kdr haplotypes is in the box, with kdr SNPs in red.

https://doi.org/10.1371/journal.pntd.0008219.g002

PLOS NEGLECTED TROPICAL DISEASES Origins and dispersion of kdr in Aedes aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008219 April 16, 2020 7 / 18

https://doi.org/10.1371/journal.pntd.0008219.g002
https://doi.org/10.1371/journal.pntd.0008219


haplotypes carry the kdr 1534C mutation in the IIIS6 segment, evidence suggests that this

mutation had at least two independent origins. This information was not available when look-

ing only at the IIIS6 haplotype network alone (Fig 3).

We suggest that the kdr 1534C Phased 00B-01 present in Brazil, Colombia, Mexico, Puerto

Rico and USA could have derived from Phased_00B-00 found in Brazil, USA and Australia

(Fig 5B). In addition, we hypothesize that the Phased_03A-00, found in USA and Australia,

likely originated a Phased 03A-01. This should have been the ancestor of the other 1534C hap-

lotypes, which also contained the kdr mutations in the IIS6 segment: 1016I (Phased_02A-01)

in Brazil, Colombia, Mexico, Puerto Rico and USA, and 989P + 1016G (Phased_06A-01) in

Saudi Arabia, Thailand and Philippines. There was no evidence of multiple origins for the kdr
mutations in the IIS6 segment (Fig 5C).

In summary, we have inferred that there are at least two wildtype (insecticide susceptible)

NaV phased haplotype sources of the kdr mutation (insecticide resistant): Phased_00B-00 and

Phased_03A-00 (Fig 5), probably originally in Africa.

Temporal variation

Samples from Brazil from years spanning 2001 to 2015 were used in order to evaluate changes

in frequency of the NaV haplotypes. Five haplotypes in the IIS6 segment were found in these

populations: 2s6_B_00, 2s6_B_04, 2s6_A_01, and the kdr 2s6_A_02 and 2s6_A_03. We

Fig 3. Haplotype Network of the IIIS6 segment of the voltage gated sodium channel gene of Aedes aegypti populations from diverse continents. The network is the

genealogy calculated by the TCS method [21]. Each dot represents a haplotype, connected by lines in which each slash indicates a mutational step between connected

haplotypes. Red and blue dots indicate synonymous and non-synonymous substitutions, respectively. The most common haplotype 3s6_00 is in dark blue. A schematic

representation with haplotypes containing non-synonymous SNPs is in the box, with SNPs in red.

https://doi.org/10.1371/journal.pntd.0008219.g003
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observed that the kdr 1016 Ile (2s6_A_02) first appeared in samples from 2002, only achieving

higher frequencies from 2007 onwards. On the other hand, the 1011 Met (2s6_A_01) was pres-

ent during the whole period, however seems to decrease in frequency. Among the non kdr
haplotypes, 2s6_A_03 and 2s6_A_04 also tended to decrease, whilst 2s6_B_00 was generally

the most frequent haplotype (S7 Fig). Five haplotypes were observed in the IIIS6 segment of

Ae. aegypti populations from Brazil: 3s6_00, 3s6_02, 3s6_03, 3s6_17 and the kdr 3s6_01 (1534

Cys). The kdr haplotype was present in 2001, at low frequency, with a very clear progressive

increase in frequency until 2015, in parallel to the decrease of 3s6_00. The 3s6_02 haplotype

Fig 4. Frequencies of haplotypes with or without non-synonymous substitutions in IIS6 and IIIS6 NaV segments of Aedes aegypti worldwide

populations. The populations contain one bar for each of the two NaV segments. In each bar it is presented the frequency of the haplotypes with

non-synonymous SNPs and the sum of the remaining haplotypes (wild-type). Populations are grouped according to their continent.

https://doi.org/10.1371/journal.pntd.0008219.g004
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generally occured at low frequencies, except in a population where was fixed, and the other

two haplotypes were rare (S8 Fig). The remarked increase of 3s6_01 makes sense, since it is

part of both Phased_00B-01 (1534 Cys) and Phased_02A-01 (1016 Ile + 1534 Cys), as afore

mentioned. This is consistent with the increase of kdr resistance in Ae. aegypti from Brazil in

the last decade and indicates that the kdr 1534C from both distinct origins are present in this

country.

Discussion

Molecules that are targeted by neurotoxic insecticides are remarkably conserved among dis-

tant taxa, implying the encoded proteins are under selective constraints even in the absence of

insecticides [26]. This explains the repeated changes at the classical kdr 1014 site (Leu to Phe

or Ser) in several insect species, including other mosquitoes in the genera Culex and Anopheles.
In Aedes, however, due to a codon constraint, two nucleotide substitutions in the relevant

codon are needed to produce the amino acid changes found in other insects, reducing its likeli-

hood [27]. Thus, in Aedes, alternative mutations that change the channel conformation mak-

ing it resistant to pyrethroids without losing its physiological role have arisen. Mutations at

NaV sites 1016 and 1534 produce resistance and are found not only in many populations of Ae.
aegypti, but also in Aedes albopictus [28, 29], a likely result of convergent adaptations to pyre-

throids pressure. This indicates that the relevant mutations may arise multiple times in a spe-

cies and thus the geographic distributions of resistant alleles is not always the result of

Fig 5. Evidence for at least two independent origins for the 1534C kdr mutation in Aedes aegypti. Bars show the haplotype frequencies of IIS6 and IIIS6 NaV

segments found in five localities that are fixed for 3s6-01 haplotype (A). The IIS6 haplotypes from Clades A or B (see Fig 2) are represented as purple and green

lines, respectively. Two different origins are proposed for the 1534C kdr mutation in B and C panels. The single origin for the other kdr mutations is also

suggested in panel C. Phased haplotypes are followed by the name of the populations where they were found. Kdr SNPs are shown in red.

https://doi.org/10.1371/journal.pntd.0008219.g005
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migration from a single geographic origin. Our analyses found evidence of multiple origins of

the 1534C kdr mutation in Ae. aegypti, as previously hypothesized [30, 31]. Similar analyses of

intronic sequences near the 1014 site also indicated convergent evolution of the kdr mutation

in several insects, such as An. gambiae [15], in the house fly Musca domestica [32], the codling

moth Cydia pomonella [33] and the aphid Myzus persicae [34].

Spatial analyses

Here we found the largest diversity of NaV haplotypes in Africa with 14 out of 17 and 23 out of

25 of IIS6 and IIIS6 haplotypes, respectively. This higher diversity in African populations was

expected since they are older than populations outside Africa [1] and is consistent with the

high diversity observed with other genetic markers in Africa [(e.g. microsatellites, [35])]. In

addition to being younger, populations outside Africa may be subject to selective sweeps

around the NaV gene due to exposure to insecticides. There is remarkably little data on insecti-

cide resistance in Ae. aegypti from Africa [9], in contrast to the information for Anopheles. The

lack of attention to insecticide resistance in African Ae. aegypti may be due to insecticides

rarely being employed specifically against this mosquito in Africa. We suggest that exposure

could be a byproduct of extensive use against malaria vectors. Among the five African coun-

tries from which we had samples, we found a kdr haplotype only in Senegal. It is known that

Senegal has populations with mixed genetic signature of Aaf and Aaa [35, 36], so it is possible

this kdr haplotype came back from the Americas.

In Africa, the first detection of kdr was in resistant populations from Ghana (West African

coast) from samples collected in 2012 and 2014 [37]. The kdr 1534C mutation was observed in

individuals with scaling patterns usually found in both subspecies (Aaa and AAf). As in our

analyses and previous work [38], the IIS6 haplotypes belonged to two distinct clades for IIS6 in

those African populations. The kdr 1534C African sequences were associated to non-kdr IIS6

haplotypes in clade A [37], a result confirmed by our analyses, as the kdr 1534C haplotype (in

this study haplotype 3s6_01, Fig 3) is also associated with IIS6 haplotypes in Clade A

(2s6_A_02: 1016I, Fig 2). However, we also show that this association goes beyond Africa, as it

is found in populations from Brazil, Mexico, Puerto Rico, and USA. In addition, the kdr
1534C haplotype (3s6_01) was also found with a non-kdr IIS6 haplotype in clade B (2s6_B_00)

in populations from Brazil, Mexico, Colombia, Puerto Rico and USA. Therefore, the linkage of

kdr 1534C haplotypes with IIS6 sequences in both distinct clades (Fig 5) indicates that the

1534C kdr mutation has emerged independently at least twice. This also explains the high fre-

quency of the haplotype 2s6_B_00 (i.e. without a kdr mutation in this fragment), since it is

non-randomly associated (“hitchhiked”) with the 1534C kdr mutation in the IIIS6 segment.

Our samples from Asia were polymorphic for both IIS6 and IIIS6 segments but in these

populations we could not infer associations between IIS6 and IIIS6 haplotypes given the

impossibility to phase the haplotypes for the two segments. Unlike in the Americas where the

1016I kdr mutation generally occurs together with 1534C, 1016G occurs alone or in conjuga-

tion with 1534C in Asian populations [39]. Here, we observed only one haplotype with 1016G

which also harbored the 989P kdr mutation (haplotype 2s6_A_06) found in Saudi Arabia,

Thailand, and Philippine populations. Based on the sequence of the intron, this haplotype is in

IIS6 clade A, as observed in Taiwanese populations [40]. Additionally, 1534C was linked to

IIS6 clade B, i.e. without mutations in the sites 989 and 1016 [40]. This suggests that in Asian

populations 1016G and 989P + 1016G haplotypes emerged from a F1534 haplotype. This is dif-

ferent from what was found with American haplotypes, where 1016I emerged from a 1534C

haplotype as also suggested by other studies [30, 31]. In Ae. aegypti from Saudi Arabia, the

989P + 1016G + F1534 is in high frequency, with a small portion of the triple mutant 989P
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+ 1016G + 1534C [41]. This is consistent with 1534C having more than one origin. Likewise,

in Sri Lanka although the triple mutant genotype was found, no individual was homozygote

for the three mutations [42].

The substitution T1520I with 1534C (haplotype 3s6_13) was found in Thailand samples,

and also in Delhi, India [43]. However, it remains to be elucidated whether this haplotype is

resistant to pyrethroids or DDT. Electrophysiological assays of distinct kdr mutations intro-

duced in an AaNaV1 cDNA expressed in a Xenopus oocytes heterologous system, evidenced

that the 1520I alone did not alter the channel sensitivity to pyrethroids and DDT. However,

resistance to permethrin was higher with 1520I + 1534C than with 1534C alone [44]. To our

knowledge, the non-synonymous substitution I1532T found in the haplotype 3s6_11 in a pop-

ulation from Haiti has not been previously described in Ae. aegypti, but interestingly is found

in Italian and Chinese populations of Ae. albopictus [45].

Temporal variation

The substitution I1011M (designated here as 2s6_A_01) was found in the oldest collections we

studied (1995 and 1998 from Brazil, Guyana, and Martinique) and only in samples from the

New World. Neurophysiological assays showed that mosquitoes with that mutation required

higher concentrations of pyrethroids to induce repetitive firing compared to susceptible mos-

quitoes [46]. Further studies confirmed that I1011M was in higher frequency in pyrethroid

resistant individuals in a Brazilian population [25]. However, these previous studies examined

only the sequence in the IIS6 segment, meaning that it is possible that the resistant allele

1534C in the IIIS6 segment might also have been present. Indeed, the Brazilian samples we

examined here from 2001–2005 had the 1534C mutation (haplotype 3s6_01). In addition,

1011M appeared only as an apparent heterozygote in several natural populations from Brazil.

This led to the suggestion that it may be a duplication event [47], a possibility that remains to

be confirmed. An Ae. aegypti line selected to carry this mutation was not resistant to deltame-

thrin [48]. However, what is certain is that the frequency of 1011M has been decreasing in par-

allel to an increase of 1016I (1016I + 1534C) over time, as observed in this study (S7 and S8

Figs).

Focusing on the polymorphism at sites 1016 (Val or Ile) and 1534 (Phe or Cys) in Ae.
aegypti from Mexico collected between 2000 and 2012 [31], in some localities kdr mutations

increased from almost zero to near fixation in 12 years. The haplotype V1016 + 1534C

increased first, but began to decline when the double kdr 1016I + 1534C started increasing. In

addition, the haplotype 1016I + F1534 was observed at low frequencies in some Mexican popu-

lations but not elsewhere. Vera-Maloof et al. (2015) [31] speculated that low fitness of 1016I

+ F1534 accounts for their rarity. They also suggested that haplotype V1016 + 1534C arose

first, followed by 1016I + 1534C with even greater pyrethroid resistance.

A similar scenario was found in Brazil [49]. The relative level of resistance among these

haplotypes was confirmed in laboratory studies: a homozygote line for V1016 + 1534C was less

resistant to deltamethrin than the double kdr 1016I + 1534C in Ae. aegypti with homogeneous

genetic background [48]. Results observed in our study corroborate the increase of kdr fre-

quency in Ae. aegypti from Brazil, which in part justify the spread of pyrethroid resistance and

support the genotyping tools currently used for surveillance of 1016I and 1534C kdr mutations

in natural populations [8].

Conclusions and future directions

Based on our sequencing of two distinct segments of the NaV gene in a spatially and temporally

diverse group of populations, we show that the 1534C kdr mutation circulating in Ae. aegypti
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populations around the world has emerged at least two distinct times, likely as convergent

selection for resistance to DDT and/or pyrethroids. We found no evidence however of multi-

ple origins of other kdr mutations: 1016I (Americas and Africa), 989P + 1016G and 1520I

+ 1534C (Asia). A temporal analysis with Ae. aegypti populations from Brazil showed that the

kdr 1534C from both origins are present, where the V1016 + 1534C haplotype arose first and

more recently the double mutant 1016I + 1534C has been expanding in this country. The com-

bination of these results with global genetic population data will help us to better understand

how insecticide resistance arises, is selected, and expands in the major worldwide arbovirus

vector, Ae. aegypti. Future work will aim at further elucidating specific questions such as how

insecticide resistance is evolving in complex landscape scenarios, considering genetic struc-

ture, migration as well as vector competence in local populations of Ae. aegypti.
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