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ABSTRACT Mobile colistin resistance (mcr) gene mcr-10.1 has been distributed widely
since it was initially identified in 2020. The aim of this study was to report the first mcr-10.1
in Africa and the first mcr in Sierra Leone; furthermore, we presented diverse modular struc-
tures of mcr-10.1 loci. Here, the complete sequence of one mcr-10.1-carrying plasmid in one
clinical Enterobacter cloacae isolate from Sierra Leone was determined. Detailed genetic dis-
section and comparison were applied to this plasmid, together with a homologous plasmid
carrying mcr-10.1 from GenBank. Moreover, a genetic comparison of 19 mcr-10.1 loci was
performed. In this study, mcr-10.1 was carried by an IncpA1763-KPC plasmid from one
Enterobacter cloacae isolate. A total of 19 mcr-10.1 loci displayed diversification in modular
structures through complex transposition and homologous recombination. A site-specific
tyrosine recombinase XerC was located upstream of mcr-10.1, and at least one insertion
sequence element was inserted adjacent to a conserved xerC-mcr-10.1-orf336-orf177 region.
Integration of mcr-10.1 into a different gene context and carried by various Inc plasmids
contributed to the wide distribution of mcr-10.1 and enhanced the ability of bacteria
to survive under colistin selection pressure.

IMPORTANCE Colistin is used as one of the last available choices of antibiotics for patients
infected by carbapenem-resistant bacterial strains, but the unrestricted use of colistin aggra-
vated the acquisition and dissemination of mobile colistin resistance (mcr) genes. So far, 10
mcr genes have been reported in four continents around the world. This study presented
one mcr-10.1-carrying Enterobacter cloacae isolate from Sierra Leone. The mcr-10.1 gene was
identified on an IncpA1763-KPC plasmid. According to the results of genetic comparison of
19 mcr-10.1 loci, the mcr-10.1 gene was found to be located in a conserved xerC-mcr-10.1-
orf336-orf177 region, and at least one insertion sequence element was inserted adjacent
to this region. To our knowledge, this is the first report of identifying the mcr-10.1 gene
in Africa and the mcr gene in Sierra Leone.
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Colistin is one of the last choices of antibiotic to treat severe Gram-negative bacterial
infections of humans, especially infections caused by bacteria with reduced suscepti-

bility to carbapenem antibiotics, and it has been used in livestock for more than 60 years
in most countries of the world (1). Morganellaceae, the Burkholderia cepacia complex, and
Serratia marcescens are intrinsically resistant to colistin due to the presence of the cell wall
that inhibits colistin binding with the susceptible lipid target site or the lipid A modification
to reduce binding (2). Recently, the unrestricted use of colistin aggravated the acquisition
and dissemination of mobile colistin resistance (mcr) genes in Enterobacteriaceae (3–5),
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Moraxellaceae (6), Morganellaceae (6, 7), Aeromonas (7), Alcaligenes (8), Cupriavidus (9),
Pseudomonas (6), Serratia (6), Shewanella (6), and Vibrio (6). The mcr genes encode phos-
phoethanolamine (PEA) transferases that catalyze the combination of PEA with lipid A and
thus modify the structure of lipid A to reduce the binding affinity to colistin (10). So far, 10mcr
genes, including mcr-1 to mcr-10 with different subvariants, have been reported in four conti-
nents around the world (11).

The mcr-10 gene was first identified in an IncFIA plasmid, pMCR10_090065, from
Enterobacter roggenkampii in China in 2020 (11). Since then, mcr-10 has been found in
IncFIB (12), IncFII:IncFIA (13), IncFII:IncFIB, and IncFIB:IncFIA plasmids from Asia, Europe, Oceania,
and North America, but not from Africa, South America, and Antarctica (11).

In Africa, seven (except for mcr-6, mcr-7, and mcr-10) of the 10 mcr genes have been
found in IncFIB, IncFII, IncHI, IncI, IncN, IncP, IncR, and IncX plasmids from Escherichia coli,
Klebsiella pneumoniae, Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas luteola,
Enterobacter hormaechei, Acinetobacter baumannii, Citrobacter werkmanii, and Alcaligenes
faecalis (8, 14). These mcr-carrying bacteria were isolated from human, animals, plants,
and contaminated soil, water, and wildlife ecosystems. So far, none ofmcr genes have been
reported in Sierra Leone (8).

This study presented the complete sequence of one mcr-10.1-carrying plasmid in one
sequenced clinical Enterobacter cloacae isolate from Sierra Leone. Detailed genetic dissection
and comparison were applied to this plasmid, together with a plasmid carrying mcr-10.1
from GenBank. Moreover, a genetic comparison of 19mcr-10.1 loci was performed to present
diversification in modular structures of mcr-10.1. To our knowledge, this is the first report of
identifying themcr-10.1 gene in Africa and themcr gene in Sierra Leone.

RESULTS
Identification and antimicrobial susceptibility of Enterobacter cloacae SL12517.

Strain SL12517 has a 98.74% average nucleotide identity (ANI) value with the reference
strain Enterobacter cloacae ATCC 13047 (accession number CP001918). Multilocus sequencing
typing (MLST) analysis revealed that strain SL12517 belonged to sequence type 850 (ST850).

Strain SL12517 was resistant to colistin (MIC, 8mg/mL), cefazolin (MIC,$64mg/mL), genta-
micin (MIC, $16 mg/mL), and trimethoprim/sulfamethoxazole (MIC, $320 mg/mL), intermedi-
ate to piperacillin (MIC, 32mg/mL), tobramycin (MIC, 8mg/mL), and nitrofurantoin (MIC, 64mg/
mL), and susceptible to piperacillin/tazobactam (MIC, #4 mg/mL), cefuroxime (MIC, 4 mg/mL),
ceftazidime (MIC,#1mg/mL), ceftriaxone (MIC,#1mg/mL), cefepime (MIC,#1mg/mL), aztreo-
nam (MIC, #1 mg/mL), imipenem (MIC,#1 mg/mL), meropenem (MIC, #0.25mg/mL), amika-
cin (MIC,#2mg/mL), ciprofloxacin (MIC,#0.5mg/mL), and levofloxacin (MIC,#1mg/mL).

Identification of resistance genes carried by strain SL12517. Resistance genes
carried by strain SL12517 were identified using the Comprehensive Antibiotic Resistance
Database (CARD) and the ResFinder database. The chromosome of strain SL12517 carried
the blaCMH-3 gene. An IncFII plasmid, pSL12517-TEM, carried blaTEM-1B and aacC2e genes.
An IncpA1763-KPC plasmid, pSL12517-mcr10.1, contained mcr-10.1, aac2d, strA, strB, tetA(D),
qnrS1, catA2, dfrA14b, tmrB, and sul2 genes. A ColRNAI plasmid, pSL12517-NR, harbored
no resistance genes.

Sequence comparison of two IncpA1763-KPC plasmids.A detailed sequence comparison
was applied to two mcr-10.1-carrying IncpA1763-KPC plasmids; one was plasmid pSL12517-
mcr10.1, which was isolated from strain SL12517, sequenced here, and the other one
was pEC27-2 (15) from GenBank, which was recovered from one Enterobacter cloacae isolate
in Vietnam in 2010. The plasmid pSL12517-mcr10.1 shared 99.94% nucleotide identity with
pEC27-2 with 99% coverage. A total of 57 and 70 open reading frames (ORFs) were predicted
in pSL12517-mcr10.1 (58.1 kb long; Fig. 1) and pEC27-2 (84.6 kb long; Fig. 2), respectively. At
least 12 antimicrobial resistance genes, mcr-10.1, blaTEM-1, blaLAP-2, aac2d, strA, strB, tetA(D),
qnrS1, catA2, dfrA14b, tmrB, and sul2, involved in resistance to 9 different categories of anti-
microbials (colistin, b-lactams, aminoglycosides, tetracycline, quinolone, chloramphenicol,
trimethoprim, tunicamycin, and sulfonamide), were identified in these two plasmids.

The two plasmids shared a small backbone region (2.8 kb in length), including repIncpA1763-KPC,
parA, and two undetermined genes (hypothetical proteins). Two multidrug resistance (MDR)

Mcr-10.1-Carrying Plasmid in Enterobacter cloacae Microbiology Spectrum

July/August 2022 Volume 10 Issue 4 10.1128/spectrum.01127-22 2

https://www.ncbi.nlm.nih.gov/nuccore/CP001918
https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01127-22


regions (Fig. 3) MDRpSL1217-mcr10.1 (55.2 kb long) and MDRpEC27-2 (81.6 kb long) were integrated
at the same site adjacent to the rep within the two plasmids, respectively.

MDRpSL1217-mcr10.1 and MDRpEC27-2 shared a truncated aacC2-tmrB region, a truncated
IS26-blaLAP-2-qnrS1-IS26 unit, a truncated ISCR2-sul2 unit (containing the strAB-carrying
DTn5393c), a concise class 1 integron In191 with the gene cassette array (GCA) dfrA14b, and
ISKpn26-mcr-10.1-IS26-ISSen4 unit, but each of them integrated two additional resistance
loci: (i) the IS26-tetA(D)-IS26 unit and IS15DI-catA2-IS26 unit in MDRpSL1217-mcr10.1 and (ii) the
DTn2 and catA2-tetA(D) region (bracketed by the same 4-bp direct repeats [DRs]; target site
duplication signals for transposition) in MDRpEC27-2. Notably, 8 and 12 copies of IS26, IS15DI,
and IS6100 were presented in MDRpSL1217-mcr10.1 and MDRpEC27-2, respectively, all of which
belonged to the IS6 family and carried almost identical 14-bp inverted repeat (IR) sequences.
It showed that these IS elements participate in complex homologous recombination events
and promote the assembly of complex mosaic structures as observed in MDRpSL1217-mcr10.1 and
MDRpEC27-2 (16).

FIG 1 Schematic map of plasmid pSL12517-mcr10.1. Genes are denoted by arrows, and the backbone and accessory module
regions are highlighted in black and purple, respectively. The innermost circle presents GC-skew [(G–C)/(G1C)], with a window
size of 500 bp and a step size of 20 bp. The next-to-innermost circle presents GC content.
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Comparison of 19mcr-10.1 loci from 19 plasmids. Detailed genetic dissection and
sequence comparison were applied to 19 mcr-10.1 loci (Fig. 4) from 19 plasmids identified
from GenBank as of 25 January 2022 (Table 1; see Table S1 in the supplemental material).
Eachmcr-10.1 loci carried an intact or truncated version of xerC (site-specific tyrosine recom-
binase)-mcr-10.1-orf336 (hypothetical protein)-orf177 (hypothetical protein) region. Various
insertion sequence (IS) elements, unit transposons, and undetermined genes were present
upstream or downstream of the xerC-mcr-10.1-orf336-orf177 region: (i) an intact ISKpn26
upstream of xerC in each mcr-10.1 loci from pECC59-2, pSL12517-mcr10.1, and pEC27-2;
(ii) an orf1422-orf276-orf1152 region upstream of xerC in mcr-10.1 loci from pSTW0522-
51-1, pEcl20981-1, and pEN37S, and a truncated orf1422-orf276-orf1152 region upstream
of xerC in each mcr-10.1 loci from pRHBSTW-01009_2 and pEr983-1 (10); (iii) an orf657-
orf1068-orf174 region upstream of xerC in mcr-10.1 loci from pGOS431-1, pNUITM-VR1_2,
pKqs_SB610_4, and pN260-2 (12); (iv) an orf1998-orf894-orf1242 region upstream of xerC

FIG 2 Schematic map of plasmid pEC27-2. Genes are denoted by arrows, and the backbone and accessory module regions are highlighted in
black and orange, respectively. The innermost circle presents GC-skew [(G–C)/(G1C)], with a window size of 500 bp and a step size of 20 bp. The
next-to-innermost circle presents GC content.
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in mcr-10.1 loci from pSTW0522-66-1, p2279960-5, and pRHBSTW-00175_3; (v) an incomplete
ISKpn26 truncated by ISKpn74 upstream of xerC in eachmcr-10.1 loci from pRHBSTW-00399_2,
pOZ172 (13), pMCR10_090065, and pYK16-mcr-10 (17); (vi) IS26, contributing to truncation of
orf336 inmcr-10.1 loci from pSL12517-mcr10.1 and pEC27-2; (vii) an orf768-orf171-orf234 region
downstream of orf177 inmcr-10.1 loci from pECC59-2 and pRHBSTW-00399_2, and a truncated
orf768-orf171-orf234 region downstream of orf177 in the mcr-10.1 locus from pSTW0522-51-1;
(viii) intact or truncated ISEc36, leading to truncation of orf177, inmcr-10.1 loci from 13 (except
for pECC59-2, pRHBSTW-00399_2, pSTW0522-51-1, pOZ172, pEC27-2, and pSL12517-mcr10.1)
of 19 plasmids; and (ix) an interrupted Tn1722, resulting in truncation of orf177, in themcr-10.1
locus from pOZ172. These results indicated that the xerC-mcr-10.1-orf336-orf177 region might
be the most conserved structure, and we could not determine which mcr-10.1 locus was the
earliest among these 19 plasmids.

Conjugation experiments. We failed to obtain transconjugants containing mcr-10.1
no matter how many times the conjugation experiments were performed, which might be
because the essential conjugal transfer genes, including rlx (relaxase), oriT (origin of conju-
gative replication), pri (DNA primase), cpl (coupling protein), and type IV secretion system
(T4SS), were absent in pSL12517-mcr10.1.

DISCUSSION

Enterobacter cloacae is a vital nosocomial pathogen and is able to cause bacteremia and
other infections in humans and animals (18). Due to the wide use of antibiotics, multidrug-
resistant, especially carbapenem-resistant, Enterobacter cloacae emerged (19); therefore, colistin

FIG 3 Comparison of MDR regions from pSL12517-mcr10.1 and pEC27-2. Genes are denoted by arrows. Genes, accessory genetic elements (AGEs), and
other features are colored based on their functional classification. Shading in light blue or light pink denotes regions of homology (nucleotide identity
$95%). Numbers in brackets indicate nucleotide positions within plasmids pSL12517-mcr10.1 and pEC27-2. Accession numbers of Tn5403 (40), the aacC2-
tmrB region (41), Tn2 (42), ISPa38, the ISCR2-sul2 unit (43), and the IS26 = blaLAP-2-qnrS1-IS26 unit (40) used as reference are KJ958926, JX101693, HM749967,
CP003149, AE014073, and HF545433, respectively.
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FIG 4 Comparison of 19 mcr-10.1 loci from 19 plasmids. Genes are denoted by arrows. Genes, AGEs, and other
features are colored based on their functional classification. Shading in light blue denotes regions of homology
(nucleotide identity $95%). Numbers in brackets indicate nucleotide positions within the 19 plasmids.
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is used as one of the last available choices of antibiotics for patients infected by carbapenem-
resistant strains (20). However,mcr-carrying Enterobacteriaceae have been identified all over the
world recently (9, 21, 22). This study presented the complete sequence of onemcr-10.1-carrying
IncpA1763-KPC plasmid in one sequenced Enterobacter cloacae isolate from Sierra Leone. Detailed
genetic dissection and comparison were applied to this plasmid, together with a homologous
IncpA1763-KPC plasmid carryingmcr-10.1 from GenBank. Moreover, a genetic comparison of 19
mcr-10.1 loci was performed to display diversification in modular structures ofmcr-10.1.

The mcr-10.1 usually mediated low-level colistin resistance in early reports (10, 11), but
strain SL12517 in this study displayed high-level colistin resistance with a MIC of 8 mg/mL.
A previous study demonstrated that mcr-10.1 was able to cofunction with phoP (two-compo-
nent system response regulator) and phoQ (two-component system sensor histidine kinase) to
mediate the high-level colistin resistance (10). In this study, phoPQ was identified on the chro-
mosome of strain SL12517, indicating that phoPQmight very likely participate in the high-level
colistin resistance.

The IncpA1763-KPC plasmid carried an IncpA1763-KPC replicon, which was composed of
repAIncpA1763-KPC and its iterons (23). The IncpA1763-KPC replicon (previously called RepBRep_3-family)
was initially found in pK245 from K. pneumoniae in 2006 in Taiwan (24); since then, it has been
frequently found in different plasmids in many K. pneumoniae isolates. In this study, two
IncpA1763-KPC plasmids, pSL12517-mcr10.1 and pEC27-2 (15), were identified in Enterobacter cloa-
cae recovered from Sierra Leone in 2018 and from Vietnam in 2010, respectively. Only two
mcr-10.1-carrying IncpA1763-KPC plasmids (pSL12517-mcr10.1 and pEC27-2) have been identified
until now, and no mcr-10.1-carrying IncpA1763-KPC plasmids were found in other species of
bacteria. This result indicated that transfer of the IncpA1763-KPC plasmids without mcr-10.1
from K. pneumoniae to Enterobacter cloacae was prior to acquisition of mcr-10.1 by the
IncpA1763-KPC plasmids. pEC27-2 was found earlier than pSL12517-mcr10.1, and colistin has
not been used clinically in Sierra Leone (25); therefore, we speculate that pEC27-2 was
possibly transferred from Vietnam to Sierra Leone through international food (animal- and
plant-based) trade or travel (8).

According to detailed genetic dissection and comparison of 19 mcr-10.1 loci, the genetic
organization xerC-mcr-10.1-orf336-orf177might be the original modular structure of themcr-
10.1 locus. Various IS elements or transposons were inserted upstream or downstream of
the xerC-mcr-10.1-orf336-orf177 region, which resulted in the truncation of orf177, but
no truncation of xerC was found. Some mobile genetic elements (MGEs) integrated into the

TABLE 1 General features of the 19mcr-10.1-carrying plasmidsa

Plasmid GenBank accession no. Total length (bp) Location Host bacterium Reference or sourceb

pSL12517-mcr10.1 MW048777 58,151 Sierra Leone Enterobacter cloacae SL12517 This study
pEC27-2 CP020091 84,602 Vietnam Enterobacter cloacae PIMB10EC27 15
pECC59-2 CP080472 64,293 China Enterobacter hormaechei ECC59 NA
pRHBSTW-00399_2 CP056561 137,623 UK Enterobacter cloacae RHBSTW-00399 NA
pSTW0522-51-1 AP022432 159,829 Japan Enterobacter kobei STW0522-51 Not applicable
pEcl2098-1 CP048651 161,986 China Enterobacter roggenkampii Ecl_20_981 NA
pEN37S AP024497 70,277 Japan Enterobacter cloacae

En37
NA

pRHBSTW-01009_2 CP056127 70,650 UK Enterobacter asburiae RHBSTW-01009 NA
pEr983-1 CP060738 100,102 China Enterobacter roggenkampii Ecl-983 10
pGOS431-1 CP023893 231,294 Canada Raoultella ornithinolytica FDAARGOS_431 NA
pNUITM-VR1_2 AP025011 261,835 Vietnam Raoultella ornithinolytica NUITM-VR1 NA
pKqs_SB610_4 CP084774 124,980 Netherlands Klebsiella quasipneumoniae SB610 NA
pN260-2 AP023449 244,996 Japan Enterobacter roggenkampii OIPH-N260 12
pSTW0522-66-1 AP022466 324,199 Japan Enterobacter roggenkampii STW0522-66 NA
p2279960-5 LR890193 120,029 Australia K. pneumoniae INF133-sc-2279960 NA
pRHBSTW-00175_3 CP055932 68,715 UK Enterobacter sp. strain RHBSTW-00175 NA
pYK16-mcr-10 MT468575 117,855 China Enterobacter roggenkampii YK16 17
pMCR10_090065 CP045065 71,775 China Enterobacter roggenkampiiWCHER090065 11
pOZ172 CP016763 127,005 China Citrobacter freundii B38 13
aAll the completely sequenced and nonredundantmcr-10.1-carrying plasmids available in GenBank (last accessed 25 January 2022) are included. Three unnamed plasmids
from strain Ecl_20_981, FDAARGOS_431, and INF133-sc-2279960 were here named pEcl20981-1, pGOS431-1, and p2279960-5, respectively.

bNA, not applicable.
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chromosomes using xerC-encoding tyrosine recombinases in Enterobacter cloacae (26, 27).
This indicated that xerC could participate in mobilization of mcr-10.1 (10, 11). Diverse IS ele-
ments or transposons inserted upstream or downstream of the xerC-mcr-10.1-orf336-orf177
region suggest that the area surrounding this conserved region is the high-frequency region
for insertion of MGEs (3).

In conclusion, this is the first report of identifying themcr-10.1 gene in Africa and themcr
gene in Sierra Leone. Themcr-10.1 gene was able to rely on plasmids to accomplish intercel-
lular transfer and on site-specific tyrosine recombinase to achieve intracellular transfer.
Although mcr-10.1 was first identified in 2020, it showed the tendency of rapid propagation
throughout the world due to uncontrolled colistin consumption. So far, mcr-10.1, which
could be carried by Enterobacter cloacae, Enterobacter kobei, Enterobacter roggenkampii,
Enterobacter asburiae, K. pneumoniae, Klebsiella quasipneumoniae, Raoultella ornithinolytica,
and Citrobacter freundii, had been found in Sierra Leone, China, Japan, Vietnam, the United
Kingdom, Netherlands, Canada, and Australia. It could be captured by various MGEs and
integrated in diverse types of plasmids. Particularly, it should be noted that the high MIC
value due to mcr-10.1 might enhance the ability of bacteria to survive under colistin selec-
tion pressure and aggravate the difficulty in treating infections caused bymcr-10.1-carrying
bacteria, especially in low-income countries. Therefore, it is necessary to continuously monitor
the spread ofmcr-10.1 in the future.

MATERIALS ANDMETHODS
Bacterial isolation and identification. Strain SL12517 was recovered from a public hospital in Sierra

Leone in 2018 (28). The MIC of colistin was determined by the broth microdilution method according to Clinical
and Laboratory Standards Institute (CLSI) guidelines (29). The breakpoint of colistin was defined by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org). The Escherichia coli ATCC
25922 strain was used as a control. MICs of piperacillin, piperacillin/tazobactam, cefazolin, cefuroxime, ceftazidime,
ceftriaxone, cefepime, aztreonam, imipenem, meropenem, amikacin, gentamicin, tobramycin, ciprofloxacin, levo-
floxacin, nitrofurantoin, and trimethoprim/sulfamethoxazole were tested using Vitek 2 and interpreted according
to the CLSI guidelines (29).

Sequencing and sequence assembly. Bacterial genomic DNA was isolated from strain SL12517
using the UltraClean microbial kit (Qiagen, North Rhine-Westphalia, Germany), and sequenced with a
PacBio RS II sequencer (Pacific Biosciences, CA, USA). The reads were assembled de novo utilizing
SMARTdenovo (http://github.com/ruanjue/smartdenovo).

Bacterial precise species identification and genotyping. Bacterial precise species identification
was performed using pairwise ANI analysis between strain SL12517 and the reference genome (http://www
.ezbiocloud.net/tools/ani). A$95% ANI cutoff was used to define a bacterial species (30). Genotyping of strain
SL12517 was performed by MLST at the online database PubMLST (http://pubmlst.org).

Sequence annotation and comparison. RAST 2.0 (31) and blastp/blastn (32) searches were used to
predicted ORFs. The online databases CARD (33), ResFinder (34), ISfinder (35), INTEGRALL (36), and Tn number
registry (37) were used to find resistance genes and mobile elements. Pairwise sequence comparisons were
carried out with blastn. Inkscape 1.0 was used to draw gene organization diagrams (http://inkscape.org/en/).

Conjugation experiments. Conjugation experiments were performed with strain SL12517 used as a
donor and rifampin-resistant Escherichia coli EC600 as a recipient (38, 39). Donor and recipient strains (3 mL
each) were cultured overnight at 37°C and mixed together. The mixed cells were harvested by centrifugation
for 3 min at 1,200 � g, washed with 3 mL of Luria-Bertani (LB) broth and resuspended in 150 mL of LB broth.
The mixture was spotted on a 1-cm2 hydrophilic nylon membrane filter with a 0.45-mm pore size (Millipore),
which was placed on an LB agar plate and then incubated for mating at 37°C for 6 h. The cells were recovered
from the filter membrane and spotted on Muller-Hinton (MH) agar (BD Biosciences) plates containing 1,500mg/mL
rifampin and 4mg/mL colistin for selecting anmcr-10.1-carrying transconjugant.

Data availability. The complete sequence of plasmid pSL12517-mcr10.1 has been submitted to GenBank
under the accession number MW048777.
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