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The concept of the druggable genome has been with us for 20 years. During

this time, researchers have developed several methods and resources to help

assess a target’s druggability. In parallel, evidence for target-disease

associations has been collated at scale by Open Targets. More recently, the

Protein Data Bank in Europe (PDBe) have built a knowledge base matching per-

residue annotations with available protein structure. While each resource is

useful in isolation, we believe there is enormous potential in bringing all relevant

data into a single knowledge graph, from gene-level to protein residue.

Automation is vital for the processing and assessment of all available

structures. We have developed scalable, automated workflows that provide

hotspot-based druggability assessments for all available structures across large

numbers of targets. Ultimately, we will run our method at a proteome scale, an

ambition made more realistic by the arrival of AlphaFold 2. Bringing together

annotations from the residue up to the gene level and building connections

within the graph to represent pathways or protein-protein interactions will

create complexity that mirrors the biological systems they represent. Such

complexity is difficult for the human mind to utilise effectively, particularly at

scale. We believe that graph-based AI methods will be able to expertly navigate

such a knowledge graph, selecting the targets of the future.
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Introduction

Twenty years ago Hopkins and Groom (2002) published “The Druggable Genome.”

This seminal paper recognised that only a subset of the newly published human genome

(Lander et al., 2001) encodes proteins capable of binding orally bioavailable (Lipinski

et al., 1997) molecules: the druggable genome. Over the last 20 years, many druggable

genome variations have been published, focussing on either a specific disease area (Kumar

et al., 2013), or including targets of biologics and more recent medicinal chemistry efforts

(Russ and Lampel, 2005; Finan et al., 2017). Now, we believe that a data-rich knowledge

graph of target-based annotations down to the level of individual residues will lead to the

most complete description of drug target space—the landscape of all potential drug targets

described by the many factors that determine a drug target’s quality. While this amount of
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data would be overwhelming for human user exploration, AI

algorithms can expertly navigate these knowledge graphs to select

the drug targets of the future.

Hopkins and Groom stated “druggable does not equal drug

target”. Their original definition of “druggable” focused on

proteins that can bind orally bioavailable drug-like molecules;

however, this would now be thought of as drug-like ligandability.

Contemporary definitions of druggability (Leach and Radoux,

2021) expand upon the original definition to include additional

requirements, addressing the far more complicated question of

“can this target yield a successful drug?” An ideal small-molecule

drug target is disease modifying, capable of binding a selective,

orally bioavailable molecule at a site that elicits a functional effect,

has no on-target toxicity and is expressed in disease-relevant

tissue. This multi-parameter problem is typically tackled by a

multidisciplinary team, gathering information from literature,

publicly available resources, and computational prediction on a

per-target basis. First, we discuss what we believe is the state of

the art and offer the next steps to provide the most complete

description of target space to date. Second, we explore critical

considerations for performing structure-based druggability at

scale. We show how we are leveraging automation and cloud

computing to expand our internal knowledge graph with residue-

level annotations. Finally, we discuss how we think the arrival of

AlphaFold 2 (AF2) will affect target assessment.

Computer-readable annotation from
gene to residue

Manually assessing all the factors that contribute to a suitable

drug target is a time-consuming exercise. Fortunately, public

resources such as Open Targets (Koscielny et al., 2017; Carvalho-

Silva et al., 2018) and canSAR (Mitsopoulos et al., 2015;

Mitsopoulos et al., 2020; Chau et al., 2016; Coker et al., 2018)

bring together key data for target selection (Table 1). Open

Targets focuses on linking targets to disease, but includes

tractability data for small molecules, antibodies (Brown et al.,

2018; Leach and Radoux, 2021) and PROTACs (proteolysis

targeting chimeras) (Schneider et al., 2021). canSAR collates

data from multiple sources and calculates structure-based,

ligand-based, and network-based druggability scores, allowing

users to assess the ligandability of specific cavities on each

individual structure.

These platforms provide function-rich user interfaces (UIs),

which are powerful tools for scientists looking to discover future

drug targets, but they do not allow exploration with AI

approaches. Incorporating this data into a knowledge graph

would allow additional data sources to be layered on top,

allowing more complex queries and graph-based algorithms

for data interrogation.

A good example of using knowledge graphs to annotate

proteins with data is the PDBe Knowledge Base (PDBe-KB)

(Consortium et al., 2021), which provides a neo4j graph

database that maps data from several partner providers at the

residue level. The growth of the PDB and improved protein

structure prediction (Kryshtafovych et al., 2021) has increased

opportunities for structure-based assessment. Additional

considerations are necessary, however, to correctly identify

therapeutically relevant pockets beyond simple ligandability

prediction. Predicting whether pockets are orthosterically or

allosterically functional, which offers opportunities for

selectivity (Smilova et al., 2022), or are conserved across

species (where required), provides key insights into a protein’s

drug target suitability.

Structure-based druggability assessments typically focus on a

single static protein structure (Hendlich et al., 1997; Hajduk et al.,

2005; Cheng et al., 2007; Halgren, 2009; Huang, 2009; Kawabata,

2010; Volkamer et al., 2010; Volkamer et al., 2012a; Volkamer

et al., 2012b; Krasowski et al., 2011; Desaphy et al., 2012; Borrel

et al., 2015; Aggarwal et al., 2021), providing a score at the pocket

level. Hotspot-based approaches, using either molecular

TABLE 1 Overview of data resources useful in the assessment of targets.

Resource Focus Data access

Open Targets Target-disease association data, with tractability data for small molecules, antibodies, and PROTACs User Interface

JSON

Parquet

Apache Spark

Google BigQuery

GraphQL API

canSAR Data and predictions for a range of areas applicable to drug discovery, including structure-based, ligand-based, and network-based
druggability scores

User Interface

PDBe-KB Functional annotations and predictions down to the protein residue level in the context of 3D structures User Interface

Neo4J Graph Database

GraphQL API
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dynamics (Young et al., 2007; Seco et al., 2009; Yang and Wang,

2010; Huang and Caflisch, 2011; Lexa and Carlson, 2011;

Schmidtke et al., 2011; Bakan et al., 2012; Alvarez-Garcia and

Barril, 2014; Ichihara et al., 2014; Vukovic et al., 2016; Arcon

et al., 2017; Uehara and Tanaka, 2017; Vajda et al., 2018;

Zariquiey et al., 2019; Yuan et al., 2020; Evans et al., 2021a)

or static structures (Kozakov et al., 2015; Radoux et al., 2016;

Curran et al., 2020), are capable of providing residue-level

scoring. A hotspot-based assessment run at scale would

provide residue level tractability annotations to be added to a

knowledge graph such as the PDBe-KB, with all available

structures for a given target used to calculate these scores.

In addition to structure-based assessment, drug discovery

precedence for a target can be searched. This could mean

identifying crystal structures in the PDB corresponding to

drug-like compounds, or active drug-like compounds in

ChEMBL (Mendez et al., 2018). The presence of multiple

distinct chemical series further increases the chances that the

target is tractable. If active compounds and protein crystal

structures are not available, the target can be cross-referenced

with published druggable genome sets (Hopkins and Groom,

2002; Russ and Lampel, 2005; Finan et al., 2017) to see if it is

predicted to be tractable based on similarity to known drug

targets.

Automation and scalability are essential in confidently

expanding the druggable genome into novel and overlooked

areas. Capturing all relevant data for target selection, from

target-level evidence to per-residue data, in a single knowledge

graph is a daunting but important task. Doing so will enable AI

methods to undertake the work normally performed by large

multidisciplinary teams and identify the very best novel targets.

Structure-based druggability at scale

The human proteome comprises the protein sequences of

all coding genes, including splice variants, from the human

reference genome (Breuza et al., 2016). There are currently

20,360 human proteins in Swiss-Prot (Boutet et al., 2007), of

which approximately 4,600 are implicated in disease according

to the OMIM database (Hamosh et al., 2005), representing

around 22% of human proteins with roles in disease. These

proteins are the obvious subset of the human proteome likely to

contain viable drug targets. An estimated 70% of the human

proteome is covered by homologous protein structures

(Somody et al., 2017), which can be exploited to characterise

druggable pockets.

Where protein structures are available, they are often missing

atoms, contain alternate atom placements, and are missing

hydrogens. To obtain consistent high-quality structures, a

method of automating the preparation of structures for

computational experiments is required. Once a prepared set of

structures is available, large-scale analysis requires a robust

automation platform to locate target-binding sites across

multiple structures per target.

It has long been known that considering proteins as rigid

structures fails to consider energetic fluctuations that lead to

proteins exploring a multitude of complex conformational

states (Elber and Karplus, 1987). Moreover, important

conformational changes in proteins are often associated

with ligand binding; therefore, incorporating target

flexibility into drug discovery pipelines will improve a

project’s likelihood of success (Amaro et al., 2018).

Molecular dynamics is one approach to incorporate protein

flexibility; however, this is too computationally expensive to

run at the proteome scale. Therefore, a rational approach to

structure-based assessment would need to assess druggability

across all structural data available rather than picking one

representative structure. This is particularly important when

data exist for multiple conformational states (e.g., active vs.

inactive structures). Such an approach would necessarily yield

a large amount of data and require careful analysis, especially

in the context of automated pocket detection.

Exscientia’s approach to structure-
based assessment

Exscientia’s pipeline for automated target druggability

assessments, summarised in Figure 1, has been designed to

fulfil the above requirements. This pipeline captures a profile

of druggability for each target that retains essential details

such as single structures with non-conserved druggable

binding pockets, while providing a global overview of the

chosen target. Our workflows are run using scalable cloud

computing infrastructure to facilitate the expansion of

assessments to whole proteomes.

The first step leverages PDBe information relative to the

structural coverage of each full-length protein characterised by a

UniProt ID. The PDBe provides crucial information on the

protein segments that are structurally enabled. Structural

studies of larger proteins tend to yield multiple structures of

shorter, non-overlapping segments. Our pipeline treats each of

these segments separately, identifying the best representative

structures available for each based on sequence coverage,

resolution, and data quality.

For each individual target, publicly available structures are

combined with in-house simulated and generated structures, and

then aligned to the previously determined reference structure. All

structural files undergo the same processing steps (related to

rebuilding sidechains, protonating the protein and ligand, and

assigning partial charges) to ensure data compatibility for

downstream modelling tasks such as docking and molecular

dynamics. The result of this step is a standard dataset of all

structural data available for each target. Tractable binding

pockets on each prepared structure are then assessed using

Frontiers in Bioinformatics frontiersin.org03

Radoux et al. 10.3389/fbinf.2022.958378

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.958378


Fragment Hotspot Maps with 3D grids, which highlight the areas

most attractive to small molecules (Radoux et al., 2016; Curran

et al., 2020). The centre of mass of each of these drug-like

tractable volumes (which correspond to putative binding

pockets on an individual structure) is extracted and stored.

The centres of mass from all structures are clustered,

shown in Figure 2, with each cluster taken to correspond to

a distinct binding pocket, referred to as a global pocket. This is

vital for referencing each binding pocket consistently across

multiple structures, allowing tractability scores to be collated

for each global pocket. This enables researchers to evaluate a

range of scores for a given global pocket, and determine

whether a target needs to adopt a particular conformation

for effective binding.

Assessing viral targets

With the ongoing COVID-19 pandemic, target selection for

pandemic preparedness is of particular importance. The

conservation of a drug target is assessed to capture the

robustness of the protein and its binding pockets and used to

provide valuable insights into the longevity of the drug in the face

of resistance and pathogen emergence. These insights are

FIGURE 1
High-level schematic showing the overall structure-based assessment workflow.

FIGURE 2
(A)Clustered pockets across all AlphaFold 2 structures of the human kinome, with the AlphaFold 2model of cyclin-dependent kinase 7 (UniProt
ID P50613). The cyan points show the ATP binding site of each kinase, allowing us to rank the kinome purely based on ATP-pocket druggability. (B)
The frequency distribution of ATP site scores is shown in yellow, with known druggable (blue) and non-druggable (green) targets for comparison.
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FIGURE 3
(A) Tractability for PLpro (yellow) vs. known druggable (blue) and non-druggable (green) targets. (B–E) Plots to show conservation metrics
across coronavirus species HKU1, 229E, OC43, NL63, MERS, SARS-CoV-2 and SARS-CoV. In each plot, the hotspot tractability score for a given
residue is shown as a black cross. (B) Number of different amino acids. (C) Number of amino acid properties. (D) Frequency of the most common
amino acid observed. (E) Frequency with which an amino acid is differentially conserved between species for each predicted hotspot residue. A
position is considered differentially conserved when it is conserved within a given species (JS-divergence score >0.8) and different from a
corresponding conserved position in a different species. As we consider multiple species, this plot shows the average number of times a given
position is labelled as differentially conserved.
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obtained by computing a range of conservation metrics that rely

on sequence alignments generated by MUSCLE (Madeira et al.,

2019) for each target. The sequences that make up these

alignments are identified using a BLAST (Altschul et al.,

1990) search of the reference protein against a database of

non-redundant protein sequences, restricted by taxonomies of

interest. This enables a plethora of sequences of the target in the

organism of interest to be captured, as well as orthologs for

identifying drug activity against similar proteins.

At each residue in these alignments, we identify variants, the

amino acid feature frequency across variants, and the most

common amino acid frequency, which are mapped onto the

reference PDB numbering. Additionally, we use Jensen-Shannon

divergence (Capra and Singh, 2007) (JSD) to identify the

conservation at each alignment position. JSD predicts

functionally important residues using an estimator for

sequence conservation. Each alignment position and its

neighbour residues are compared to a background set of

amino acids under no evolutionary pressure, and positions

that differ substantially from this set are predicted as

functionally important or constrained.

Functional insights from UniProt and FunPDBe are collated

to identify amino acids that have interactions with small

molecules or play a role in the target’s function. By extracting

residue-level hotspot scores andmapping the conservation scores

to them, we can quickly identify the most tractable and robust

positions that can be used to inform design.

Papain-like protease case study

Our recent assessment of the papain-like protease (PLpro),

an attractive target for the treatment of COVID-19 (Shin et al.,

2020), highlighted the importance of each step of the target

assessment workflow. PLpro has a β-turn/loop formed by

residues Gly266-Gly271 next to the active site (Osipiuk et al.,

2021). Upon binding of a substrate or inhibitor, this loop closes,

creating a more buried and druggable pocket. Assessment of only

a single structure may have resulted in missing this difference,

causing the PLpro site to be deemed not druggable.

Consideration of all structures captures a range of druggability

scores (Figure 3). Structures with a closed loop conformation are

well within the druggable range, and the active site, Cys111,

provides the additional opportunity for pursuing covalent

strategies.

A fundamental requirement of viral target selection in the

context of pandemic preparedness is that future variants and

species will not develop drug resistance. Here we used

conservation across multiple coronavirus species, combined

with per-residue tractability scores, to assess the risk of drug

resistance. In the case of PLpro, most of the residues with high

tractability scores, and therefore essential for binding, were

highly variable across a set of coronaviruses (SARS, MERS,

229E, NL63, HKU1, OC43). As a result, there is a high risk of

future variants and novel coronaviruses being resistant to drugs

developed against SARS-CoV-2 PLpro, making it unsuitable for

pandemic preparedness.

Scaling up to proteome-wide
assessment

Our pipeline focuses on automating the process for single

targets and runs using only a UniProt ID as input, which

facilitates running the pipeline on a proteome-wide scale.

Once this large-scale calculation is complete, and the results

are captured in a knowledge graph, it can be layered together with

public data from the PDBe and Open Targets, and our own

internal knowledge graphs. Such a complete and data-rich

description of the drug target space will enable far more

precise search queries.

The more data included in the knowledge graph, the more

complex these queries can become. We can consider further

target annotations such as the subcellular location or tissue

expression, or create edges between targets based on

homology thresholds, pathway information or protein-protein

interactions, mirroring the biological systems they represent. The

benefits of introducing this structure and complexity can be

exemplified by synthetic lethality, a promising area for novel

cancer therapeutics. The first approved synthetic lethal therapy,

for indications including breast and ovarian cancer, targets

poly(ADP-ribose) polymerase (PARP). PARP is essential in

cancer cells with BRCA1/2 mutations due to their defective

homologous recombination (HR) pathway for DNA damage

repair (Gutmanas et al., 2014). Healthy cells can survive

PARP inhibition due to compensation by the HR pathway,

allowing the BRCA-mutated cancer cells to be selectively

killed. Using a knowledge graph as described above, pathways

with similar function to the one containing an oncogene of

interest, in this case DNA damage repair pathways for

BRCA1/2 mutations, can be identified. These can then be

searched for tractable functional binding sites to identify novel

opportunities for synthetic lethality therapy targets. This could be

done in a targeted way for a specific mutation or expanded to

consider all identified oncogenic mutations and their respective

pathways. Eventually, manually curated queries will likely

become unwieldy, and graph-based algorithms will be the

most effective approach for navigating this data-rich drug

target space.

Many of the annotations do not rely on protein structure, but

ultimately protein structures are vital for a pocket-centric target

view. As well as helping the assessment of target tractability, a

protein structure makes a project more doable by enabling

structure-based design. Increased structural coverage of the

proteome will have huge consequences on how much of the

target space can be assessed and pursued.
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Impact of AlphaFold 2

The last 20 years have seen significant advances in the

power and accuracy of homology modelling and de novo

protein structure prediction methods (Pereira et al., 2021).

These advances have recently culminated in the remarkable

performance of AF2, developed by DeepMind, as

demonstrated in the CASP14 experiment (Jumper et al.,

2021a; Jumper et al., 2021b; Tunyasuvunakool et al., 2021).

AF2 showed significant improvement from previous CASP

experiments, with several structure predictions almost

indistinguishable from experimental structures (Jumper

et al., 2021a). Recently, more than 200 million

AF2 structures have been released across more than

1 million species (Callaway 2022), greatly increasing the

scope for structure-based assessment; however, care must

be taken.

One of the most significant aspects of the AF2 method for

structural bioinformatics and structure-based computational

prediction has been the development of informative

confidence metrics for local (pLDDT) and global (PAE)

structural accuracy (Jumper et al., 2021a; Jumper et al., 2021b;

Akdel et al., 2021). These metrics have been shown to estimate

the local accuracy of AF2 predictions with remarkable reliability

(Jumper et al., 2021a; Jumper et al., 2021b; Akdel et al., 2021;

Pereira et al., 2021; Tunyasuvunakool et al., 2021). Specifically, at

pLDDT scores >90 (high confidence), one estimation shows AF2

χ1 rotamers are 80% correct (Jumper et al., 2021b;

Tunyasuvunakool et al., 2021). At pLDDT >70 (confident),

AF2 has generally correct backbone predictions, although side

chain conformations may be less accurate in these regions

(Jumper et al., 2021b; Tunyasuvunakool et al., 2021). In

addition, PAE scores may indicate domain orientation in

multi-domain chains and possibly of proteins in multi-chain

complexes (Akdel et al., 2021; Evans et al., 2021b;

Tunyasuvunakool et al., 2021).

Since CASP14, DeepMind has released the AF2 code,

model parameters and a database with AF2 model

predictions (Akdel et al., 2021; Tunyasuvunakool et al.,

2021). The AF2 database provides almost complete (98.5%)

coverage of the human proteome, with structural predictions

for all 20,000 proteins of the human proteome (Akdel et al.,

2021; Tunyasuvunakool et al., 2021). Of the residues modelled,

36% were predicted with confidence (pLDDT >70), and

another 22% were predicted with high confidence

(pLDDT >90) (Akdel et al., 2021; Tunyasuvunakool et al.,

2021). In terms of proteins, AF2 has confident predictions

for >75% of protein sequence for 44% of human protein targets

(Mullard, 2021). One analysis (Porta-Pardo et al., 2021)

showed that the AF2 database increased the proportion of

the human proteome with valuable structural insights from

47% to 75%, and reduced the number of proteins with no

structural information from 4,832 to between 29 and 1,336

proteins (depending on confidence thresholds).

Having structural annotation and prediction for unannotated

proteins and regions will benefit ligand binding-pocket

predictions on those regions. Work by Beltrao (Akdel et al.,

2021) indicates that while using low-confidence regions for

binding-pocket detection can result in many false positives

and negatives, predictions made on confident regions become

comparable to using experimental crystal structures (Akdel et al.,

2021). These preliminary results, however, will likely need further

robust benchmarking, with more stringent filtering of homologs

at both sequence and structure levels. Additionally, large-scale

validation experiments will be required (Pak et al., 2021; Jones

and Thornton, 2022).

While AF2 models can be good starting points for ligand-

binding or pocket prediction, especially where there are few

or no homologous structures available, it is essential to

account for both confidence metrics and homology of

proteins or regions of interest to the PDB (Akdel et al.,

2021; Mullard, 2021; Tunyasuvunakool et al., 2021; Jones

and Thornton, 2022). Understanding AF2 model limitations

will be vital to ensure their impact on large-scale druggability

predictions. With the correct preparation and consideration

of confidence metrics, AF2 models will allow the predicted

druggable genome to expand into areas previously not

considered.

Conclusion

In the 20 years since the publication of the druggable

genome, tremendous advances have been made in multiple

areas. These include improved structure prediction, structure-

based assessment, public resources of collated data, and new

architecture for data storage and methods for data

interrogation. This provides the opportunity to build a

detailed description of drug target space, an opportunity we

must seize to select the very best future drug targets. The

original druggable genome was represented as a simple Venn

diagram, with “drug targets” at the intersection of “druggable

genes” and “disease-modifying genes.” It is increasingly

becoming a multi-dimensional problem, difficult to

represent for human minds, particularly at large scales.

Graph-based AI algorithms can effectively work with data

of this scale and complexity. Identifying the best method for

selecting targets from a knowledge graph of this scale will be

the subject of future research. Databases such as the

Cambridge Structural Database (Groom et al., 2016)

(CSD), ChEMBL (Mendez et al., 2018) and the PDB have

all shown that bringing data together in an organised fashion

allows far greater insights than from each individual data

point.
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