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Abstract

Introduction: Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical
studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial
macrophage activation. TA injections might influence macrophage activation and subsequently reduce osteophytosis.
Although widely applied in clinical care, the mechanism through which TA exerts this effect remains unknown. In this
animal study, we investigated the in vivo effects of TA injections on macrophage activation, osteophyte development
and joint degeneration. Furthermore, in vitro macrophage differentiation experiments were conducted to further
explain working mechanisms of TA effects found in vivo.

Methods: Osteoarthritis was induced in rat knees using papain injections and a running protocol. Untreated and
TA-treated animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (uCT) to
measure subchondral bone changes. Synovial macrophage activation was measured in vivo using folate receptor

B (FRB)-targeted single-photon emission computed tomography/computed tomography. Articular cartilage was
analyzed at 6 and 12 weeks with ex vivo contrast-enhanced puCT and histology. To further explain the outcomes

of our in vivo study, TA on macrophages was also studied in vitro. These cultured macrophages were either M1- or
M?2-activated, and they were analyzed using fluorescence-activated cell sorting for CD163 and FR@ expression as well
as for messenger RNA (mRNA) expression of interleukin (IL)-10.

Results: Our in vivo study showed that intra-articular injections with TA strongly enhanced FRE™ macrophage
activation. Despite stimulated macrophage activation, osteophyte formation was fully prevented. There was no
beneficial effect of TA against cartilage degradation or subchondral bone sclerosis. In vitro macrophage cultures
showed that TA strongly induced monocyte differentiation towards CD163" and FRB* macrophages. Furthermore,
TA-stimulated M2 macrophages showed enhanced IL-10 expression at the mRNA level.

Conclusions: TA injections potently induce a CD163*- and FRB"-activated macrophage with anti-inflammatory
characteristics such as reduced IL-10 production in vitro and lack of osteophytosis in vivo.
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Introduction

Osteoarthritis (OA) is characterized by deterioration of
articular cartilage and extensive subchondral bone re-
modelling [1, 2], as well as by inflammation within the
synovial lining of the osteoarthritic joint [3]. During OA
progression, synovial macrophages become activated and
secrete many pro-inflammatory cytokines and growth
factors. These cytokines and growth factors are thought
to detrimentally change the articular joint.

First, activated synovial macrophages have been pro-
posed to enhance transforming growth factor (TGF)-f
production. Due to TGF-B, synoviocytes increase their
production of bone morphogenetic protein 2 (BMP2) and
BMP4; as a consequence, osteophytes develop within the
OA joint [4, 5]. Second, it is thought that enhanced
growth factor and cytokine production by activated mac-
rophages facilitates cartilage extracellular matrix (ECM)
degradation, contributes to synovial fibrosis [6] and in-
duces pain [7]. The latter is of special interest because
pain management plays a pivotal role in clinical manage-
ment of OA.

Pain management for patients with OA can be achieved
through analgesia with agents such as paracetamol, non-
steroidal anti-inflammatory drugs or intra-articular injec-
tion of corticosteroids. Intra-articular injection with corti-
costeroids provides excellent results for OA-related pain
[8] and is an advocated treatment for individuals with
knee OA [9]. More specifically, triamcinolone acetonide
(TA) injections are even more effective than other cortico-
steroids in reducing pain [10].

In 1985, Williams et al. reported that TA quite effect-
ively protected against osteophyte development in a pre-
clinical model of OA [11]. This finding suggests that TA
somehow intervenes with synovial macrophage activation
and might prevent subsequent TGF-p—induced osteo-
phyte development. More recently, in 2014, this finding
was reproduced in a post-traumatic model of OA using
intra-articular injections of dexamethasone [12]. The au-
thors of that study also showed that corticosteroid therapy
reduced cartilage destruction. It remains unclear through
which mechanisms corticosteroids exert this positive ef-
fect on macrophages and other joint tissues within the
joint during OA development. This effect might result
from the marked influence of corticosteroids on macro-
phage differentiation.

Inactive macrophages are able to differentiate into dif-
ferent active subtypes. First, the classically activated (or
M1) macrophages are activated through a cell-mediated
immune response. Interferon (IFN)-y, lipopolysaccharides
and tumour necrosis factor (TNF) are especially well-
known inducers of M1 macrophages [13, 14]. Alterna-
tively activated (M2) macrophages are related to humoral
immunity tissue repair [15]. Interleukin (IL)-4 is known to
induce a wound-healing, M2-activated macrophage whose
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activity is related to tissue repair [16]. Interestingly, in
response to corticosteroids, yet another activated macro-
phage subtype develops; these are known as regulatory
macrophages [17]. Regulatory macrophages are consid-
ered anti-inflammatory and produce large amounts of IL-
10 [18]. Intra-articular injection of TA might polarize
macrophage activation towards this specific form of M2
phenotype with subsequent beneficial effects on osteo-
phyte formation and cartilage degradation.

Recently, we established an in vivo model of severe OA
that shows severe degradation of articular cartilage, en-
hanced subchondral bone sclerosis formation and pro-
nounced osteophyte formation [19]. Using folate receptor [
(FRp)-targeted single-photon emission tomography/com-
puted tomography (SPECT/CT) to quantitatively measure
macrophage activation [20, 21], we also found abundant ac-
tivation of synovial macrophages within knee joints in this
rat OA model [19]. In this rat model of severe OA, we in-
vestigated the in vivo effect of intra-articular TA injections
on macrophage activation using FRB-targeted SPECT/CT.
We hypothesized that intra-articular treatment with TA
reduces the amount of macrophage activation and therefore
diminishes osteophyte formation as described by Williams
et al. [11]. Furthermore, using longitudinally applied mi-
cro—computed tomography (uCT) for in vivo bone analysis
and ex vivo equilibrium partitioning of an ionic contrast
agent using micro—computed tomography (EPIC-uCT), we
also analyzed whether intra-articular TA injections might
have a beneficial effect on OA-related subchondral sclerosis
and cartilage degradation as well. To explain our in vivo re-
sults, we performed several in vitro experiments. In these
experiments, we characterized M1- and M2-differentiated
macrophages by their cell surface receptor expression. We
analyzed whether the addition of TA could polarize macro-
phages towards a certain subtype and whether TA influ-
ences FRf} expression.

Materials and methods

Effects of intra-articular injections of TA on severe
osteoarthritis progression

Forty 16-week-old male Wistar rats (Charles River
Netherlands, Maastricht, The Netherlands) were housed
in the animal facility of the Erasmus Medical Centre under
a 12-h light-dark regimen at 21 °C during the experimen-
tal period, and all animals received standard food pellets
and water ad libitum. Animals were divided into two
groups: 20 rats served as untreated OA controls, and an-
other 20 rats were treated during the experiments with
weekly intra-articular injections of TA. TA (Kenacort;
Bristol-Myers Squibb, Woerden, The Netherlands) was
diluted with saline to a concentration of 1.43 mg/ml. Ani-
mals were given weekly injections of 70 pl of this solution
(with 100 pg of TA) via a 27-gauge needle (Sherwood-
Davis & Geck, Gosport, UK) in their OA-induced knee
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joint. TA was chosen because of its superior function
compared with another corticosteroid, betamethasone, in
reducing pain in human patients [8].

In all animals in both experimental groups, severe OA
was induced using intra-articular papain injections in
the left knee joints, combined with exposure to a moder-
ate exercise protocol as described previously [19]. In
short, all animals received three intra-articular injections
that consisted of 15 pl of 4 % (wt/vol) papain solution
(type IV, double-crystallized, 15 U/mg; Sigma-Aldrich,
St. Louis, MO, USA) with 15 pl of 0.03 M L-cysteine
(Sigma-Aldrich) [22]. The contralateral knee joint served
as an internal healthy control. All rats were forced to
run on a motorized rodent treadmill (LE-8700; Panlab
Harvard Apparatus, Barcelona, Spain) for 6 weeks, cov-
ering a distance of 15 km (500 m/day, 5 days/week) [19].
During the study, all animals were longitudinally moni-
tored with uCT to measure subchondral bone changes.
At 6 and 12 weeks, ten rats in both groups were selected
for a full-analysis sequence. This sequence consisted of
SPECT/CT to quantify in vivo macrophage activation
[23] and ex vivo EPIC-uCT and histology to measure
cartilage quality [24]. For all procedures, exactly the
same procedures as described previously were followed
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[19]. The animal ethics committee of the Erasmus Med-
ical Centre, Rotterdam, The Netherlands, approved all
conducted procedures. A detailed planning scheme of all
groups and conducted tests is given in Fig. 1.

Subchondral bone measurements on pCT scans

Both knees of all animals were scanned by uCT while the
animals were under isoflurane anaesthesia, using a Sky-
Scan 1176 in vivo pCT scanner (Bruker microCT, Kontich,
Belgium). Ten minutes of scan time per knee was required
at an isotropic voxel size of 18 um, a voltage of 65 kV, a
current of 385 mA, and a field of view of 35 mm using a
1.0-mm aluminium filter over 198 degrees with a 0.5-de-
gree rotation step and a 270-millisecond exposure time.
All datasets were segmented with a local threshold algo-
rithm [25]. Cortical and trabecular bone were automatic-
ally separated using in-house software [26]. Using SkyScan
software, both subchondral plate thickness (in micro-
metres) and subchondral plate porosity (in cubic milli-
metres) of the medial and lateral compartment of the
tibial plateau were measured [27]. In the tibial epiphysis,
we measured the trabecular thickness (in micrometres)
and trabecular bone volume fraction (BV/TV), represent-
ing the ratio of trabecular bone volume (in cubic
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Fig. 1 Experiment design indicating analytical time points and methods for each experimental group. Forty 16-week-old male Wistar rats were given
three papain intra-articular injections (P.l) and forced to run 15 km on a motorized treadmill. Animals were divided into two different groups: an
untreated osteoarthritis (OA) group (n = 20) and a group treated with intra-articular triamcinolone acetonide (TA) injections (n = 20). TA-treated
animals were treated with weekly intra-articular TA injections (100 pg/injection), indicated with asterisks in the scheme. During the experiment,
three longitudinal micro—-computed tomographic (microCT) scans were made to measure subchondral bone changes. At 6 and 12 weeks, a
full-analysis sequence was done in ten animals per group, consisting of in vivo determination of activated macrophages using single-photon
emission computed tomography/computed tomography and ex vivo cartilage analysis with equilibrium partitioning of an ionic contrast agent
using micro-CT and histology.
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millimetres) to endocortical tissue volume (in cubic milli-
metres). We also quantified the amount of ectopic bone
formation as a measure of osteophyte growth (in cubic
millimetres) on longitudinal uCT scans.

Determination of activated macrophages by SPECT/CT
using ""'In-EC0800

Activated macrophages express FRf3, which allows monitor-
ing of macrophages in vivo using folate-based radiotracers
[20, 21, 28]. Phosphate-buffered saline (pH 6.5) with
DOTA-Bz-folate (DOTA-Bz-Folate, EC0800; kindly pro-
vided by Endocyte, West Lafayette, IN, USA) [1, 29] was
labelled with ™MInCl; (Covidien, Petten, The Netherlands)
as described previously [19]. Quality control was performed
by instant thin-layer chromatography with a silica gel,
which revealed a radiochemical yield of approximately 91 %
at a specific activity of 50 MBq/ug. **'In-EC0800 (55 MBq)
was administered via the tail vein 20 h before scanning.
SPECT/CT scans were obtained with a four-head multiplex
multi-pinhole small-animal SPECT/CT camera (NanoS-
PECT/CT™; Bioscan, Washington, DC, USA). All knee
joints were scanned with both helical uCT (acquisition time
5 minutes) and SPECT (acquisition time 30 minutes). All
scans were analyzed using InVivoScope processing software
(Mediso, Boston, MA, USA). To reduce inter-individual
variation, the absolute difference in measured radioactivity
(kilobecquerels per cubic millimetre) of the OA knee joint
compared with the internal control joint was calculated.
This absolute difference was used when we compared
means of untreated animals with those of TA-treated
animals.

Cartilage evaluation with contrast-enhanced pCT and
histology

EPIC-pCT has a strong correlation with cartilage sulphated
glycosaminoglycan (sGAG) content [24]. The animals were
killed directly after the last SPECT/CT scan, and both knee
joints were harvested for EPIC-pCT analysis. All specimens
were incubated in 40 % solution of ioxaglate for 24 h at
room temperature [30]. EPIC-uCT was performed with the
same PCT scanner using the following scan settings: an iso-
tropic voxel size of 18 pm, a voltage of 65 kV, a current of
385 mA, a field of view 35 mm, a 0.5-mm aluminium filter,
198 degrees with a 0.5-degree rotation step, and a 235-
millisecond exposure time. In all EPIC-uCT datasets, X-ray
attenuation (arbitrary grey values related to sGAG content)
and cartilage thickness (in micrometres) were calculated
separately for cartilage of the medial and lateral plateaus of
the tibia [19].

After EPIC-uCT, the separated parts of the knee joints
were fixed in paraformaldehyde, decalcified with formic
acid and embedded in paraffin. Sagittal sections were made
at 300-um intervals and stained with Safranin-O to scan
the amount and distribution of the glycosaminoglycans.
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Sections were stained all at once to minimize artefacts be-
tween different samples.

Surface receptor expression on monocyte-derived
macrophages in vitro

Monocytes were isolated from peripheral blood of healthy
human donors using sequential Ficoll-Hypaque and Per-
coll density gradients (GE Healthcare, Uppsala, Sweden)
and cultured in GIBCO RPMI/GlutaMAX medium (Life
Technologies, Merelbeke, Belgium) with addition of peni-
cillin (100 U/ml), streptomycin (100 pg/ml) and 10 %
foetal calf serum (Life Technologies). Monocyte-derived
macrophages were generated by culturing monocytes for
7 days in the presence of 800 U/ml human recombinant
granulocyte-macrophage colony-stimulating factor (GM-
CSF; for M1 subtype differentiation) or 25 ng/ml human
recombinant macrophage colony-stimulating factor (M-
CSF; for M2 subtype differentiation) (GM-CSF and M-
CSF were both acquired from R&D Systems, Minneapolis,
MN, USA). To study the influence of TA on macrophage
differentiation, 100 nM TA (Kenacort) was added to the
culture medium during these 7 days. The culture medium
was refreshed after 3—4 days.

Flow cytometry

The expression of membrane receptors was evaluated by
incubating the cells with specific fluorescent antibodies.
First, the cells were incubated with a rabbit anti-human
folate receptor 2 antibody (Thermo Fisher Scientific, Rock-
ford, IL, USA) at 4 °C for 30 minutes in the presence of
rabbit serum. This step was followed by incubation with a
fluorescein isothiocyanate—labelled goat anti-rabbit anti-
body (Thermo Fisher Scientific)) CD80-phycoerythrin
(clone L307.4; BD Biosciences, San Jose, CA, USA),
CD163-PerCP-cyanine 5.5 (clone GHI/61; BioLegend, San
Diego, CA, USA), CD14 allophycocyanin (APC)-AF750
(clone RMOS52; Beckman Coulter, Brea, CA, USA), CD206-
PC7 (clone 3.29B1.10; Beckman Coulter) and CD16-APC
(clone 3GS8; Life Technologies, Frederick, MD, USA). Flow
cytometry was performed on a FACSCanto II cytometer
(BD Biosciences) according to the manufacturer’s protocols.
Fluorescence minus one controls were used to identify
gating boundaries. Values were expressed as mean fluores-
cence intensity ratio compared with an unstained control
(fold change).

Detection of IL-10 mRNA levels by real-time quantitative
PCR

Messenger RNA (mRNA) was isolated using an RNeasy
Mini Kit (QIAGEN, Venlo, The Netherlands). After on-
column DNase I treatment (RNase-Free DNase Kkit;
QIAGEN), RNA was quantified using a NanoDrop ND-
1000 spectrophotometer (NanoDrop/Thermo Scientific,
Wilmington, DE, USA) and reverse-transcribed into
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complementary DNA using the iScript cDNA Synthesis Kit
(Bio-Rad Laboratories, Veenendaal, The Netherlands). Gene
expression was analyzed using the CFX384 Real-Time PCR
Detection System (Bio-Rad Laboratories). The quantitative
polymerase chain reactions were performed in duplicate in
384-well plates in a final volume of 10 pl using IQ SYBR
Green Supermix (Bio-Rad Laboratories). IL-10 mRNA
levels were normalized to those of the reference genes, TBP
and HPRT. The primers used were as follows: IL-10 for-
ward 5'-GACTTTAAGGGTTACCTGGGTTG-3', reverse
5'-TCACATGCGCCTTGATGTCTG-3'; TBP forward 5'-
TGCACAGGAGCCAAGAGTGAA-3’, reverse 5'-CACA
TCACAGCTCCCCACCA-3'; and HPRT forward 5'-TAT
TGTAATGACCAGTCAACAG-3', reverse 5'-GGTCCTT
TTCACCAGCAAG-3'".

Statistical analysis

For the in vivo study, differences between means of OA-
induced and healthy knee joints within the same animal
were tested using paired ¢ tests at each time point for all
outcome parameters (GraphPad Software, La Jolla, CA,
USA). When we compared differences between means
of untreated OA animals and TA-treated animals, an un-
paired ¢ test was used at each time point for all outcome
parameters (GraphPad Software). Statistical significance
among the different cell treatments was assessed using
one-way analysis of variance with Bonferroni’s correction
(IBM SPSS software; IBM, Armonk, NY, USA). Longitu-
dinal data from in vivo uCT were additionally analyzed
using generalized estimating equations (GEEs; IBM). For
all tests, p values <0.05 were considered significant.

Results

Effects of intra-articular TA treatment

The mean body weight of all untreated rats at baseline
was 4164 g (411.3-421.5 g), and during 6 weeks of
treadmill running this did not increase (mean weight
408.3 g, 398.2-418.3 g). During the subsequent 6 weeks
of rest, the body weight of all rats increased (mean 485.5
g, 473.0-498.0 g). TA-treated animals (mean weight at
baseline 423.6 g, 417.3-429.9 g) lost body weight during
OA induction (mean weight after 6 weeks 391.2 g,
385.1-397.2 g), and they weighed less than untreated
OA animals (p = 0.004). After 12 weeks, their mean body
weight increased to 434.6 g (422.2-446.9 g), but it was
still significantly less than that of untreated OA controls
(p <0.0001) (Fig. 2).

Effect of intra-articular TA treatment on synovial
macrophage activation

Each animal received 54 + 2 MBq of *'*In-EC0800 under
isoflurane anaesthesia, and we observed no significant
differences in macrophage activity between experimental
groups after injection. Untreated OA control animals
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showed more macrophage activation in their OA-
induced joints at 6 weeks (p <0.0001) and at 12 weeks
(p <0.0001). TA-injected knee joints also showed more
macrophage activation than their non-injected healthy
knee joints (p <0.0001 at 6 and 12 weeks). To correct
for differences in biodistribution, we calculated paired ab-
solute differences between healthy control joints and OA-
induced joints for all untreated rats and TA-treated ani-
mals. At both 6 weeks (p = 0.008) and 12 weeks (p = 0.04),
this analysis suggested more macrophage activation in
TA-injected joints (Fig. 3a, c). In line with macrophage
activation in untreated animals, OA-induced knee joints
showed evident ectopic bone formation in untreated ani-
mals compared with their healthy control joints at 6 weeks
(p <0.0001) and 12 weeks (p < 0.0001). TA-injected joints
showed only minimal or no osteophyte formation com-
pared with their healthy control joints (p=0.02 at 6
weeks, p=0.11 at 12 weeks) and compared with untreated
OA joints (p < 0.0001 at 6 and 12 weeks) (Fig. 3b, c).

Effect of intra-articular saline injections on macrophage
activation

To test whether the amount of macrophage activation in
TA-treated animals did not result from the intra-articular
injection, we tested in a small experiment whether saline
injections also induced macrophage activation. Therefore,
we gave five Wistar rats injections with a saline solution
into a healthy knee joint. Subsequently, we performed
SPECT/CT in these animals using '"'In-EC0800 as de-
scribed before. In these animals, we found that there was
no difference in measured radioactivity between non-
injected and saline-injected knee joints (Fig. 4). This sug-
gests that an intra-articular injection does not induce
macrophage activation that explains the additional mea-
sured activity in the TA-treated animals in the first
experiment.
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Fig. 2 Increase in body weight (in grams) of untreated control rats
(white circles) and triamcinolone acetonide-treated rats (grey
squares). OA osteoarthritis, **:p < 0.01, ***:p < 0.001
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(squares) after injection of '"'In-EC0800 using single-photon emission computed tomography/computed tomography (SPECT/CT). a Quantitative
outcome of measured radioactivity in the healthy joints (blank boxes) and OA joints (grey boxes) normalized to the size of the analyzed cylindrical
region of interest (in kilobecquerels per cubic millimetre). Absolute differences per animal were calculated (in kilobecquerels per cubic millimetre)
to correct for differences in biodistribution of "'In-EC0800 (black boxes). High radioactivity is related to more macrophage activation. b Ectopic
bone formation (in kilobecquerels per cubic millimetre) as a measure for osteophyte development was quantified on longitudinal bone micro—-
computed tomographic (UCT) scans. ¢ Sagittal SPECT/CT images of knee joints from representative animals. uCT images shown in black and white
were used for anatomical reference. The SPECT/CT images are shown in colour. Transaxial images from patellar bone extracted from binary puCT
images show ectopic bone formation (red). *p < 0.05, **p < 0.01, **p < 0.001. Error bars indicate 95 % confidence intervals

Osteoarthritic changes of articular cartilage

Both medial and lateral cartilage compartments of the
tibial plateau were severely sGAG-depleted in untreated
controls at 6 and 12 weeks (Fig. 5a). After the running
protocol at 6 weeks, cartilage of the medial compart-
ment was slightly reduced in thickness (Fig. 5c). Lateral
cartilage thickness was severely degraded (Fig. 5d) and
resulted in almost completely denuded subchondral
bone (Fig. 5e). During the subsequent 6 weeks of rest,
medial cartilage continued to degrade; in the lateral com-
partment, an ongoing decline in cartilage thickness was
not seen (Fig. 5c—e). sSGAG loss and cartilage degradation
in TA-treated animals followed the same pattern as in un-
treated animals. Only at 6 weeks did medial cartilage show

slightly decreased attenuation (p = 0.04), and at 12 weeks
we measured lower attenuation values in lateral cartilage
(p =0.02). Figure 6 shows representative medial and lateral
cartilage images from Safranin-O-stained histological
specimens from untreated controls and TA-treated ani-
mals at 6 and 12 weeks.

Subchondral bone changes

Compared with the healthy control joints, medial sub-
chondral plates in OA-induced joints of untreated con-
trols tended to decrease in thickness from 6 to 12 weeks
but was not significantly different (p = 0.16). Medial sub-
chondral plate thickness in TA-treated rats followed
more the same pattern as the healthy control joints in
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Fig. 4 Effect of intra-articular injection on macrophage activation
determined with '"'In-EC0800 single-photon emission computed
tomography/computed tomography (SPECT/CT). There was no
difference between knee joints without intra-articular injection (white
column) and knee joints injected with saline (light grey column) 1

day before SPECT/CT scanning. Knees injected with triamcinolone
acetonide 1 day before SPECT/CT showed clearly increased
radioactive uptake, which represents increased macrophage
activation. ***;p < 0.001

these animals (Fig. 7a), but compared with untreated
controls the subchondral plate in these animals was
slightly thicker at 12 weeks (p = 0.01). GEEs showed that
medial subchondral bone plates of TA-treated animals
were thicker during the experiment than those of un-
treated controls (p =0.02). Sagittal uCT images showed
that this increase in subchondral plate thickness was not
generalized as in healthy controls knees, but was more
focal and indicative of a sclerotic phenotype (Fig. 7g).
Medial plate porosity did not increase in both experi-
mental groups throughout the experiment (Fig. 7b).
Lateral compartment subchondral bone thickness of
untreated OA joints was clearly increased compared
with their healthy control joints at 6 weeks (p <0.0001)
and 12 weeks (p <0.0001) (Fig. 7c, h). Longitudinal mea-
sured subchondral bone thickness analyzed using GEEs
showed that TA-treated animals developed more lateral
subchondral sclerosis in their OA-induced joints during
the experiment than did those of untreated controls
(p<0.0001). Although untreated animals developed
minimal subchondral plate porosity at 6 weeks, no
differences were found compared with TA-treated ani-
mals (Fig. 7d, h).
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Trabecular thickness did not differ between experi-
mental groups during the experiment (Fig. 7e). BV/TV
ratios were lower in OA-induced joints of both groups
than in their healthy knee joints (Fig. 7f), and no differ-
ences were found between OA joints of untreated con-
trols or TA-treated animals. However, healthy control
joints of TA-treated animals had higher BV/TV ratios
than those of healthy control joints of untreated animals
(p=0.003).

Effects of TA treatment on M1 and M2 macrophages
cultured in vitro

Monocyte-derived macrophages differentiated in the
presence of GM-CSF showed enhanced expression of
CDB80, whereas CD163 expression was absent (Fig. 8a,
b). When monocytes were exposed to TA in addition to
GM-CSE, both CD163 receptor and FRp expression in-
creased significantly (Fig. 8c). Interestingly, TA strongly
decreased survival in GM-CSF-stimulated monocytes,
but not in M-CSF-stimulated monocytes. Monocyte-
derived macrophages cultured in the presence of M-CSF
showed enhanced expression of CD163 and CD16 but
absence of CD80 (Fig. 8a, b). FRP expression in these
cells was increased compared with untreated GM-CSF
cells, but it was not enhanced by the addition of TA
(Fig. 8c). Representative images from fluorescence-
activated cell sorting experiments are shown in Fig. 8d.
Additionally, TA-treated M-CSF macrophages showed
significantly increased levels of IL10 mRNA expression
(Fig. 8e).

Discussion
In this study, we investigated the effects of TA injections
on in vivo macrophage activation during OA progres-
sion. In untreated animals, there was a marked increase
of activated macrophages measured with in vivo FRp
targeted SPECT/CT imaging (Fig. 3). It is thought that
activated macrophages in OA produce TGEF-f, which in-
duces BMP production in synoviocytes, subsequently
triggering osteophyte development [4, 5]. Therefore, we
expected to see progressive growth of patellar osteo-
phytes in untreated animals. In treated animals, however,
intra-articular TA injections completely prevented osteo-
phyte development. Interestingly, TA injections severely
induced macrophage activation (Fig. 3). Because saline
injections did not reproduce this enhanced SPECT/CT
signal, we can exclude the injection itself as the cause for
macrophage activation (Fig. 4). We hypothesized that this
combination of enhanced macrophage activation and pre-
vented osteophytosis might be explained through different
subtypes into which macrophages can differentiate.
Therefore, we performed in vitro experiments using GM-
CSF- and M-CSF-cultured monocytes. GM-CSF—cultured
monocytes were CD80" and CD163", which is typical for
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classically activated (M1) macrophages [31], whereas M-
CSF—cultured monocytes were CD163" and lacked CD80,
which is typical for alternatively activated (M2) macro-
phages [32, 33]. It is known that FRp is co-expressed pre-
dominantly in CD163" macrophages [34]. Our experiments
confirm this finding because FRf was especially elevated in
M-CSF-cultured M2 macrophages (Fig. 8c). However, add-
ing TA during GM-CSF drove macrophage differentiation,
and these M1-activated macrophages started to co-express
ERP. Interestingly, these cells stop CD80 expression and
increase CD163 expression, suggesting that TA stimulates
macrophages towards an activated M2 phenotype. Al-
though this TA-induced FRB* M2-activated phenotype ex-
plains the increased SPECT/CT signal in TA-treated
animals, it does not explain why TA-treated animals lacked
osteophyte formation.

Glucocorticoids are known inducers of a specific macro-
phage subtype known as regulatory macrophages. These
are a specific form of M2-activated macrophage which is
considered anti-inflammatory. Through interaction with
transcription factors, glucocorticoids regulate macrophage

gene expression levels [35]. By induction of inhibitor of
nuclear factor kf, glucocorticoids inhibit nuclear factor 3
[36], which results in decreased production of pro-
inflammatory cytokines such as IL-1, IL-6 and TNF [37].
Furthermore, the regulatory macrophage can be charac-
terized by enhanced IL-10 production [38]. Therefore, we
analyzed our M2 macrophages cultured in vitro for
mRNA expression of IL-10, and we found that TA
strongly increased IL-10 expression levels in M-CSF—cul-
tured monocytes (Fig. 8e). We believe that this underlines
that TA strongly polarizes macrophage activation towards
a specific anti-inflammatory macrophage subtype that
does not promote osteophyte growth in our in vivo model
of OA.

Besides the effects of TA on macrophages, we also
investigated whether TA could be beneficial for either
articular cartilage or subchondral bone. In a previously
reported study in which researchers used a pre-clinical
animal model of traumatic OA, intra-articular injections
with dexamethasone led to less cartilage damage [12].
We could not reproduce this result in our present study.
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Our cartilage results showed no protection against car-
tilage erosion of the lateral tibial plateau or against loss
of cartilage matrix of the medial plateau (Fig. 5). There
were also no beneficial effects of TA against pathological
changes within the subchondral bone. In fact, GEE ana-
lysis of the medial subchondral plate showed that more
subchondral sclerosis developed in TA-treated animals.
On the basis of repeated intra-articular injections of TA,
it is known that cartilage matrix metabolism is changed,
as measured by biomarkers within synovial fluid [39].
Furthermore, corticosteroid treatment is known to in-
duce chondrocyte apoptosis in chondrocyte cultures and
in vivo [40]. These data suggest that TA treatment could
very well have induced a direct toxic effect for chondro-
cytes. Subsequently, more chondrocyte death could have
enhanced cartilage damage, and therefore more sub-
chondral sclerosis may have developed.

There are several other potential biases that we cannot
exclude, owing to our experimental design. First, our ani-
mals received 100 pg of TA per injection. This dose was
estimated on the basis of interpretation of previously pub-
lished studies in which authors reported use of corticoste-
roids in rats and in other species. A frequently mentioned
dose is 1 mg/kg body weight, a dose which we further
reduced to one-fifth (to 0.2 mg/kg body weight) injected
weekly. Because TA injections were done weekly, we can-
not exclude possible systemic effects, such as due to TA
overdose, that might have influenced macrophage activa-
tion or osteophyte formation. An indication for TA over-
dose in treated animals is suggested through measured
weight loss (Fig. 2). However, treated animals still received
TA injections after the running protocol, and in this
period their weight increased again. We observed that
TA-treated animals endured the running protocol better
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than the untreated controls. It could be that TA reduced
pain and improved their running capabilities, which
resulted in weight loss. However, we cannot support this
hypothesis with further data and are therefore not able to
exclude possible toxic effects due to TA treatment. Fur-
thermore, although van Lent et al. [4] and Blom et al. [5]
previously underlined the role of macrophage activation
in osteophyte formation, we cannot exclude that TA also
influenced osteophyte formation directly. For example, TA
might have influenced other cell types, such as osteoblasts

and osteoclasts, that are also involved during osteophyte
formation.

More studies using SPECT/CT imaging techniques are
needed to gain more knowledge related to macrophage
activation and manipulation through therapeutic strat-
egies in all kinds of disease. Other studies have shown
the possibility of visualizing M1 polarization of microglia
(a group of macrophages within the brain) in animal
models of psychiatric disorders [41]. Different tracers
enable differentiation between MI1- and M2-activated
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macrophages [42]. Hopefully, it will be possible in the
near future to also use tracers to differentiate between
subtypes (e.g.,, wound-healing and regulatory) of M2
macrophages. These techniques would allow monitoring
of specific macrophage subtypes activated in vivo in pre-
symptomatic stages of OA and measure effects of pre-
emptive intervention strategies dedicated to interfering
with macrophage polarization. Eventually, these studies
will answer questions about how macrophages and re-
lated immune cells might be manipulated more specific-
ally to prevent or delay disease progression.

Conclusions

Pre-emptive treatment with intra-articular TA injections
showed enhanced FRp-related macrophage activation in
an in vivo model of OA and fully prevented osteophyte
development. TA strongly induced monocyte differenti-
ation towards an M2 and anti-inflammatory macrophage
phenotype. TA leads to increased IL-10 mRNA levels in

vitro and reduced osteophytosis in vivo, which indicates
that TA potently induced a CD163" and FRB" regulatory
macrophage. Unfortunately, FRP cannot be used to
differentiate between wound-healing and regulatory M2
subtypes. Future studies should be aimed at identifying
specific surface markers for each of these subtypes to en-
able in vivo identification using imaging techniques such as
SPECT/CT. Future fine-tuning of the anti-inflammatory
and anti-pain capabilities of M2 subtypes might prove
beneficial against disease progression and reduce patient
complaints.
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