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ABSTRACT: Solubility optimization is a crucial step to obtaining
oral PROTACs. Here we measured the thermodynamic solubilities
(log S) of 21 commercial PROTACs. Next, we measured BRlogD
and log kwIAM (lipophilicity), EPSA, and Δ log kwIAM (polarity) and
showed that lipophilicity plays a major role in governing log S, but
a contribution of polarity cannot be neglected. Two-/three-
dimensional descriptors calculated on conformers arising from
conformational sampling and steered molecular dynamics failed in
modeling solubility. Infographic tools were used to identify a
privileged region of soluble PROTACs in a chemical space defined
by BRlogD, log kwIAM and topological polar surface area, while
machine learning provided a log S classification model. Finally, for
three pairs of PROTACs we measured the solubility, lipophilicity,
and polarity of the building blocks and identified the limits of estimating PROTAC solubility from the synthetic components.
Overall, this paper provides promising guidelines for optimizing PROTAC solubility in early drug discovery programs.

■ INTRODUCTION
PROTACs are defined as heterobifunctional molecules built of
three moieties or building blocks: a warhead binding a protein
of interest (POI), an E3 ligase recruiter, and a linker attaching
both regions. Indeed, since the first PROTAC was developed
by Crews and Deshaies in 2001, their popularity in biomedical
research and drug discovery has risen notably.1 This could be
explained by their innovative mechanism of action that uses
the degradative capacity of the proteasome to eliminate the
desired target protein (TPD, targeted protein degradation).2

Thus, 2022 is witnessing the entry of novel degraders in
clinical trials, with ARV-110 and ARV-471 already disclosed.3

PROTACs are widely known degraders and belong to the
“beyond rule of 5” (bRo5) chemical space.4 Their large and
flexible structure is responsible for drug metabolism and
pharmacokinetics (DMPK) limitations that can hinder oral
dosing.5 Therefore, it is crucial to study their in vitro ADME
properties (solubility, permeability, etc.) to understand,
monitor, and optimize their potential as oral drugs.6 Notably,
at present, a well-established property-based drug design
strategy is not available for this class of compounds.

Solubility (defined by the IUPAC as the “analytical
composition of a saturated solution, expressed in terms of
the proportion of a designated solute in a designated solvent”)
has a crucial role in the success of any drug candidate.7 In fact,
poor solubility can have an impact on various stages of the

drug discovery process.8 Moreover, the interplay between
solubility and permeability makes their simultaneous opti-
mization a challenge for medicinal chemists.9 For example,
increasing permeability by increasing lipophilicity may
decrease solubility and metabolic stability.

It is widely believed that an acceptable solubility in the
intestinal fluid is a prerequisite for achieving sufficiently high
drug blood concentrations to obtain a systemic therapeutic
effect. However, the definition of acceptable solubility is
somewhat vague. In the early phase of discovery, where only
aqueous solubility is of interest,10 it has been proposed that a
good goal for solubility is >60 μg/mL.11 More recently some
GSK researchers classified compounds into low (<30 μM),
intermediate (30−200 μM), or highly soluble molecules (>200
μM) and applied these criteria in many internal drug discovery
programs.12

Although solubility is a major issue in oncology programs
where PROTACs are expected to be widely employed
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(compounds for treating cancer tend to have high doses), to
our knowledge no specific report on PROTAC solubility has
been reported up to now. A few papers about solubility in the
bRo5 chemical space13−15 seem to suggest that the impact of
the third dimension on solubility is less important than for cell
permeability, but no data support this finding for degraders.13

To address the need for providing a strategy to optimize
PROTAC solubility in drug discovery, here we set up a study
focused on the determination of PROTAC experimental
solubility and its main determinants. In particular, we focus
on the following aims: (a) providing a data set of experimental
aqueous thermodynamic solubility values and a pool of
physicochemical descriptors (BRlogD, log kwIAM, Δ log kwIAM,
etc.16,17) for a series of 21 commercial PROTACs,
representative of the PROTAC chemical space; (b) evaluating
the performance of common solubility prediction tools; (c)
looking for the relationships between solubility and computed/
experimental physicochemical descriptors; and (d) providing a
classification system to be used in early drug discovery to
distinguish soluble from not soluble degraders. Finally, we used
three pairs of PROTACs to investigate the impact of the
building blocks on the overall PROTAC solubility to evaluate
how feasible modular prediction is.

Overall, this paper provides experimental data and
preliminary guidelines to design soluble PROTACs. Notably
this research is expected to be of utmost relevance within new
chemical modalities, a current hot topic in medicinal chemistry
and drug discovery.18,19

■ RESULTS AND DISCUSSION
Experimental Solubility of the Considered Data Set.

In previous papers we defined a PROTAC chemical space
based on three representative 2D descriptors: the number of
carbon atoms (nC), flexibility (PHI), and the topological polar
surface area (TPSA) (Figure 1, PROTACs are the small black
dots).20,21

With the use of this tool, 21 commercial degraders were
selected with the aim to significantly represent this chemical
space (large colored dots in Figure 1, structures in Figure S1).
In fact, the PROTACs included in this study cover a
substantial area of the defined descriptors: TPSA (166−335
Å2), nC (34−58), and PHI (9−27). Moreover, the PROTAC
set is also structurally heterogeneous because of the presence
of different E3 ligase ligands, linkers, and warheads (Table S1).
For instance, 9 PROTACs use CRBN and 12 use VHL, the
two major E3 ligase groups. Regarding the linker structure,
alkyl, pegylated, and glycol moieties are the flexible linkers
included in the investigated structures. One type of rigidifying
linker (alkyne group) was also considered (MD-224).
Moreover, the PROTAC set shows a wide variety of warheads.
Finally, most of the considered PROTACs are predominantly
neutral at pH 7.0 with some basic exceptions (Table S2).

In the pharmaceutical industry the type of solubility
measurements is driven by the stage of the project, with
kinetic solubility being the preferred method in early drug
discovery.22 Its measurement only requires an initial DMSO
stock solution which is precipitated by the addition of an
aqueous phase.23,24 Here, we measured thermodynamic
solubility, often determined in late lead optimization, which
efficiently considers the solubility value when the equilibrium
with the stable phase or polymorph has been reached. We
decided to apply experimental conditions suitable for early
drug discovery purposes: the shake-flask method with 1 h of
incubation time at pH 7 (in order to obtain data comparable
with chromatographic descriptors measured at pH 7) and 25
°C (a common temperature also allowing data comparison
with Marvin calculated solubility). Solubility data are presented
in Table 1 (accurate solubility values displayed as milligrams
per milliliter and log S (mol/L) are available in Table S3)
grouped by the GSK solubility classification: low (<30 μM),
intermediate (30−200 μM), or highly soluble molecules (>200
μM).7 Results show that the three categories are significantly
populated, although many degraders of the selected data set
are poorly soluble. Solubilities for ACBI1, cisACBI1, ARV-825,
Mcl1 degrader-1, and MD-224 were below the quantification
limit, and thus these five PROTACs were excluded from any
quantitative analysis but were classified in the low solubility
group.

Notably, visual inspection of Figure 1 suggests that the
combination of nC, PHI, and TPSA does not allow the
identification of regions with different solubilities.
Computed Solubility. Solubility can be predicted using

different algorithms; nevertheless, a thorough review of them is
beyond the scope of this paper (two recent reviews have been
published by Abramov25 and Bergström and Larsson26).
Solubility can be predicted using two approaches: quantitative
structure−property relationships (QSPRs), which includes the
general solubility equation (GSE), and physics-based methods
based on modeling of the thermodynamic cycle. In early drug
discovery there is a tendency to use simple, fast and cheap
calculators implementing QSPR models. In this study we used
a pool of in silico calculators summarized in Table S4 that
implement different algorithms. Most of them (except for
VolSurf) are free and are available online.

Experimental values for PROTACs were plotted against the
predicted solubility values (Figure 2a). Moderate correlations
were found (Figure 2b) between experimental log S and
intrinsic MarvinSketch (R2 = 0.56), MarvinSketch at pH 7 (R2

= 0.57), and VolSurf (R2 = 0.57) data. Scbdd (R2 = 0.42),

Figure 1. Graphical representation of the PROTAC solubility data set
(21 commercial derivatives) based on 2D descriptors (nC, PHI, and
TPSA). Large dots colors represent a solubility scale between −7 and
−3 log S units (mol/L).
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pkCSM (R2 = 0.01), and AdmetSAR2 (R2 = 0.11) performed
worse. Notably, even though some models display moderate
regressions, their slopes are considerably different from 1 (ideal
linear regression). Overall, fast and cheap tools routinely used
in drug discovery are not able to predict PROTAC solubility.
This could be due to the lack of PROTAC experimental data
in the model training sets.

Physicochemical Descriptors Governing Solubility.
Experimental Physicochemical Descriptors. PROTAC exper-
imental solubility was first correlated with lipophilicity
descriptors (log P is implemented in the general solubility
equation (GSE)27). As described by some of us,16 BRlogD
represents a validated,28 very useful and straightforward
chromatographic descriptor for the logarithm of the distribu-
tion coefficient in the n-octanol/water system (log D) of
neutral and cationic bRo5 molecules. The experimental
solubilities for PROTACs were plotted against BRlogD (Figure
3a), and a promising linear correlation was found (Y = −0.75X
− 3.29, R2 = 0.67, n = 16). As expected, the lower the BRlogD,
the higher the solubility.

The logarithm of the capacity factor of an IAM column
system, extrapolated at 100% water (log kwIAM), is also an
experimental descriptor of the lipophilicity of drugs since it
mimics the interaction between the polar heads of the
membrane phospholipids and the drug in solution.29 The
plot between the experimental solubility and log kwIAM (Figure
3b) again reveals a consistent linear trend (Y = −0.97X − 2.06,
R2 = 0.61, n = 16).

Since polarity is a molecular property often related to
solubility,13 experimental descriptors of polarity (Δ log kwIAM

and EPSA) were also determined. Introduced by Grumetto in
2012,30 Δ log kwIAM is the difference between the experimental
log kwIAM and the value expected for neutral analytes with a
zero value of polar surface area (which depends on the
experimental measurement of the n-octanol partition coef-
ficient31). EPSA quantifies the polarity of a molecule using a
supercritical fluid chromatographic (SFC) method.32 Notably,
Δ log kwIAM and EPSA (and TPSA) have been shown to
provide different information about the polarities of com-

Table 1. PROTAC Solubility Classification Based on GSK Guidelinesa

aSD, standard deviations of the solubility measurements; RSD, relative standard deviations with respect to the mean; ND, not detectable

Figure 2. (a) Calculated versus experimental solubility for 16
PROTACs. (b) Linear regression of solubility predictors with
solubility.
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pounds.33 PROTAC solubility was plotted against EPSA, but a
poor positive linear correlation was found (R2 = 0.23) (Figure
4). The values of Δ log kwIAM followed the same trend (R2 =

0.09) (Figure S2). Despite the poor correlation, it should be
noticed that the three most soluble PROTACs (CM11,
CMP98, and BRD9) have high Δlog kwIAM values. Moreover,
no correlation was found between the two experimental
descriptors (not shown). Overall, these two experimental
polarity descriptors do not seem suitable to efficiently model
solubility.
Calculated Physicochemical Descriptors. Although calcu-

lated log P values seem to be inaccurate descriptors of
lipophilicity in the bRo5 chemical space,16 a few 2D in silico log
P descriptors were used to model solubility. A representative

subset of log P methods (atom based, fragment based,
chemical descriptor based, 3D based, etc.) was selected
(Table S5), and the best correlation was found for Marvin
log P (Y = 0.55X − 3.83, R2 = 0.69, n = 16) (Figure 5a, Table
S6). The analysis suggests that atom- and fragment-based
models are more suitable calculators than Lipinski’s MLOGP.
Moreover, the inclusion of a third-dimensional component
(VolSurf+) did not improve the considered models. Notably,
also log D values (when available) were not able to perform
better than log P values. In addition, even though Marvin log P
and BRlogD show the same correlation trends with respect to
experimental solubility, they are only moderately correlated
among themselves (Y = 1.01X − 0.28, R2 = 0.53, n = 16)
(Figure 5b).

Regarding polarity, TPSA (the most common 2D computa-
tional polarity descriptor) was plotted against solubility (Figure
6). The scatter plot reveals that solubility is weakly correlated
with TPSA (Y = 0.01X − 8.67, R2 = 0.34, n = 16). However,
due to the distribution of data, if dBET57 and VZ185 were
considered as outliers, R would rise to R2 = 0.64, revealing a
moderate correlation (n = 14). Furthermore, TPSA was
compared to Δ log kwIAM and a poor correlation was found (R2

= 0.08) (Figure S3).
Due to the poor linear correlation of experimental polarity

descriptors and TPSA to experimental log S, we decided to
explore 3D polar surface area (3D-PSA) descriptors. In fact,
Kihlberg’s lab showed that for a series of bRo5 drugs the
correlation between solubility and polarity improved substan-
tially when the three-dimensional structure was taken into
account.13 Among the plethora of available tools to generate

Figure 3. (a) Experimental solubility versus BRlogD for the PROTAC data set. (b) Experimental solubility versus log kwIAM for the PROTAC data
set.

Figure 4. Experimental solubility versus EPSA for the PROTAC data
set.

Figure 5. (a) Experimental solubility versus Marvin log P for the PROTAC data set. (b) Marvin log P versus BRlogD for the PROTAC data set.
Ideal linear correlation is presented as a dashed line.
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conformers, we used the conformational sampling method
implemented in the commercial Maestro package (CS) and a
procedure of steered molecular dynamics (SMD) to explore a
wider conformational space for 14 neutral PROTACs.34−36 For
all the conformers arising from both CS and SMD, we
calculated 3D-PSA. Then, we selected a set of representative
3D PSA values (lower adjacent limit, first quartile, median,
third quartile, and upper adjacent limit) and verified their
relationship with the experimental log S. Figure 7 suggests that,

even though SMD (blue violins) extends the 3D polarity span
toward the TPSA value (green dots) in comparison to CS (red
violins), the R2 values do not show any improvement when
replacing TPSA with 3D-PSA (R2 = 0.42). Moreover, it should
be noticed that the correlation does not significantly decrease
when considering different PSA regions (e.g., TPSA compared
to lower adjacent limit). A rationale for this is suggested by
Kihlberg’s group, who experimentally verified for PROTAC-1
the existence of water conformations displaying a wide variety
of polarity and size ranges.37 Therefore, the fact that a single
conformer (or a restricted group of conformers) does (do) not
model solubility better than others, starkly supports their

findings, hinting toward a solution equilibrium among
conformers widely differing in polarity.

Finally, to understand the influence of other pure 2D
structural descriptors on solubility data, a Bravais−Pearson
correlation matrix (linear correlation) was performed (not
shown). The analysis confirmed that Marvin log P and TPSA
are the most relevant molecular properties impacting solubility.
In particular, also the potential impact of size (MW) on
solubility was investigated and no direct correlation was found
(R2 = 0.02) (Figure S4).

Overall, computed molecular descriptors suggest that,
although lipophilicity seems to play a major role in governing
solubility, a contribution of polarity cannot be neglected.
A Solubility Decision-Making Tool. Results reported in

the previous sections highlighted a significant capacity of
polarity and lipophilicity in governing solubility. Therefore, the
16 PROTACs with measurable log S were plotted in a 3D
scatter plot based on log kwIAM, BRlogD, and TPSA values
(Figure 8). Moreover, PROTACs were also colored according

to the three solubility groups introduced by GSK in Table 1
(Figure S5). Notably, in Figure S5 only BSJ-03-123 was
graphically misclassified.

In practice Figure 8 shows that thermodynamic solubility
could be efficiently classified using two chromatographic
descriptors (log kwIAM, BRlogD) and one computational
descriptor (TPSA). This finding represents a promising tool
for drug discovery since the experimental determination of the
two chromatographic descriptors is easily automated and less
time-consuming than standard solubility protocols.

The promising PROTAC solubility distribution (Figure 8)
makes a claim for setting up a solubility classification model.
We are aware that the low number of data could bias the
results, but we were interested in verifying whether machine
learning models are coherent with the graphical output
reported in Figure 8. Therefore, the solubility matrix was
added with the three GSK classes (low, intermediate, and high
solubility; Figure S5) and submitted to random forest and
decision random tree algorithms implemented in Weka.38

Random tree adopts a supervised and fast algorithm that makes
a prediction guided by the outcome, suffering from overfitting.

Figure 6. Experimental solubility versus TPSA for the PROTAC data
set.

Figure 7. Violin plot representation of SMD (blue) versus CS (red)
ordered by experimental log S. PHI values (flexibility) are expressed
as Φ. Medians are presented as black horizontal lines. R2 are present
for every statistical group (ARV-825 and Mcl-1 are not considered in
the statistical analysis, since accurate solubility values are not
available); the lower adjacent value (Lower A.L.) is the smallest
value that is equal to or higher than the lower inner fence (first
quartile − 1.5 × interquartile range). The upper adjacent value
(Upper A.L.) is the highest value that is equal to or smaller than the
upper inner fence value (third quartile + 1.5 × interquartile range).

Figure 8. PROTAC solubility distribution based on log kwIAM,
BRlogD, and TPSA (3D plot).
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Random forest, on the other hand, performs multiple random
decisions, obtaining an outcome directed exclusively by the
majority of the results. Since Figure S5 suggested that BSJ-03-
123 was misclassified in the low solubility group, we removed it
from the models (n = 15 instances). The resulting models
(verified by 10-fold cross-validation) revealed that 86.7% of the
instances were correctly classified for both models (Figure S6).
Therefore, it seems that the chosen algorithm does not
influence the output of this preliminary study. Moreover, the
confusion matrices (Figure S6) suggested that low solubility
PROTACs were correctly predicted (100%), whereas inter-
mediate and high solubility PROTACs were worse predicted
(80 and 66.7%, respectively). Consequently, the random tree
algorithm provided a definitive model based on BRlogD and
TPSA (Figure 9): a TPSA value equal to or higher than 289.31

Å2 directly classifies PROTACs as highly soluble, whereas less
polar PROTACs having BRlogD values equal to or higher than
2.58 are classified into the low solubility group. These results
confirm the hypothesis suggested by the 3D plot: high polarity
and low lipophilicity favor solubility.

Notably, even though the three descriptors were considered,
the models only took into account BRlogD and TPSA for the
decision-making, probably because a polarity descriptor
provides more complementary information over a second
lipophilicity descriptor.

Overall, for a small data set of not structurally related
PROTACs, the combined use of the 3D graph and the random
tree model seems a reasonable strategy to classify solubility.
This result could be assumed as a starting point to set up
efficient tools to be implemented in pharma companies drug
discovery pipelines.
Impact of Building Blocks on PROTACs Solubility. In

the previous sections we showed how molecular properties
such as lipophilicity and polarity may help to rationalize the
different solubility properties exhibited by the investigated data
set of PROTACs. However, since PROTACs are synthesized
by combining either three (warhead, linker, and E3 ligand) or
two (E3 ligand bound to the linker and warhead) molecules,
medicinal chemists are also interested in knowing the
contribution of building blocks to the whole PROTAC
solubility. In practice, it would be crucial for instance to
know whether the solubility difference of two PROTACs
sharing the same E3 ligand and the same linker could be
predicted from the solubility of their warheads (Table S1).

Since we are dealing with large and flexible molecules affected
by intramolecular interactions, a priori we cannot be sure that a
given molecular property (e.g., solubility) can be computed by
summing up the contributions of the three moieties.

To shed light on this aspect, in the data set of the 21
PROTACs we identified three pairs differing in the warhead,
linker, and E3 ligase ligand, respectively. Then we retrieved
reasonable building blocks commercially available, determined
their experimental and predicted solubilities (Table S7), and
found the previously discussed molecular descriptors (Table
S8). Finally, we discussed the solubility difference between
pairs based on the building block properties.

To investigate the warhead contribution to solubility, we
used the pair MZ1−MZP-54 (Figure 10). MZ139 is a selective

degrader of BRD4 over BRD2 and BRD3, whereas MZP-5440

selectively degrades BRD3 and BRD4 over BRD2. Structurally,
MZ1 and MZP-54 (Figure 10) share the same E3 ligand and
linker, differing exclusively in the warhead (JQ1 and I-BET726,
respectively).

Both PROTACs are neutral at pH 7 as verified by Caron’s
group.41 Our experimental solubility data (S in moles per liter)
support that MZ1 (log S = −4.42) is significantly more soluble
than MZP-54 (log S = −6.29). In this example, both
experimental and computed solubilities of the warheads
(blue in Figure 10) justify the solubility difference of the
two PROTACs. In fact, JQ1 carboxylic acid (warhead of MZ1)
is significantly more soluble (log S > −2.6) than I-BET726
(warhead of MZP-54, log S = −4.42). As expected, JQ1
carboxylic acid displays lower BRlogD and log kwIAM values and
higher TPSA values with respect to I-BET726 (Table S8).

Figure 9. PROTAC random tree model (BRlogD and TPSA) colored
by the experimental classification: low (red), intermediate (yellow),
and high (blue).

Figure 10. Comparison between MZ1 and MZP-54. Experimental
(Exp.Log S, S in mol/L) and/or calculated (cLogS, Marvin pH 7)
values are presented for PROTACs and their warheads.
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Therefore, this pair suggests that classification of PROTAC
solubility from its building blocks is feasible.

To explore the impact of the linker on the PROTAC
solubility, we used the pair dBET57−ZXH-3-26 (Figure 11).
dBET5742 and ZXH-3-2642 are selective BRD4 degraders that
share the same E3 ligase (pomalidomide) and a similar
warhead (JQ1 in dBET57 and PROTAC BET-binding moiety
2 in MZP-54), differing largely in the linker length (green
dashed circle in Figure 11).

Both PROTACs are expected to be neutral at pH 7.
Experimental solubility shows that dBET57 (log S = −4.52) is
more soluble than ZXH-3-26 (log S = −5.53) by about 1 log
unit. Notably, Marvin pH 7 calculated values suggest otherwise
(−7.06 vs −6.75).

The warhead named PROTAC BET-binding moiety 2
(shown in blue in Figure 11) shows an additional methyl ester
moiety (colored in dark red) when compared to JQ1
carboxylic acid. Both warheads show optimal experimental
solubilities despite their structural differences. However, we
cannot say if one is more soluble than the other. Therefore, in
the first approximation, the considerable solubility difference of
this PROTAC pair is expected to be due to the linker
contribution. In this respect, dBET57 incorporates a more
soluble alkyl linker (ethylamine) than ZXH-3-26 (pentyl-1-
amine). Therefore, the different linker length could justify a
decrease of about 1 experimental log S unit. However, it should
be observed that the two warheads bind the linker in a different
position and that the extra ester group of ZXH-3-26 may
impact solubility. Esters are expected to improve solubility, but
this could not happen if the ester group was involved in the
formation of an intramolecular hydrogen bond (IMHB) which
in turn could be facilitated by the higher flexibility of the
compound due to the presence of a longer linker. Overall, this
example supports that the different solubilities of the two
PROTACs cannot easily be related to the different chemical
structures of the linker.

To investigate the E3 ligase ligand contribution to solubility,
we used the PROTAC pair BI-3663−BI-0319/BI-420643

(Figure 12). BI-3663 and BI-0319 degrade the PTK2 protein,
and BI-4206 is the negative control for BI-0319. They all share
the same warhead (BI-4464), show a similar long linker

bearing one extra carbon for BI-3663 (dashed circle in green),
and differ in the E3 ligase ligand (pomalidomide and VH032,
respectively).

Both calculated and experimental solubility values support
that BI-3663 is more soluble (log S = −5.16) than BI-0319/BI-
4206 (log S = −5.58 and −6.24, respectively) (Figure 12). In
addition, the higher solubility expressed by BI-3663 is in line
with the higher computed solubility of pomalidomide in

Figure 11. Comparison between dBET57 and ZXH-3-26. Experimental and/or calculated log S (S in mol/L) values (Marvin pH 7) are presented
for PROTACs and their building blocks.

Figure 12. Comparison between BI-3663 and BI-0319/BI-4206.
Experimental and/or calculated log S (S in mol/L) values (Marvin pH
7) are presented for PROTACs and their building blocks.
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comparison with VHL derivatives. However, experimental
determinations revealed that pomalidomide is less soluble
(−4.44) than S,R,S-AHPC HCl and S,S,S-AHPC 2HCl (−2.68
and −2.69, respectively). The reason for this contradictory
behavior probably relies on the different ionization profiles of
the investigated building blocks and their variation when
included in the PROTAC structure. The two VHL
diastereoisomers are protonated at pH 7 (in blue in Figure
12), as determined by potentiometry (Table S8). Conversely,
pomalidomide is not ionized at pH 7. Furthermore, a recent
study focusing on cereblon ligands has proved that the
stabilized π-electron system and the capacity of the aromatic
nitrogen to form an intramolecular hydrogen bond with the
neighbor oxygen atom can increase lipophilicity, with a notable
worsening of pomalidomide’s water solubility.44 Therefore,
since solubility was measured at pH 7, the charged state of the
two VHLs justifies their higher experimental solubilities over
pomalidomide. However, the ionization center is lost in BI-
0319/BI-4206 because of the formation of an amide group.
Conversely, pomalidomide remains neutral when considered as
part of BI-3663’s structure. Consequently, even though S,R,S-
AHPC HCl and S,S,S-AHPC 2HCl are more soluble than
pomalidomide when considered as independent structures,
they trigger a less soluble PROTAC.

Overall, these arguments highlight the issues in predicting
solubility from building blocks when they do not share the
same terminal groups.

■ CONCLUSIONS
Solubility is a crucial molecular property strongly impacting
the future of PROTACs as oral drugs. Its determination,
prediction, and understanding should be faced starting from
early drug discovery. This process should also include
considerations about permeability since the solubility−
permeability interplay must be taken into account to obtain
the optimal solubility−permeability balance, in order to
maximize the overall absorption.

Overall, in this study we combined experimental and
computational strategies to explore the solubility behavior of
21 commercial PROTACs also in relation to their building
blocks. Therefore, we provide a data set of solubility,
lipophilicity, and polarity data experimentally determined
with previously validated methods. Then we proved that at
least up to now these data cannot be predicted by common
calculators largely employed in Ro5 drug discovery pipelines.
The interplay between solubility, lipophilicity, and polarity was
confirmed also for PROTACs. The role of the third dimension
in modulating solubility seems to be modest as revealed by
conformational sampling and steered molecular dynamics.
Very interestingly, we also verified that deducing the solubility
of PROTACs from the solubility of building blocks is generally
risky, although feasible under some circumstances.

Taken together, these results allow us to set up an
automated and straightforward strategy to classify PROTACs
in their solubility based on one polarity (computed) and two
lipophilicity (chromatographic) descriptors. Moreover, with
the help of machine learning, we propose BRlogD and TPSA
as key indicators of PROTAC solubility, where 2.58 and 289
Å2 are their respective thresholds for an experimental solubility
classification. Nevertheless, it should not be forgotten that
PROTACs displaying moderate or poor predicted solubility
may benefit from pharmaceutical formulations. Obviously, this
study does not pretend to exhaustively deconvolute the

complexity of solubility in the PROTAC chemical space, but
it fixes some guidelines that are expected to improve the
efficiency and speed of the next PROTAC-based early drug
discovery campaigns.

■ EXPERIMENTAL SECTION
Data Set Selection. A series of 21 PROTACs and 7 building

blocks were selected and bought based on their commercial
availability, or they were freely delivered in the pipeline of the
collaborative pharmaceutical companies. All the investigated com-
pounds are >95% pure by HPLC analysis. Moreover, the selection of
building blocks was based on the structural similarity to the
theoretical building block contributing to the full PROTAC structure.
Materials. The series of PROTACs and building blocks were

bought or supplied by different pharmaceutical companies (Tables S9
and S10, respectively). All other chemical reagents were of analytical
grade. HPLC grade acetonitrile (ACN) and methanol were bought
from VWR Chemicals. Ammonium acetate was provided by Alfa
Aesar, and KCl was from Sigma-Aldrich. DMSO was purchased from
Sigma-Aldrich, quality EMSURE ACS. Potassium phosphate mono-
basic (KH2PO4) and dipotassium phosphate (K2HPO4) were
provided by Carlo Erba Reagents, ACS grade. MS grade ammonium
formate was bought from Merck. Carbon dioxide 4.5 grade was
purchased from SOL Group. A syringe filter (4 mm) and 0.45 μm
PTFE membrane from GE Healthcare Life Sciences and Milli-Q
water were used.
Instruments. Solids were weighed with a Sartorius Entris224-1S

Analytical (www.sartorius.com). pKa values were measured with a
SiriusT3 instrument (Sirius Analytical Instruments) equipped with a
reference pH electrode (Ag/AgCl double junction) and a turbidity
detector. Ultrasonic cleaner, obtained from VWR Chemicals (www.
vwr.com), and an IKA VORTEX 3 (www.ika.com) were used to avoid
precipitation in the calibration points. Stirring and heating were
provided by magnetic and heating plates C-MAG MS 7 and IKA ETS-
D5, respectively (www.ika.com). Moreover, pH was measured with a
Eutech pH Meter 2700 (www.fishersci.com). Analyses were carried
out by high-performance liquid chromatography (HPLC; DIONEX
Ultimate 3000, Thermo Scientific Inc.) provided with an RS diode
array and Chromeleon 7.2.10 software (www.thermofisher.com).
HPLC columns IAM.PC.DD2 (300 Å, 10 μm, 10 cm × 4.6 mm) from
REGIS and XBridge Shield RP18 (130 Å, 5 μm, 5 cm × 4.6 mm)
from Waters (www.waters.com) were used. Ergonomic high-perform-
ance single-channel variable volume pipettors, HPLC 1.5 mL vials, 0.1
mL microinsert, and PP 9 mm screw caps were obtained from VWR
Signature. EPSA analyses were performed by supercritical fluid
chromatography (SFC; JASCO SFC-4000, Jasco Europe srl),
provided with a diode array and ChromNAV 2.04.00 software
(www.jascoweb.com). The SFC column Chirex 3014 (S)-VAL and
(R)-NEA (100 Å, 5 μm, 25 cm × 4.6 mm) from Phenomenex was
used.
pKa Determination. Acidic dissociation constants of pomalido-

mide, S,R,S-AHPC HCl, and S,S,S-AHPC 2HCl were measured
potentiometrically. Titrations were performed to 0.15 M KCl sample
solutions under a nitrogen atmosphere at 25 ± 1 °C. Moreover,
standardized 0.5 M KOH and 0.5 M HCl were used as titration
reagents (solutions were prepared from Titrisol (Merck) concentrated
solutions).45

Solubility Determination. Sample Preparation. Solubility was
determined in 10 mM PBS (0.15 M KCl) at pH 7, 25 °C. A 1−2 mg
sample of each molecule was added to the same quantity (1−2 mL) of
the mentioned buffer to obtain 1 mg/mL solutions in the vial.
Samples were then submitted to 25 °C and magnetic stirring (500
rpm) for 1 h. After this period, solutions or suspensions were filtered
through the 0.45 μm membrane pore and diluted with buffer, 10 mM
PBS (0.15 M KCl). The amount of dissolved compound in each
sample was then quantified, in duplicate, via HPLC using ultraviolet
(UV) spectrometric detection.
Calibration Curves. Variable volumes of pure DMSO (0−100 μL)

were added separately to small and defined (1 mg) quantities of each
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compound to obtain clear solutions. Solutions were then adjusted
with 10 mM PBS (0.15 M KCl) to reach 5% DMSO 10 mM PBS
(0.15 M KCl), resulting in particle precipitation in most of the cases.
Afterward, 5% DMSO 10 mM PBS (0.15 M KCl) was added until the
suspensions or precipitations were redissolved, to render clear
solutions. As soon as solutions were obtained, they were used as
mother solutions for the performance of 5−10 point calibration
curves with serial buffer dilutions (1:1; v/v) 5% DMSO 10 mM PBS
(0.15 M KCl). Calibration points were then measured via HPLC-UV.
Each compound was soluble at a different concentration, and
consequently, each compound required its own calibration curve.
HPLC Methods. The mobile phase consisted of a solution of

acetonitrile (ACN) and 20 mM ammonium acetate buffer (AAB), pH
7, freshly prepared. A 10 μL volume of each sample (volume of
injection) was injected at an isocratic 1 mL/min flow rate analyzed at
30 °C (oven temperature). Solubility determination of each
compound required a specific HPLC method. Settings are collected
in Table S11 (PROTACs) and Table S10 (building blocks).
Quantification. Injections were performed in duplicate for each

molecule’s calibration points. The retention time and area under the
curve (AUC in absorbance units) were collected, and the average was
calculated. The AUC average (y-axis) was plotted versus theoretical
concentration (mg/mL; x-axis) to obtain a calibration curve for each
molecule. Correlation equations and coefficients (R2) were efficiently
calculated for each compound (Table S12 for PROTACs and Table
S10 for building blocks). Samples were then injected in duplicate, and
the AUC averages and standard deviations were calculated. Finally,
the absorbance averages were interpolated into the corresponding
equations, extracting the final solubility values with their standard
deviation, after dilution factor corrections.
BRlogD. The mobile phase consisted of an isocratic solution of 20

mM ammonium acetate (pH 7.0) and acetonitrile, 40−60%,
respectively (v/v).16 Samples were dissolved in buffer/ACN and
injected into the XBridge column at a flow rate of 1.0 mL/min at 30
°C. Retention times were determined in duplicate, and the dead time,
t0, was recorded as the baseline disturbance. Consequently, log k′60
was calculated (capacity factor k′60 = [tR(60% ACN) − t0]/t0) and
transformed into the corresponding BRlogD value with the equation
BRlogD = 3.31x + 2.79.16

log kwIAM (Lipophilicity) and Δ log kwIAM (Polarity)
Determination Using IAM Systems.17 log kwIAM. The mobile
phase consisted of a solution of 20 mM ammonium acetate (pH 7.0)
in a mixture with acetonitrile at various percentages (from 10 to 50%,
v/v). Samples were dissolved in buffer/ACN and injected into the
previously mentioned IAM column at a flow rate of 1.0 mL/min at 30
°C. Chromatographic retention data were determined in duplicate for
the different mobile phase conditions. Data were recorded as log k′
(capacity factor k′ = [tR − t0]/t0), where tR and t0 are the retention
times of the sample and a nonretained molecule (citric acid),
respectively. Thus, log kwIAM values were calculated by an
extrapolation method of the experimental equation, at 0% acetonitrile.
Moreover, five gold standard compounds (caffeine, carbamazepine,
ketoprofen, theobromine, and toluene) were checked daily.

Δ log kwIAM. It was calculated with the equation Δ log kwIAM = log
kwIAM − clog kwIAM, where clog kwIAM (defined as log kwIAM for neutral
compounds30 that have PSA = 0) has been correlated to BRlogD with
the equation clog kwIAM = BRlogD·0.92 − 1.03.17

EPSA (Polarity) Determination. EPSAs were determined for the
16 PROTACs with accurate values (Table 1) following the SFC
protocol by Goetz and co-workers.32 Briefly, a polar stationary phase
(Chirex 3014) and a nonpolar mobile phase (supercritical CO2 with
the addition of 20 mM ammonium formate in methanol as a
modifier) were used to enable separation of compounds on the basis
of their polarity. The modifier was varied in 11 min from 5 to 60% at
5%/min in a linear gradient, holding at 60% for 4.9 min and reverting
to the original 5% in 0.1 min. The flow rate was 5 mL/min with the
outlet back pressure set to 100 bar, instead of 140 bar of the original
method. Samples were dissolved in DMSO, and the injection volume
was 5 μL. The column temperature was set to 40 °C. Each sample was
analyzed in duplicate.

Computational Part. Molecular Descriptors. The SMILES codes
of the PROTACs and building blocks were submitted to solubility
calculators (Table S4) using 2D descriptor-based solubility models:
AdmetSAR2 (www.lmmd.ecust.edu.cn/admetsar2/), ADMETLab
(www.scbdd.com), and pkCSM (biosig.unimelb.edu.au/pkcsm). In
addition, a 3D descriptor-based model, VolSurf+ (VS+, www.
moldiscovery.com, ver. 1.1.2, 2016), and a fragment-based model,
Marvin Sketch (ChemAxon, https://www.chemaxon.com, ver.
20.18.0, 2020), were also used. Log P was calculated with different
tools (Table S5): Swissadme (www.swissadme.ch/index.php), ACD
Laboratories (www.acdlabs.com), Molinspiration (www.
molinspiration.com), ADMETLab (www.admet.scbdd.com), Admet-
SAR2 (www.lmmd.ecust.edu.cn/admetsar2/), and pkCSM (biosig.
unimelb.edu.au/pkcsm). In addition, VolSurf+, MoKa (www.
moldiscovery.com, ver. 3.2.2, 2019), and Marvin Sketch and were
also used.

Moreover, Kode srl, Dragon (software for molecular descriptor
calculation, https://chm.kode-solutions.net/pf/dragon-7-0/, ver.
7.0.10, 2017), and AlvaDesc (Alvascience, Software for Molecular
Descriptors Calculation, www.alvascience.com/alvadesc/, ver. 1.0.18,
2020) were used to calculate 2D physicochemical descriptors
including nC (number of carbon atoms), PHI (Kier’s flexibility
index), and TPSA. Finally, the relationship between solubility and
molecular descriptors was investigated with OSIRIS DataWarrior
(www.openmolecules.org/datawarrior/, ver. 5.2.1, 2021) and Graph-
Pad Prism (www.graphpad.com, ver. 8.0.0, 2019).
Conformational Studies. The conformational profile was studied

for a subset of 14 neutral PROTACs, using conformational sampling
(CS) and steered molecular dynamics (SMD) tools.

The default conformational sampling (CS) tool implemented in the
Schrödinger molecular modeling package (CS) was employed to
generate relevant 3D conformations in water (Schrödinger Release
2021−3, Maestro, ver. 12.3, and Schrödinger Release 2021−3,
Macromodel). For this purpose, the force field OPLS_2005 (default
parameters) was applied to every 3D PROTAC structure (optimized
3D structures were previously obtained from www.mn-am.com/
online_demos/corina_demo).

The SMD was set up by using the online input generator
CHARMM-GUI (www.charmm-gui.org/).46 Each PROTAC struc-
ture (starting from an optimized geometry obtained with Corina
Demo) was first converted from mol2 to a PDB file, and the relative
CHARMM36 parameters were generated with the “Ligand reader and
modeler” functionality of CHARMM-GUI. Then, the periodic
boundaries, the structure water solvation, and the classical MD
input files for an NPT ensemble (constant number of particles,
pressure, and temperature) at 300 K were generated through the
“solution builder” functionality of CHARMM-GUI. The input and
parameter files were then downloaded and the production default
input file was modified, introducing the code for the additional SMD
velocities (parameters: SMD = on, SMDk = 7.0 kcal/mol/Å, SMDvel
= 2 × 10−5 Å/ts, SMDdir = 0.0 1.0 0.0). The SMD atoms subset (the
PROTAC structure) was defined by a modification of the occupancy
field (from 0 to 1) in a PDB file recording the coordinates after
system equilibration. NAMD47 2.13 CUDA-accelerated version
(www.ks.uiuc.edu/Research/namd/) was used to equilibrate the
system (250 ps) and to run the SMD production (10 ns) on a
Linux workstation (OS CentOS7, 32GB DDR2; CPU Xeon Octa-
core 3.50 GHz, Titan XP GPU). Lastly, the resulting production
trajectories were visualized and cleaned (eliminating the explicit
solvent) with VMD48 (http://www.ks.uiuc.edu/Research/vmd).

Finally, the generated trajectories by CS and SMD were loaded into
VEGA ZZ software (http://www.vegazz.net/)49 for 3D PSA
calculation (probe radius 0 Å).
Machine Learning Classification. The Weka software50 (ver.

3.8.5) was used to perform a classification of PROTAC solubility
based on log kwIAM, BRlogD, and TPSA values. To do so, supervised
random tree and random forest algorithms were used (default
parameters) to create efficient prediction models.
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