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ABSTRACT: Twelve Cu-based ternary (Cu−Me1−S, Me1 = Fe, Sn,
or Sb) and quaternary (Cu−Me2−Sn−S, Me2 = Fe, Zn, or V)
nanocrystalline sulfides are shown as perspective antibacterial
materials here. They were prepared from elemental precursors by a
one-step solvent-free mechanochemical synthesis in a 100 g batch
using scalable eccentric vibratory ball milling. Most of the products
have shown strong antibacterial activity against Escherichia coli and
Staphylococcus aureus bacteria. For instance, stannite Cu2FeSnS4 and
mohite Cu2SnS3 were the most active against E. coli, whereas
kesterite Cu2ZnSnS4 and rhodostannite Cu2FeSn3S8 exhibited the
highest antibacterial activity against S. aureus. In general, stannite has
shown the best antibacterial properties out of all the studied samples.
Five out of twelve products have been prepared using mechano-
chemical synthesis for the first time in a scalable fashion here. The
presented synthetic approach is a promising alternative to traditional syntheses of nanomaterials suitable for biological applications
and shows ternary and quaternary sulfides as potential candidates for the next-generation antibacterial agents.

1. INTRODUCTION
Contemporary human society is confronted with several
critical concerns, and infection diseases are among the most
important ones.1 Antibiotics worked very well against bacteria
in the past. However, nowadays, antimicrobial resistance has
been reaching a critical level.2 Insight into new antibacterially
active materials, not yet known to the microbes, is therefore a
reasonable approach. Finding a chemically stable, non-toxic,
and low-cost antibacterial material is of utmost importance.
Metal sulphides mimicking safe natural minerals seem to be
rising stars in this area.1,3 More binary metal sulphides
perfectly serve this role. The antibacterial potential of
Ag2S,4−8 CdS,9−17 CuS18−27 MoS2,

28−38 and ZnS39−44 has
been studied many times. There are few publications on the
antimicrobial action of more exotic binary sulfides like SnS2,

45

CoS2,
46 NiS,47 and In2S3.

48 Binary sulfides are most often
complemented by another compounds like oxides to get the
composite with good antibacterial activity. The works on the
antibacterial activity of ternary and quaternary sulfides are even
more scarce, namely just the antibacterial potential of
Cu2SnS3,

49 Cu2ZnSnS4,
50,51 and Cu12Sb4S13

52 has been
discovered so far.

There are many synthetic pathways for sulfide nanoscale
production,3,53,54 among which a scalable, solvent-free one-step
methodology called mechanochemical synthesis has found an

inevitable place.55,56 One of the scalable alternatives to the lab-
scale mechanochemical synthesis is eccentric vibratory mill-
ing57 and it has been sufficiently applied to prepare both
sulfides58−65 and selenides.66

This article provides a comprehensive viewpoint on the
antibacterial potential of twelve Cu-based ternary and
quaternary sulfides mechanochemically synthesized in a
scalable fashion. For the most of the products, the antibacterial
activity has not been reported yet. Moreover, five of them have
not even been prepared mechanochemically so far. As the
eccentric vibratory mill used for the experiments in this study
was located at Technical University of Clausthal, Germany, a
birthplace of famous microbiologist Robert Koch,67 the
samples in this study are labeled as KOCHx (x being a
sample number), as a tribute to him.
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2. MATERIALS AND METHODS
2.1. Materials. For mechanochemical synthesis of

chalcopyrite CuFeS2, chatkalite Cu6FeSn2S8, stannoidite
Cu8Fe3Sn2S12, skinnerite Cu3SbS3, and stannite Cu2FeSnS4,
the following precursors were used: copper (Merck, Germany,
99,7% purity), antimony (Merck, Germany, 99.8% purity), tin
(Nihon Seiko, Japan, 99% purity), iron (WINLAB, Germany,
99% purity), and sulfur (CG-Chemikalien, Germany, 99%
purity).

2.2. Mechanochemical Synthesis. The details on the
mechanochemical syntheses of the majority of the studied
compounds can be found in the following publications:
mawsonite Cu6Fe2SnS8,

58 rhodostannite Cu2FeSn3S8,
59 kester-

ite Cu2ZnSnS4,
60,65 tetrahedrite Cu12Sb4S13,

61 colusite
Cu13VSn3S16,

62 mohite Cu2SnS3,
63 and famatinite Cu3SbS4.

64

The weights of precursors for all the compounds (including
those newly prepared) and the corresponding milling time are
provided in Table 1.

The rest of the milling conditions was similar for all the
samples. The mechanochemical syntheses were carried out in
an industrial eccentric vibratory ball mill ESM 656-0.5ks
(Siebtechnik, Germany) working under the following con-
ditions: A 5 L steel satellite milling chamber attached to the
main corpus of the mill, 83 tungsten carbide balls with a
diameter of 35 mm and a total mass of 30 kg, 80% ball filling in
the milling chamber, amplitude of inhomogeneous vibrations
20 mm, rotational speed of the eccenter 960 min−1, and an
argon atmosphere. The total feed of reaction precursors was
100 g per batch. The milling was performed for different times
which are mentioned in the appropriate sections.

2.3. Characterization. 2.3.1. X-ray Diffraction. The phase
composition of all mechanochemically prepared products was
analyzed by X-ray diffraction (XRD, Rigaku SmartLab 3 kW)
in a Bragg−Brentano geometry in a 2θ-angle range of 10−90°
using Cu Kα radiation with 30 kV and 40 mA and a scan speed
of 4° min−1. The phase identification in the acquired XRD
patterns was performed using the HighScore Plus software
(PANalytical B.V., The Netherlands, version 3.0e) in the 2θ-
angle range of 15−65°.
2.3.2. ζ-Potential Measurements. ζ-potential was measured

in the diluted water solution of sodium chloride (10 mM)
using Zetasizer Nano ZS (Malvern, Malvern, U.K.) setup, the
electrophoretic mobility of the particles being converted to

zeta potential using the Smoluchowski equation built in the
Malvern Zetasizer software. The measurements were per-
formed in triplicate with at least 12 sub-runs for each sample.

2.4. Antibacterial Activity. The antibacterial properties of
the samples were evaluated by the agar well diffusion method
by a slight modification in the process reported in.68 The
tested bacteria (Staphylococcus aureus CCM 4223 and
Escherichia coli CCM 3988) were obtained from the Czech
collection of microorganisms (CCM, Brno, Czech Republic).
The procedure used was as follows:

• Bacteria were cultured overnight, aerobically at 37 °C in
Luria−Bertani (LB) medium (Sigma-Aldrich, Saint-
Louis, MO) with agitation. After this, bacteria were
mixed with 50% glycerol (Mikrochem, Pezinok,
Slovakia) and frozen glycerol stock cultures were
maintained at −20 °C. Before the experimental use,
cultures were transferred to LB medium and incubated
for 24 h, and used as the source of inoculum for each
experiment.

• Plate count agar (HIMEDIA, Mumbai, India) medium
was cooled to 42 °C after autoclaving, inoculated
overnight with liquid bacterial culture to a cell density of
5 × 105 colony-forming units per mililiter (cfu/mL).

• 20 mL of this inoculated agar was pipetted into a 90 mm
diameter Petri dish.

• Once the agar was solidified, five mm diameter wells
were punched in the agar and filled with 50 μL of
samples prepared in the form of suspensions (prepared
by dispersing 20 mg of KOCHx samples in 1 mL of
distilled water). Gentamicin sulfate (Biosera, Nuaille,
France) with the concentration of 30 mM was used as a
positive control.

• The plates were incubated for 24 h at 37 °C.
• Afterward, the plates were photographed and the

inhibition zones were measured by the ImageJ 1.53e
software (National Institutes of Health, Bethesda, MD).
The values used for the calculation are mean values
obtained from 3 replicate tests.

The antibacterial activity was calculated by applying the
formula reported in:68 %Relative inhibition zone diameter
(RIZD = [(IZD sample − IZD negative control)/IZD
gentamicin] × 100, where RIZD is the relative inhibition
zone diameter (%) and IZD is the inhibition zone diameter

Table 1. Weights of the Precursors and Milling Time for the Mechanochemical Syntheses of Ternary and Quaternary Cu-
Based Sulfides Synthesized in this Studya

weight (g) milling time (min)

sample desired phase phase name Cu Fe Sb Sn S

KOCH 1 CuFeS2 chalcopyrite 34.6 30.4 35.0 720
KOCH 258 Cu6Fe2SnS8 mawsonite 53.9 12.9 13.7 29.5 240
KOCH 3 Cu6FeSn2S8 chatkalite 41 6 25.5 27.5 120
KOCH 4 Cu8Fe3Sn2S12 stannoidite 39.2 12.9 18.3 29.6 120
KOCH 559 Cu2FeSn3S8 rhodostannite 16 7 32.2 44.8 600
KOCH 660 Cu2ZnSnS4 kesterite 28.9 14.9 27.0 29.2 360
KOCH 761 Cu12Sb4S13 tetrahedrite 45.8 29.2 25.0 240
KOCH 862 Cu13VSn3S16 colusite 47.3 20.4 29.4 720
KOCH 963 Cu2SnS3 mohite 37.2 34.7 28.1 180
KOCH 1064 Cu3SbS4 famatinite 43.3 27.6 29.1 240
KOCH 11 Cu3SbS3 skinnerite 46.7 29.8 23.5 120
KOCH 12 Cu2FeSnS4 stannite 29.6 13.0 27.6 29.8 120

aFor colusite (KOCH8), also 2.9 g of vanadium was used for the synthesis.
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(mm). As a negative control, the inhibition zones of distilled
water equal to 0 were taken. The inhibition zone diameter
(IZD) was obtained by measuring the diameter of the
transparent zone and subtracting the size of the wells (5 mm).

3. RESULTS AND DISCUSSION
3.1. X-ray Diffraction. The formation of nanoparticles by

mechanochemistry is well-known.55,69 In general, two

phenomena are observed during high-energy milling, mechan-
ical activation and mechanochemical reaction.70,71 While the
first one can be considered a top-down approach (by
diminishing the crystallite size down to the nanoscale), the
second one might also be considered as a bottom-up strategy,
as the size of the produced nanoparticles can be increased with
prolonged milling. The particle size of the precursors is being
reduced down to the nanoscale and simultaneously, the

Figure 1. XRD patterns of all powders under study containing mostly ternary and quaternary sulfides: (a) KOCH 1-3, (b) KOCH 4-6, (c) KOCH
7−9, (d) KOCH 10−12. High-intensity diffraction peaks are marked in black for the main present phase, additional secondary phases are marked
in grey for each system.

Figure 2. Relative inhibition zone diameter (RIZD) for all twelve studied samples for both S. aureus and E. coli. The positive control was antibiotic
gentamicin with a concentration of 30 μg/mL and its RIZD was taken as 100%.
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reaction between them occurs on the grain boundaries. The
produced nanoparticles are most often present in the form of
microcrystalline agglomerates; however, the X-ray diffraction
usually reveals nanoscale dimensions of the individual
crystallites.

The XRD patterns of all the samples synthesized in the
present study and their principal identified phases are provided
in Figure 1.

The mechanochemical syntheses of ternary and quaternary
Cu sulfides represent an excellent scalable method to obtain a
predetermined Cu−sulfide phase.63,65 In general, all samples
were composed of the desired ternary or quaternary copper
sulfide as a major phase. However, secondary phases were also
present either as a result of an incomplete reaction between the
initial reactants or because of the fact that they represent
intermediate phases formed on the reaction pathway to the
desired compound. A significant peak broadening clearly shows
the nanocrystalline character of the products, and this has been
also confirmed by calculations from XRD data and trans-
mission electron microscopy (TEM) analysis for seven
products that have been synthesized before.58−65

It can be deduced that the secondary phases are present in
small amounts by comparing the peak intensities of the
identified phases in each processed system. Only in the
synthesis of tetrahedrite (Cu12Sb4S13, KOCH7 sample), similar
peak intensity of famatinite (Cu3SbS4) was registered. The
presence of secondary phases is something that must be
followed for scalable intentions in potential industrial
applications, especially if the presence of a specific secondary
phase compromises the antibacterial activity of the final
product. This can be exemplified in the KOCH7 system, where
neither of the two ternary Cu-based sulfides did contribute to
the antibacterial response, as will be shown later.

An overview of the identified phases in each processed
sample, together with their crystallographic information
references or synthesis methodologies is provided in the
supplementary material (Table S1).

3.2. Antibacterial Activity. 3.2.1. Relative Inhibition
Zone Diameter (RIZD) determination using the agar well
diffusion method. Twelve Cu-based sulfides were subjected to
antibacterial tests using the agar well diffusion method. The
relative inhibition zone diameters (RIZDs) received for both
bacterial strains are summarized in Figure 2 and representative
images from the experiments can be seen in the supporting file
(Figure S1).

It can be seen that only three samples did not exhibit any
antibacterial activity, namely chalcopyrite CuFeS2, chatkalite
Cu6FeSn2S8, and tetrahedrite Cu12Sb4S13. Out of these three
compounds, only the antibacterial potential of tetrahedrite has
been revealed so far.52 In the mentioned study, the E. coli
bacteria could be almost completely destroyed by the
Cu12Sb4S13 film in 10 min. The fact that tetrahedrite was not
active in our case might be connected with the difference in the
methodology used to prepare the material, which results in
dissimilar properties (e.g., in nonidentical particle size).

For all other nine samples, at least some activity could be
observed. In general, the activity was better against gram-
negative E. coli (7 out of 12 investigated samples were active
and RIZD values were slightly larger for the other bacteria). In
the case of gram-positive S. aureus, the activity was registered
in 5 out of 12 samples. Interestingly, different compounds were
active against different types of bacteria, e.g., kesterite
Cu2ZnSnS4 and rhodostannite Cu2FeSn3S8 were active only
against gram-positive S. aureus, whereas skinnerite Cu3SbS3,
famatinite Cu3SbS4, collusite Cu13VSn3S16, and mawsonite
Cu6Fe2SnS8 were active only against gram-negative E. coli. The
activity against both types of bacteria was detected only
scarcely (in 3 out of 12 samples), namely for stannite
Cu2FeSnS4, mohite Cu2SnS3, and stannoidite Cu8Fe3Sn2S12.
The highest RIZD was evidenced in the case of stannite
(136.25 ± 8.6%) against E. coli. Against S. aureus, the best
activity out of 12 studied samples was evidenced for kesterite
Cu2ZnSnS4 (69.41 ± 8.21%).

Figure 3. Dependence of antibacterial activity expressed as RIZD on ζ-potential. The formulas of the main phases in the samples are in different
color: green- active against both bacteria, red�active only against S. aureus, blue�active only against E. coli, black�not active against either
bacteria.
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The antibacterial potential of kesterite has already been
studied earlier.50,51 The zone of inhibition (ZOI) reported in50

was 3 and 5 mm for E. coli and S. aureus, respectively, being in
accordance with better activity of this compound against S.
aureus observed also in our case. In the mentioned study, 1 mg
of the powder was introduced into the well, which is the same
as in our case (accepting the premise that the powder was
homogeneously distributed in the distilled water before
testing). The mechanism of antibacterial action of kesterite is
most probably connected with the electrostatic interaction due
to the opposite surface charges of the compound and the
bacterial cell wall.72

The antibacterial effect of mohite Cu2SnS3 has been revealed
by Lokhande et al. upon testing it against the same bacteria as
in our case (S. aureus and E. coli). The antibacterial action was
stronger against E. coli, similar to our study. The authors
ascribed the difference to the thickness of the walls of the two
bacteria, being 80 nm thick for S. aureus and only 10 nm thick
for E. coli, respectively,73 making the former one more
resistant. The authors have demonstrated the damage caused
to the E. coli and S. aureus cells by providing the scanning
electron microscopy (SEM) images of the bacteria after being
subjected to the effect of CTS nanocrystals. While E. coli
bacterial cells’ length increased as a result of the exposure to
the Cu2SnS3 nanoparticles, the shrinkage of cellular texture and
extrusion of intracellular fluids were observed in the case of S.
aureus. Similar to kesterite, the authors also ascribe the
mechanism of action to the electrostatic interaction between
the oppositely charged species (positive charge of the
nanoparticles and negative charge of the cell wall).74,75

3.2.2. Relationship between Antibacterial Action and ζ-
Potential Measurements. The surface charge of the
compounds, which is expressed by their ζ-potential, can play
a decisive role in the antibacterial action. ζ-potential reflects
the stability of the reaction systems in the form of colloidal
dispersions.76

Therefore, ζ-potential measurements for all samples were
performed. The measured values are summarized in Figure 3
and the Electronic Supporting Information (Table S2). It can
be seen that the whole range of ζ-potential spanning from very
negative to very positive values was evidenced in our case, the
most negative being in the case of Cu3SbS3 (−32.9 mV) and
the most positive in the case of chalcopyrite CuFeS2 (15.3
mV). Similar results have been observed in the literature.77−79

The presence of iron seems to lead to the positive ζ-potential
values (KOCH 1−5, 12). This is a result of the dissolution of
Fe2+ ions originating from iron particles and their transfer into
the solution.77 This is also the case of Zn2+ ions (KOCH 9).80

On the other hand, the presence of antimony yields negative ζ-
potential values (samples KOCH 7, 10 and 11), as evidenced
for chalcostibite CuSbS2.

78 The direct correlation between the
ζ-potential values and the antibacterial action can be seen in
Figure 3.

The correlation of ζ-potential values and the RIZD detected
for all samples provides us with some clues. First, it seems that
a very positive ζ-potential value is not beneficial, as when it was
higher than 10 mV, no antibacterial action was observed.
Second, there is a markable difference in the fact that ZP values
are beneficial for the antibacterial action against the given
bacterial species. While quite a wide range of ZP values (from
almost −35 to +8 mV) are efficient against E. coli, there is quite
a narrow window for the action against S. aureus (values
between +4 and +10 mV). The products with the negative ZP

values are not active against S. aureus, but are only active
against E. coli, so there might be some correlation between the
negative surface charge of the given sulfides and the properties
of the gram-negative E. coli bacteria.

In three out of four studies reporting the antibacterial
activity of the multinary sulfides published so far, the authors
also determined the minimum inhibitory concentration
(MIC). It is defined as the lowest concentration of a drug
that will inhibit the visible growth of an organism after
overnight incubation. The MIC value for CZTS nanocrystals
prepared in50 was 500 μg/mL against all tested bacteria,
including E. coli and S. aureus. The antibacterial action of
kesterite was tested against these bacterial cell lines (among
others) also in51 and the MIC value was in the range of 128−
512 μg/mL, thus the results are in accordance. Lokhande et
al.49 observed a significant reduction in the growth of bacterial
colonies (reporting this to be MIC) after the introduction of 1
and 3 mL of mohite Cu2SnS3 solution (solvent unspecified) for
S. aureus and E. coli, respectively; thus the activity was better
against S. aureus in this case. However, as mentioned earlier,
the ZOI obtained by the agar well diffusion method in that
study was larger for E. coli than for S. aureus, so the results from
the two complementary methods are contradictory. In the
present research, we also tried to determine the MIC value,
however, as our powders are black, their dispersion in the
solution with bacteria caused the solution to become opaque,
which hampered the proper determination of MIC, as this is
done spectrophotometrically.

■ CONCLUSIONS
Twelve ternary and quaternary nano-sulfides were successfully
prepared by a mechanochemical one-step solvent-free synthesis
in a 100 g batch using an eccentric vibratory ball mill. The
synthesis is perfectly feasible just by solid-state milling of the
elemental precursors, as in the majority of experiments, the
desired sulfides were prepared as main phases. The agar well
diffusion method has shown that at the concentration of 20
mg/mL, most of the products are efficient antibacterial agents,
throwing some light on the influence of the chemical
composition on the antibacterial action. In general, better
activity of the studied sulfides was evidenced against gram-
negative E. coli; however, in two cases (kesterite Cu2ZnSnS4
and rhodostannite Cu3FeSnS8), only the activity against S.
aureus was observed. The most potent agents were found to be
stannite Cu2FeSnS4 and mohite Cu2SnS3. The former one
exhibited a significant antibacterial action against both types of
bacteria. Only three out of twelve products (namely,
chalcopyrite CuFeS2, chatkalite Cu6FeSn2S8, and tetrahedrite
Cu12Sb4S13) did not show any activity at the studied
concentration. The investigation on the relationship between
ζ-potential values and antibacterial activity has revealed that
the products with the negative ζ-potential values were efficient
only against E. coli bacteria, thus there might be some
relationship between their negative charge and the properties
of the E. coli cell wall. The present research has shown
nanocrystalline sulfides as interesting alternatives to traditional
antibacterial agents and also the robustness of the
mechanochemical synthesis performed on a larger scale.
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Mariano Casas-Luna − Central European Institute of
Technology, Brno University of Technology, 61200 Brno,
Czech Republic

Erika Dutková − Institute of Geotechnics, Slovak Academy of
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