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Abstract
Treatment planning is an essential step of the radiotherapy workflow. It has become more sophisticated over the past couple of
decades with the help of computer science, enabling planners to design highly complex radiotherapy plans to minimize the normal
tissue damage while persevering sufficient tumor control. As a result, treatment planning has become more labor intensive,
requiring hours or even days of planner effort to optimize an individual patient case in a trial-and-error fashion. More recently,
artificial intelligence has been utilized to automate and improve various aspects of medical science. For radiotherapy treatment
planning, many algorithms have been developed to better support planners. These algorithms focus on automating the planning
process and/or optimizing dosimetric trade-offs, and they have already made great impact on improving treatment planning
efficiency and plan quality consistency. In this review, the smart planning tools in current clinical use are summarized in 3 main
categories: automated rule implementation and reasoning, modeling of prior knowledge in clinical practice, and multicriteria
optimization. Novel artificial intelligence–based treatment planning applications, such as deep learning–based algorithms and
emerging research directions, are also reviewed. Finally, the challenges of artificial intelligence–based treatment planning are
discussed for future works.
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Introduction

Artificial intelligence (AI) has recently become one of the most

popular words in both industry and academia. Properly known

as a modern technology term, AI was perceived as a powerful

entity that could “think and act humanly without losing

rationality.”1 In computer science fields, AI is defined as the

study of algorithms and devices that perceive information from

the environment and take action to maximize the chance of

achieving specific goals.2 Due to the rapid increases in compu-

tational power as well as in data collection and sharing cap-

abilities, a large number of AI techniques, particularly deep
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learning theories and algorithms, have been published in recent

several years. Following this burst of techniques, AI has per-

meated nearly every aspect of our lives and is rapidly revolu-

tionizing how we live. In the field of radiation oncology, the AI

revolution has also been grounded in the automated support of

various parts of the radiotherapy clinical workflow: target and

tissue segmentation, treatment planning, radiotherapy delivery,

and treatment response assessment. This article reviews auto-

matic treatment planning (ATP) tools in radiotherapy treatment

planning, which have evolved from simple automation execu-

tion to the development of AI as a future replacement of current

day manual treatment planning process. Artificial intelligence

in radiotherapy treatment planning, particularly deep learning–

based investigations, would be the focus of this article. Artifi-

cial intelligence applications in other aspects of radiotherapy

such as autosegmentation, image processing, or QA can be

found in other reviews.3,4

Radiotherapy treatment planning, especially inverse treat-

ment planning, is a laborious process taking hours or even days

to complete. Figure 1A shows a brief workflow of manual

treatment planning process in the current clinic practice. A

workflow starts with a list of dosimetric requirements, includ-

ing target coverage and organ-at-risk (OAR) constraints. Based

on the specific requirements of each case, a human planner

makes decisions about basic planning parameters, including

beam energy, number, angles, and so on. While generating a

minimally acceptable plan may be quick, improving a plan is

much less straightforward and often requires many iterations

between planners treatment planning system (TPS). In addi-

tion, physicians may need to interact with human planners back

and forth for plan improvement based on intermediate plan

results. The iterative nature of these interactions leads to tre-

mendous human efforts and time commitment.

Because of the automatic nature, ATP has successfully

reduced plan generation time, especially human interactions

(mostly repetitive operations) with TPSs.5,6 Thus, human plan-

ners are able to devote more time to explore the optimal dosi-

metry for individually optimized treatment planning.

Furthermore, the improved efficiency could also enable clinical

paradigm changes, including novel treatment planning strate-

gies,7 treatment course monitoring methods,8 and treatment

delivery workflows.9,10

Besides efficiency, ATP has also improved plan quality

consistency and error rate. Because conventional treatment

planning is a trial-and-error process exploring dosimetric and

clinical trade-offs, the final plan quality is dependent on both

planner experience and time available for planning. Many ATP

studies across various disease sites have reported a more con-

sistent treatment plan quality compared to manual plans.11-16

As such, ATP can reduce health-care disparities by making

advanced treatment planning expertise broadly available.17

Unlike efficiency and consistency, plan quality has not been

improved by current ATP techniques. While studies have

reported that machine-generated plans are clinically accepta-

ble, others have indicated that ATP requires essential human

tuning or manipulation to ensure acceptable quality and

safety.18,19 While humans should remain the center of treat-

ment planning for plan safety and quality, an important goal of

AI-based treatment planning algorithms is to augment treat-

ment plan quality. Many new approaches are currently being

explored in this area. In the following sections, we will review

the past efforts of ATP applications in current research direc-

tions, as well as future research topics and challenges.

Current ATP Techniques

This section summarizes the current ATP techniques in the past

decade. The literature was searched using National Library of

Medicine PubMed search engine, and key works regarding

technical developments and clinical investigations were

selected based on our clinic practice experience and our pro-

fessional society consensus. Based on the impact of clinic prac-

tice workflow, the current ATP solutions are organized into 3

categories for discussion20:

a. automated rule implementation and reasoning (ARIR);

b. modeling of prior knowledge in clinical practice; and

c. multicriteria optimization (MCO).

Automated Rule Implementation and Reasoning

In Figure 1A, human planners need to decide basic treatment

planning parameters. These decisions are usually determined

based on institutional guidelines as well as the planner’s indi-

vidual preferences, that is, rules with straightforward criteria.

For example, in upper esophagus planning, static beams are

often arranged in 2 “bouquets” avoiding lateral lung to reduce

lung V5 Gy. To explore the dose trade-offs, for example, OAR

dose constraints and target coverage, experienced human plan-

ners usually need a few trials with adjustments of planning

strategies by experienced planners.21 These adjustments are

typically simple combinations of basic operations in the TPS,

but the reasoning process may require complex, extensive

human knowledge, modeled by “if-then” binary actions.

To implement simple clinical guidelines with possible itera-

tive adjustments following binary logic, an automated com-

puter program with hard-coded rules and “if-then” structures

would be an ideal solution. Figure 1B shows a brief illustration

workflow of ARIR. As presented, the TPS directly analyzes

patient anatomy and dosimetric requirements and mimics the

reasoning process in manual treatment planning. Following a

well-defined logic reasoning scheme from human definitions,

ARIR can reduce the requirement of human operations in plan

generation (as presented in red arrow), particularly repetitive

operations.

Vendors of modern TPS have provided ARIR solutions to

enable scripting functions by users’ inputs. For example, Var-

ian Eclipse system (Varian Medical System, Palo Alto, Cali-

fornia) has a scripting application programming interface

function. This function, ESAPI, allows the user to build spe-

cific automatic programs for research and clinic use. Built in a

C# environment, ESAPI has function libraries that can simulate
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most actions in the treatment planning process, including con-

tour manipulation, beam setup, inverse dose–volume histogram

(DVH) optimization, dose calculation, and plan statistics cal-

culation. Users dynamically adjust DVH constraints to

iteratively achieve a specific dosimetric goal after evaluation

of ongoing optimization results (ie, reasoning).22

Another available solution in enhanced integration is

AutoPlanning in the Pinnacle TPS (Philips Radiation Oncology

Figure 1. A, A brief workflow of manual treatment planning. B, A brief workflow of ARIR in treatment planning. C, A brief workflow of KBP

in treatment planning. D, A brief workflow of MCO in treatment planning. E, A brief workflow of AI use in future treatment planning. AI

indicates artificial intelligence; ARIR, automated rule implementation and reasoning; KBP, knowledge-based planning; MCO, multicriteria

optimization.
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Systems, Fitchburg, Wisconsin). Unlike ESAPI, AutoPlanning

is a fully developed product as an optional function in the

Pinnacle TPS. It does not involve computer program scripting;

instead, a planning template is required to list specific require-

ments in target prescription and OAR sparing.19 According to

the input template, AutoPlanning automatically generates aux-

iliary planning structures for spatial dose distribution manipu-

lation. Then the program starts the optimization and follows the

iterative process as in manual planning to fine-tune the plan

based on the input template. Some underlying settings, such as

cold/hot spot control, can be adjusted through the Pinnacle

platform (Philips Radiation Oncology Systems, Fitchburg,

Wisconsin).

Much work has been focused on realizing ATP through the

rule-based implementation of reasoning with vendor-specific

automation capabilities. While early efforts started in prostate

intensity-modulated radiotherapy (IMRT) planning,23

researchers have since focused on IMRT and volumetric modu-

lated arc therapy (VMAT) planning of head and neck cancer

due to its complex trade-off relationships in manual plan-

ning.6,12,24-26 Automation of rule-based implementation rea-

soning is frequently used with other machine learning

algorithms, with recent examples including rapid breast and

pelvis treatment planning.27,28

Modeling of Prior Knowledge in Clinical Practice

In human practice, a natural way to improve manual treatment

planning efficiency and quality is to review similar prior

“good” cases. Specifically, planning parameters in previous

cases, such as beam arrangements and DVH objectives in

inverse planning, can be introduced directly to the planning

process or used as decision references for a current case. Fol-

lowing this idea, researchers have developed statistical models

to extract certain features from prior “good” cases using best

clinical judgment and knowledge. When using corresponding

features from a current case as inputs, these models can predict

planning parameters with possible distribution intervals, which

can be used for treatment planning with improved efficiency.

This approach, also known as knowledge-based planning

(KBP), has gained popularity. Figure 1C projects a workflow

of KBP utilization. Information extracted from KBP can assist

human planners during initial decision-making. Such informa-

tion can be used as TPS input for certain automated processes.

In general, the use of KBP can potentially reduce the iterative

plan adjustments before reaching a satisfied treatment plan.

In DVH-based inverse optimization, DVH constraints are

important to high-quality plans; optimal constraints can

quickly lead to convergence with the balanced dosimetric out-

come. Thus, many studies have been developed for DVH-based

knowledge modeling. Specifically, a number of previous

acceptable or superior clinical cases of a given anatomical site

are used. The required case number (typically a few 10s) varies

widely in different clinical applications, which depend on treat-

ment sites, delivery techniques, and clinical evaluation stan-

dards.16 Characteristic relationships between these cases’ DVH

results and anatomical/geometrical features of target(s)/OARs

are established during the modeling process. For a new patient

with the same anatomical site, a set of achievable DVH curves,

including both target(s) and OARs, can be predicted by the

model. The predicted DVH curves can be used as references

for the human to select DVH constraints during the manual

planning process or as the inputs for an automated treatment

planning workflow.

A representative DVH-based knowledge modeling method

was published by Yuan et al.29 In their work, models for pros-

tate and head and neck IMRT treatments were built. The geo-

metry of an OAR relative to the planning target volume (PTV)

was represented by the distance-to-target histogram (DTH),

and characteristic geometry and dosimetric features were

derived from DTH and DVH by principal component analysis

(PCA), respectively. Results showed good OAR dose predic-

tion results in both modeled sites. This DVH-based knowledge

modeling has been commercially developed as RapidPlan by

Varian (Varian Medical System) as an optional function in the

Eclipse TPS. Besides RapidPlan, a number of research studies in

DVH-based knowledge modeling methods have been reported

for a variety of treatment sites, including prostate,30-33 brain,34

head-and-neck,35-37 lung,38-40 liver,41 and pelvis.42

The key limitation of DVH-based approach is the lack of

spatial information, and the planners may need extra work to

deal with a case with uncommon OAR/target geometry. Thus,

in addition to the DVH-based approach, knowledge-based

modeling has been reported for voxel-based prediction, in

which dose values of individual voxels are predicted with pre-

served spatial information.43-45 Knowledge-based modeling

has also been reported for beam angle arrangement for lung

IMRT treatment.46,47

Multicriteria Optimization

In the DVH-based inverse optimization of most commercially

available TPS, a cost function has to be defined for the mini-

mization problem. This cost function combines information

from all volumes of interest as a weighted sum of the penalty

from each dosimetric criterion from DVH constraints. The

trade-off between the target(s) and different OARs is repre-

sented by the weighting coefficient of each criterion. The draw-

back of this approach is the requirement of reoptimization if the

dosimetric preference of humans is changed during plan eva-

luation. Thus, finding the optimal trade-off may become time-

consuming. To overcome this issue, MCO was proposed to

generate multiple “anchor” plans simultaneously instead of a

single plan during the inverse planning process. In each anchor

plan, a single DVH criterion of OAR is optimized for best

sparing without compromising tumor target dosimetric cri-

teria.48,49 These plans will form a hypersurface in the

N-dimension space, where N is the number of independent

(ie, competing) OAR dosimetric criteria. Referred to as the

Pareto surface, this hypersurface contains the optimal plans

following different dosimetric criteria. Figure 1D shows a

workflow using MCO in treatment planning. Clinicians can
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interactively work with TPS: Specifically, one can navigate

through a series of Pareto-optimal plans on different Pareto

surfaces with linear interpolations to choose an optimal plan

based on the clinicians’ evaluation of all dosimetric criteria.50

Thus, if one changes the dosimetric criteria in plan evaluation,

the optimal plan can be found in a very short time without

reoptimizations from human planners.

In theory, MCO requires the generation of many plans to

form the Pareto surface, which may become very time-

consuming even with automation. Craft and Bortfeld analyzed

head and neck IMRT plans and proved that only a small num-

ber of plans are needed to form the Pareto database of feasible

plans through objective correlation matrices and PCA of the

beamlet solutions.51 Specifically, if N-independent dosimetric

criteria are defined, N þ 1 plans can form a feasible Pareto

surface. This finding led to the clinically feasible application of

MCO, which was first implemented in the RayStation TPS

(RaySearch, Stockholm, Sweden). The MCO has also become

available in the recent version of the Eclipse TPS. In these

TPSs, users select the optimal plan by adjusting the combina-

tion of dosimetric criteria through interactive sliding bars (ie, a

posteriori interaction).

The MCO can also be implemented in the a priori approach

with a set of defined dosimetric preferences before the inverse

optimization. Only a single optimal plan is generated with full

automation, and thus, it requires no need for human interac-

tions. This approach was proposed by Breedveld et al in their

work of IMRT Cycle (iCycle).52,53 In iCycle, the generation of

the optimal plan is governed by a “wish list,” which contains

the desired dosimetric criteria with assigned priorities in order.

During the optimization, these criteria are sequentially mini-

mized according to the ascribed priorities to reach the desired

plan on the Pareto surface. In addition, iCycle allows beam

arrangement optimization, including beam number and beam

angle. Full Pareto-optimal plans for each number of beam

directions can be used as outputs for human’s a posteriori

interaction. So far, iCycle and its derived platform have been

demonstrated in IMRT planning of head and neck,53 spine,54

prostate,55 pelvis,56 and gastric cancers.57

Novel AI Applications in ATP

Future treatment planning process using a powerful AI agent

can be effective and efficient with minimum human interven-

tion. Figure 1E demonstrates the role of AI in future treatment

planning workflow. We envision that AI can implement all

human operations and reasoning logics based on the compre-

hensive analysis of patient anatomy. Parameter such as treat-

ment prescription and delivery technique can be specified as

human inputs from physicians, but these parameters can be

incorporated into AI decision-making. The future workflow

involves minimum human efforts from human planners and

physicians; the saved human efforts can be used for other

human-centered clinic care tasks.

Currently, a few emerging research topics have been

reported focusing on the ATP. While there is also active

research ongoing along the directions discussed in the above-

mentioned section, this section focuses on the novel AI algo-

rithms in ATP, primarily deep learning–based approaches with

deep architecture and compositionality.58 In this section, we

discuss recent pioneering efforts of novel AI applications in

ATP and introduce a few emerging research directions.

Recent Progresses of AI in ATP

A knowledge-based modeling approach was one of the earliest

breakthroughs in ATP. Boutilier et al evaluated the clinical

applicability of the simultaneous prediction of optimization

objective weights for prostate IMRT. Using optimal weights

of objectives in previous cases, multinomial logistic regression

and weighted K-nearest neighbor algorithms were deployed in

the training of weight prediction.59 Results showed that both

methodologies could produce good predictions for clinical

plans, although no significant performance improvements were

found in comparison with the model using logistic regression.

Ma et al proposed knowledge-based modeling using support

vector regression (SVR).60 In their work, a PTV-only optimi-

zation in the absence of OAR considerations was used as the

model input in addition to anatomical/geometrical features, and

DVH prediction was implemented by SVR as a robust super-

vised learning technique. In a comparison study, this model

was more accurate than the RapidPlan model in bladder and

rectum DVH prediction.60

Another major research area in ATP is the prediction of

spatial dose distribution. While DVH-based prediction is pre-

valent, its lack of spatial information may not reveal certain

dosimetric end points, such as dose conformity and gradient

measurements. Accurate spatial dose distribution prediction

can provide guidance for humans in decision-making during

the manual treatment planning process for potentially

improved quality and efficiency. In addition, the predicted dose

distribution can be used for a fully automated ATP workflow

without the need for DVH-based inverse optimization. Camp-

bell and Miften developed an artificial neural network dose

models for spatial dose distribution prediction of pancreatic

stereotactic body radiation therapy (SBRT).61 The network was

trained by clinical plans with plan parameters voxel-based geo-

metric parameters. Results showed promising accuracy of 3D

dose distribution. Nguyen et al used a modification on the

U-net architecture for coplanar prostate IMRT dose distribution

prediction.62 Based upon fully convolutional networks, U-net

was proposed for image segmentation with transposed convo-

lution operations to maintain original image dimension.63

U-net allows direct image input which avoids the feature

extractions (handcrafted feature selections). This could reduce

the requirement of data interpretation during the classic

modeling process (eg, knowledge-based modeling process).

In 2D-based prediction, the average values of absolute dose

difference were found to be around 2% in PTV and under

5% of the prescription dose in OARs.62 Similarly, Kearney et

al proposed a fully convolutional volumetric dose prediction

neural network (DoseNet) for 3D dose distribution prediction

Wang et al 5



of prostate SBRT with possible noncoplanar treatment regi-

men.64 Compared to U-net, DoseNet was claimed to have

reduced network redundancy as a result of the inclusion of

residual blocks. Chen et al adopted a published convolutional

neural network (CNN) model, ResNet,65 for the dose distribu-

tion prediction of nasopharynx cancer in simultaneous inte-

grated boost radiotherapy.66 This prediction model was used

to predict a coarse dose map of each patient with reduced

intensity content, and a full dose map was recovered from the

coarse dose map by a Gaussian regularized low-pass filter.

Based on a combined architecture of DenseNet and U-net,67

Barragan-Montero et al incorporated beam angle variation in

lung IMRT and developed a model that can predict spatial dose

distribution with varying beam arrangement.68

Successful prediction of dosimetric parameters has to be

converted to clinical treatment plans. A few studies have

explored the feasibility of automatic plan generation that can

lead to deliverable plans. Long et al proposed a framework of

threshold-driven optimization for reference-based auto-

planning, which automatically generates a treatment plan from

a predicted reference DVH set derived from voxel-based dose

distribution.69 Mahmood et al proposed a KBP workflow for

plan generation.70 For oropharyngeal IMRT plan, 3D dose dis-

tribution was predicted, and the actual plan was generated for-

wardly by using DVH-based optimization and a set of

constraints at predetermined dose–volume coordinates. In a

recent study reported by Fan et al,71 3D dose distribution in

head and neck cancer was first predicted by a ResNet-based

framework. For plan generation, instead of DVH-based inverse

optimization, the inverse problem was solved by an L2-norm

problem between the predicted dose distribution and the actual

dose distribution. An open-source software of fluence map

optimization was utilized for this L2-norm problem, and clini-

cally acceptable plans were generated.72

Emerging Research Directions of AI in ATP

The CNN-based algorithms, particularly deep CNN algorithms

with large numbers of hidden layers, have been recently exten-

sively studied in medical imaging, making image-based AI

applications a dominant topic in ATP research. Along this

research direction, dose distribution prediction to further

improve the dose prediction accuracy and efficiency remains

the focus. This may lead to a paradigm shift in plan generation:

Instead of DVH-based optimization, a plan can be generated as

an image reconstruction problem when using predicted dose

distribution as the reference data. Direct prediction of plan

parameters could become another potential research area. If

certain plan parameters can be converted to 2D/3D space

object(s) (“equivalent images”), CNN-based algorithms may

be utilized for the prediction, which can lead to automatic plan

generation. Potentially, 2D fluence maps of static IMRT

beams, 2D aperture series of step-and-shoot delivery, and

dynamic multi-leaf collimator sequences (2D þ time) of

VMAT may be candidates for such predictions.

While most recent AI studies in radiation oncology focused

on predictions, few have simulated the reasoning process in

treatment planning. In the manual treatment planning process,

the decision-making strategy when solving a specific dosi-

metric trade-off problem varies among different planners; one

with more experience may make effective actions more effi-

ciently than another qualified planner with less experience.73

Decision-making strategy will be central to the implementation

of ATP with fully automated workflow without human

intervention.

In manual treatment planning, each decision regarding dose

trade-offs leads to one or more actions in series; this feature is

well suited for reinforcement learning, which led to the success

of AlphaGo, the famous AI success in the board game Go that

had been challenging for conventional computer algorithms.74

Reinforcement learning has 2 distinct features: a trial-and-error

search and a delayed reward.75 With a defined reward function,

the agent attempts to learn the reward function value in each

state and takes actions to maximize the reward. Reinforcement

learning can also be realized by a direct policy search, in which

the agent attempts to learn the reward functions that directly

map observations to actions. Like the board game Go, radio-

therapy treatment planning consists of sequential actions and

long-term consequences. However, unlike board game applica-

tions in which problems are deterministic, fully observable, single

objective with easy reward definition, radiotherapy treatment

planning process is (semi-) stochastic, partially observable, and

multiobjective with a challenging definition of reward. These

characteristics have to be acknowledged for using reinforcement

learning in ATP. For example, an ATP agent can allow only 1 or 2

actions for reinforcement learning (such as DVH constraint

weight adjustment or auxiliary planning structure generation via

Boolean operations), and the reward has to be defined in a simple

way with a numerical scale (eg, target coverage percentage). In

summary, to simulate the human reasoning process, reinforce-

ment learning has to be implemented from a simple problem on

a small scale before its extension to the full ATP workflow.

Another possible approach of implementing decision-

making process in ATP is using generative adversarial

networks (GANs), a class of algorithms that generate represen-

tative samples from a set of training data by implementing 2

competing networks in a zero-sum task.76 These 2 competing

networks, the generator and the discriminator, are trained

simultaneously: While the generator is trained in generating

samples, the discriminator is trained to assess whether the sam-

ples are “good.” The GANs have been investigated in natural

language processing and computer vision. Recently, GANs

have been utilized in medical image segmentation and disease

diagnosis.77,78 The GANs have also been reported for dose

distribution for radiotherapy.70 To simulate decision-making

for treatment planning, GANs can be used in the model-

based reinforcement learning to learn about the environment

so that the reinforcement learning agent can take advantage of

the previously learned environment (model) instead of simply

relying on interaction with the environment (trial-and-error

experience). The 2 trained networks must have a competitive
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relationship in GANs; such a relationship can be simulated by a

plan producer that utilizes the predicted plan distribution and a

dose distribution predictor that requires produced treatment

plans for its training.

Challenges of AI in ATP

Complexity in Treatment Planning: What Should AI
Learn?

Like a self-driving vehicle, the treatment planning process can

involve a large number of consequential actions. However,

unlike those in a self-driving vehicle or a board game, actions

in treatment planning may not have direct consequences (ie,

any operation during the plan generation has to be evaluated

many steps later after the final dose calculation). Thus, simula-

tion of ATP workflow is more computationally expensive com-

pared to board game applications.

To reduce the simulation cost, the complexity of the

decision-making logic has to be settled on a manageable level.

Fortunately, researchers can reduce such complexity by enfor-

cing basic rules during ATP. The current common practice of

manual treatment planning follows rules from different aspects,

including machine hardware limitation (eg, forbidden zones for

noncoplanar beam angle selection due to collision),

radiological-based clinical preferences (eg, prioritized duode-

num sparing in liver/pancreas SBRT), and institutional practice

guidelines (eg, a beam setup template for standardized bilateral

neck IMRT). Integration of these rules by fixing involved vari-

ables or enforcing simple “if-else” logic can reduce the ATP

workflow complexity. In addition, observations following

physical science rules (eg, photon dose requires build-up region

with possible coverage reduction of a target near the skin sur-

face) can be integrated into an ATP workflow to further reduce

the learning complexity. As a result, building a reasonable ATP

workflow for AI training requires a team effort, including

radiation physicists, radiation oncologists, radiation dosime-

trists, radiation therapists, and other personnel involved in

radiotherapy plan generation and verification.

Working With Limited Size Data Sets

Recent progress in deep learning algorithms for imaging appli-

cations has been propelled by large-scale data sets. Compared

to natural image data sets, medical image data sets have smaller

sample sizes for a number of reasons: smaller sample space,

patient recruitment, data acquisition variation, lack of infra-

structure, and labor-intensive image processing by human

experts.4,79 This limitation is compounded for ATP applica-

tions, due to the need for specific types of radiotherapy plans,

a significant constraint, given the continued advancement and

often short histories of modern treatment planning approaches.

So far, most reported ATP studies have included 100 or

fewer patients, which is usually acknowledged as a small size

data set in the discussion of these studies. Furthermore, the

useful data size may get even smaller if confounding variables

such as human variations have to be reduced. Relevant studies

have reported that dose prediction accuracy could be improved

when cases from 2 different radiation oncologists were trained

separately.61 In addition, the limited size of data sets is exacer-

bated by the need for separated training and test data. Ideally,

each data set should be separated into 3 subsets: training data,

validation data, and test data. Training and validation data are

used to train the model, whereas the validation data are used to

tune the model during training. Model training can be carried

out in a cross-validated fashion. The test data should be used to

test the model performance after model validation; these data

should be segregated from the model training. When using the

limited size data for ATP, however, the test data set is some-

times not used and the validation results are reported as the

study end point. However, it is important to note that for increas-

ingly complex AI methods such as those discussed in section 3, a

sufficiently large, well-curated, and controlled database and a

rigorous model training and testing process following the 3-part

data splitting described earlier are especially critical. Without

them, overfitting, a modeling error where the model perfor-

mance is overestimated, tends to happen when an overly com-

plex model is developed based on a limited data set. Using data

sets of practically limited small sizes for dose prediction in

knowledge-based treatment planning, the more complex algo-

rithms were indeed shown to perform inferiorly to the simpler

approaches, likely due to overfitting.80

This overfitting limits model generalization when dealing

with new data. One potential approach to counteract size lim-

itations is transfer learning, which generates a model by using a

small size data set to tune a model which is trained by a larger

data set from another domain.81 A commonly used data set for

pertaining of deep learning models for medical image studies

(particularly CNN) is ImageNet, which is composed of natural

scene images.81,82 Data augmentation is another approach for

dealing with limited data. In general, data augmentation

increases the usable number of data by adding altered versions

of the original data.83 A simple example is to add affine image

transformations (translations, rotations, and scaling) to the

original image sets during the data training for autosegmenta-

tion. A third approach is to incorporate high-level handcrafted

features in model learning, which should be treated as repre-

sentative statistics from small data sets based on previous

endeavors. Additional operations can be added into the network

topology to avoid overfitting.84 However, this approach

requires good knowledge of AI algorithms at a low hierarchy

level, which can be challenging for those without a compre-

hensive computer science background. For ongoing deep learn-

ing–based ATP research, it will be interesting to see how the

above methods can be adapted and new methods developed to

overcome the critical data size limitation.

Toward Clinical Application: Regulation and
Collaboration

Although the future of AI in ATP remains in motion, radio-

therapy treatment planning will likely not become “driver-less”

Wang et al 7



in the next coming years. The AI-based ATPs must be validated

before being introduced into routine clinical use.85 Quality and

efficiency improvements should be the focus when evaluating

an AI-based ATP method at the current stage. Humans should

remain as the center of the treatment planning process in over-

seeing the clinical treatment planning workflow with ultimate

responsibility for plan safety and quality.

Successful validation of AI-based ATP methods requires a

large patient cohort size. In addition, for each patient, multiple

data types, including multimodality simulation images, treat-

ment plan, radiogenomic tests, and clinical data, may be nec-

essary for methodology development and validation and

generalizability. Such an endeavor may require new paradigms

of data regulation and supervision in addition to the standard

institutional review board functions. Multicenter collaborations

could augment patient cohort size for methodology develop-

ment and validation. However, retrospective data with signif-

icant variations among different institutions’ practice may

become a problem when investigating AI-based ATP, particu-

larly in the simulation of reasoning logics. Prospective multi-

institution studies with detailed guidelines of treatment plan

generation are fundamental for future studies. Over the past

decade, similar efforts on conforming structure naming to the

nomenclature standardization by professional society commit-

tees, vendors, and the clinical community have made great

strides that substantially facilitated radiotherapy big data

research. Therefore, larger numbers of plans from recent clin-

ical trials with rigorous planning guidelines and from the sub-

sequent protocol adoption are expected to yield better quality

data for AI-based ATP research. Meanwhile, clinical utiliza-

tion of the current ATP tools may also help generate plans of

more consistent quality among planners and institutions, which

could in turn facilitate future AI-based treatment planning

research. Finally, each step in the treatment planning workflow

requires great engineering efforts to ensure accuracy and

safety. For proof-of-concept studies, open software packages

can be adopted when demonstrating the feasibility of new AI

applications in ATP.72,86 However, when considering clinical

validation, a more robust platform based on the vendor-specific

automation function should be used. This may require a new

model of academic/industrial cooperation to deal with potential

issues in data security and intellectual proprietary conflicts and

to ensure the active quality assurance that is critical during the

clinical deployment of the new tool.

Conclusion

In this work, the current ATP solutions have been reviewed

based on their technical characteristics and clinic workflow

impacts. In reported clinical investigations, the discussed solu-

tions have demonstrated the improved planning efficiency and

plan quality consistency. Artificial intelligence in ATP is an

emerging field and is rapidly developing. Recent research

works of AI in ATP, particularly deep learning–based investi-

gations, have been summarized. In addition, future research

directions regarding AI in ATP have been proposed. Finally,

challenges of AI research in ATP and practical issues of poten-

tial preclinical and clinical investigations have been discussed.

We believe that AI technologies would eventually change the

paradigm of radiotherapy treatment planning practice. While

embracing the promising future, current researchers should be

aware of the limitations of current practice and possible

research opportunities of AI to meet health-care needs in the

next or 2 decades.
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