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Comprehensive analysis of the 
tumor immune micro-environment 
in non-small cell lung cancer for 
efficacy of checkpoint inhibitor
Jeong-Sun Seo1,2,3,6, Ahreum Kim1,2,3, Jong-Yeon Shin2,6 & Young Tae Kim2,4,5

Characterizing the molecular immune subtype and micro-environment of lung cancer is necessary 
to understand immunogenic interactions between infiltrating immune and stromal cells, and how 
tumor cells overcome immune checkpoint blockades. This study seeks to identify computational 
methodologies for subtyping gene expression-based tumor-immune micro-environment interactions, 
which differentiate non-small cell lung cancer (NSCLC) into immune-defective and immune-competent 
subtypes. Here, 101 lung squamous cell carcinomas (LUSCs) and 87 lung adenocarcinomas (LUADs) 
tumor samples have been analyzed. Several micro-environmental factors differentially induce LUAD 
or LUSC immune subtypes, as well as immune checkpoint expression. In particular, tumor-associated 
macrophages (TAMs) are key immune cells play a vital role in inflammation and cancer micro-
environments of LUSCs; whereas, regulatory B cells are immunosuppressive and tumorigenic in LUADs. 
Additionally, cytolytic activity upon CD8+ T cell activation is decreased by the abundance of B cells and 
macrophages in immune-competent subtypes. Therefore, identifying immune subtypes in lung cancer 
and their impact on tumor micro-environment will lead to clinical tools for assessing LUADs and LUSCs 
in patients, as well as maximize the efficacy of immune checkpoint inhibitors.

Lung cancer is the most common cancer diagnosis and cause of death in Korea. Lung squamous cell carcinoma 
(LUSC) and lung adenocarcinoma (LUAD) are two major subtypes of non-small cell lung cancer (NSCLC), 
which, together, account for approximately 60% of all lung cancer diagnoses in Korea1,2. These subtypes exhibit 
significant differences in molecular organization and activity3.

Patients with LUSCs tend to be smokers and have a TP53 mutation; whereas, LUAD patients have several key 
mutations in EGFR, KRAS, NRAS, BRAF, PIK3CA, MET, and CTNNB1 genes4,5. Although the somatic mutations 
in each NSCLC subtype have been well-characterized, the fundamental differences in NSCLC micro-environment 
and its interaction with two major types of NSCLC have not yet been comprehensively explored. Similarly, the 
molecular mechanisms involved in pathogenicity have mainly been opaque6,7. Thus, it is important to character-
ize the genomic mutations and risk factors involved in LUAD and LUSC, since these factors can impact immunity 
and tumor micro-environment, depending on cancer type8.

In previous studies, the mutational burden and neo-antigen load were shown to be associated with favorable 
responses to immunotherapy in specific patients; however, cataloging mutations load alone is not a sufficient 
predictor of responsiveness to immunotherapy9–11. Moreover, multiple changes in tumor micro-environments, 
as well as emergent immunogenic mechanisms, enable resistance to immune checkpoint inhibitors. For 
this reason, the single-agent anti PD-1/PD-L1 is of minimal clinical benefit to patients12–14. Importantly, the 
micro-environment and immune cells infiltrating the tumor are unique to each cancer type; thus, studying such 
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conditions for each cancer type will be crucial in elucidating immune checkpoint blockades such as the PD-1 
inhibitor15,16.

Therefore, this study focuses on utilizing computational methodologies to characterize gene expression in 
immune subtypes and identify fundamental differences in the micro-environmental signatures of LUADs and 
LUSCs. With this information, predictive biomarkers of infiltrating immune cells and the tumor microenviron-
ments surrounding NSCLC subtypes could be developed to identify patients who will be receptive to immune 
therapies.

Results
Identification of immune subtypes in response to LUADs.  A total of 87 LUAD samples and 77 
matched noncancer controls were analyzed to identify the gene expression responsible for LUAD immune sub-
types, using a method previously reported by Seo et al.17. In particular, principal component analysis (PCA) 
algorithms were utilized to evaluate 1,000 of the most variable genes and perform unsupervised hierarchical 
clustering. Here, the LUADs and noncancer control clusters were sufficiently separated, while TCGA LUADs 
(n = 451) and TCGA noncancer controls (n = 49) were similarly clustered, with a 95% confidence interval 
(Supplementary Fig. S1).

Additional unsupervised k-means (n = 3) hierarchical clustering between LUADs and noncancer control sam-
ples provided three clusters of two LUAD samples and one mixture of LUADs and noncancer control samples. 
Similarly, TCGA LUAD cohorts had the same pattern, with three distinguishable clusters of two TCGA LUAD 
clusters and one mixture of LUADs and noncancer control samples (Supplementary Fig. S2).

We defined cluster 2 as Subtype A and the combination of clusters 1 and 3 as Subtype B, for both LUADs and 
TCGA LUADs. The LUADs and TCGA LUADs in the cluster 3, which had both noncancer control and a few 
LUAD samples, seemed to be normal like cancer since the samples were grouped with the majority of noncancer 
control samples and would have the high portion of infiltrating immune cells. The infiltrating immune cells in 
the cancer samples tend to affect the tumor purity, fraction of cancerous cells, so we assumed that the LUADs in 
this cluster might be one of cancer types, which is highly immunologically competent subtype and has the higher 
portion of infiltrating immune cells. Therefore, we defined the LUADs and TCGA LUADs in this cluster 3 as 
the immune competent subtype (Subtype B), and the LUADs in the other two clusters indicated as the immune 
competent subtype (Subtype B) and immune deficient subtype (Subtype A) via the enrichment of Gene Ontology 
gene sets with differentially expressed genes. Also, additional PCA plots with LUAD and TCGA LUAD samples 
revealed the separation between Subtype A and Subtype B at the 95% confidence interval (Fig. 1a).

Different compositions of patient populations were assigned to each subtype, since sample sizes for reference 
patients, such as those with the TCGA LUAD noncancer control (n = 49), were too small to normalize expression 
levels in TCGA LUAD samples when compared to LUAD samples and their matched noncancer control sample 
sizes. Thus, the expression level of LUAD samples could be decreased and normalized in accordance with the 
noncancer control sample than TCGA LUAD samples18.

Differentially expressed genes (DEGs) in each subtype were investigated in LUAD and TCGA LUAD cohorts 
(DESeq: P < 0.05 and FDR < 0.1; Fig. 1b and Supplementary Fig. S3). There were 107 upregulated expressed 
genes in LUAD Subtype A, while the same genes were downregulated in LUAD Subtype B. These 107 genes were 
enriched in the extracellular space, negatively regulated proteolysis, and transmembrane transport.

The 221 upregulated expressed genes in LUAD Subtype B were downregulated in LUAD Subtype A. These 
genes were closely associated with immune gene sets such as those involved in humoral immune responses medi-
ated by circulating immunoglobulin and leukocyte-mediated immunity. The DEGs of Subtype A in the TCGA 
cohort were enriched in gene clusters involved in neuron and synapse activity, but not in LUAD Subtype A. 
However, DEGs of the TGGA LUAD Subtype B cohort were enriched in similar immune-related gene sets of 
LUAD Subtype B.

Interestingly, the enrichment log(q-value) of gene sets of Subtype A in both cohorts were smaller than those of 
Subtype B. This indicated that Subtype B was more strongly associated with immune gene clusters than Subtype 
A. Furthermore, the 89 overlapping upregulated genes in LUADs and TCGA LUADs were mostly enriched in 
immune gene clusters such as humoral immune response and B cell-mediated immune cells; therefore, Subtype B 
in LUAD and TCGA LUAD cohorts was confirmed to be immunologically associated, similar to other previously 
elucidated immune competent subtypes17 (Supplementary Fig. S4).

Subtype A, on the other hand, was largely immune-suppressive subtype; whereas, the immune profiles of 
Subtype B (immune-competent) followed a similar pattern as the immune subtype of head and neck squa-
mous cell carcinoma (HNSCC), which exhibits upregulation of immune-related genes and enhanced tumor 
micro-environment. This suggests that patients with these subtypes would also benefit from immunotherapy19.

Estimation of immune and micro-environmental factors between subtypes.  In order to identify 
the impacts of immunogenic and micro-environmental factors – such as the immune and stromal score, cytolytic 
score, and tumor purity, as well as the abundance of immune cells on LUAD subtypes–were estimated via previ-
ously reported methods20,21. The stromal score, which designated to capture the infiltrating stromal cells in tumor 
tissue, was highly correlated with the immune score indicated the infiltration of immune cells in LUAD sam-
ples, but there was no significant difference in correlations between stromal and immune scores among cohorts 
(Subtype A: Pearson’s r = 0.86; Subtype B Pearson’s r = 0.86; TCGA LUAD Subtype A: Pearson’s r = 0.75; TCGA 
LUAD Subtype A: Pearson’s r = 0.64). Only noncancer control samples had low correlation between Subtypes 
A and B (LUAD Noncancer control: Pearson’s r = 0.35; TCGA LUAD Noncancer control: Pearson’s r = 0.32; 
Supplementary Fig. S5).

The tumor purity was relatively low at the stromal dominant position, and only noncancer control sam-
ples were densely packed at this position (Fig. 2a). Overall, the plot and correlation table explained the fact 
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that the stromal and immune cells were strongly and directly associated with cancer cells, regardless of sub-
type, in both cohorts. Moreover, the complex of stromal, immune, and cancer cells promotes tumor growth 
and provides a favorable micro-environment for a pro-tumorigenic immune subtype22,23. Here, several tumor 
micro-environment factors–including stromal, immune, cytolytic score, and tumor purity–were compared 

Figure 1.  Transcriptomic analyses for immune subtypes in LUADs. (a) Subtypes A, B, and noncancer control 
were distinguishable by the first three PCs of the top 1,000 most variable genes, across all samples in LUADs 
(n = 87) and TCGA LUADs (n = 451). The meshes containing each subtype (A, B, and noncancer control) 
were drawn by performing unsupervised hierarchical clustering and k-means clustering (k-means = 3), with 
95% confidence interval ellipsoids in LUAD and TCGA LUAD samples. (b) The VSD-normalized expression 
of differentially expressed genes in Subtypes A and B of LUADs are illustrated in the heatmap. Top 10 GO gene 
sets in either Subtype A or B were selected based on the rank of enrichment –log2(q-value) for the pathway and 
matched significance criteria (p-value < 0.05 and FDR q-value < 0.1). A two-color scale was used, with green 
indicating low expression values and red representing highly expressed genes.
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between subtypes. All tumor micro-environment factors were statistically different between subtypes in both 
cohorts (Fig. 2b).

Stromal, immune, and cytolytic scores for Subtype B were much higher than for Subtype A, while the tumor 
purity in Subtype B was much less than in Subtype A (LUAD Cohort: P = 2.51 × 10−4 via unpaired Student’s t test; 
TCGA LUAD Cohort: P = 6.86 × 10−10 via unpaired Student’s t test). Additionally, infiltrating immune cells such 
as B cells, CD8+ T cells, and dendritic cells were more prevalent in response to Subtype B than Subtype A in both 
cohorts (LUAD Cohort: PB cells = 2.23 × 10−2; PCD8+ T cells = 2.63 × 10−03, Pdendritic cells = 6.94 × 10−05 via unpaired 
Student’s t test; TCGA LUAD cohort: PB cells = 3.76 × 10−13, PCD8+ T cells = 1.30 × 10−2, Pdendritic cells = 6.22 × 10−4 via 
unpaired Student’s t test; Supplementary Fig. S6).

Figure 2.  Estimation of micro-environmental factors between subtypes in LUADs. (a) Scatterplots and 
marginal density plots between stromal and immune scores are illustrated. The tumor purity was used as the 
color grading for sample points, and its index is shown on the color bar at the bottom right of the plot. The 
median score is indicated by dashed lines under the horizontal (x) and vertical (y) axis. (b) Several generated 
micro-environmental factors (stromal, immune, cytolytic (CYT) score, and tumor purity) were compared 
between subtypes and each p-value was indicated by an unpaired Student’s t test based on the sample 
distribution test.
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Interestingly, CD8+ T cells were abundant in the LUAD and TCGA LUAD noncancer control samples, which 
also had a high stromal score and low tumor purity compared to LUAD and TCGA LUAD cancers. Therefore, 
the abundance of CD8+ T cells in normal tissue indicated increased expression of inflammatory markers, and 
thereby represented an intermediate state between normal to cancerous tissue. This result is in accordance with 
previous findings24.

There was no significant difference in the correlation coefficient between six types of immune cells in response 
to Subtypes A and B in both LUAD and TCGA LUAD cohorts; however, B cells were not significantly correlated 
with other immune cells, and CD 4+ T cells and CD8+ T cells were similarly indirectly related to the prevalence 
of such cell subtypes in both cohorts (Supplementary Fig. S7).

The micro-environmental signature and immune checkpoints of LUADs.  The expression of acti-
vated stroma and normal stromal genes and immunologic factors such as representative regulatory B cell genes 
and immune checkpoint genes were compared between subtypes in the LUAD and TCGA LUAD cohorts (Fig. 3). 
The genes of activated stroma and regulatory B cells in Subtype B had greater expression than those of Subtype 
A in both cohorts (LUAD cohort: Pactivated stromal genes = 4.61 × 10−41, PB reg = 1.14 × 10−28 via unpaired Student’s 
t test; TCGA LUAD cohort: Pactivated stromal genes = 8.75 × 10−03, PB reg = 3.70 × 10−38 via unpaired Student’s t test). 
Similarly, normal stromal genes were expressed with greater volume in Subtype B than Subtype A (LUAD cohort: 
Pnormal stromal genes = 2.69 × 10−2 via unpaired Student’s t test; TCGA LUAD cohort: Pnormal stromal genes = 1.45 × 10−40 
via unpaired Student’s t test).

In addition, there is convincing evidence of immunosuppressive and tumorigenic roles in activated stromal 
and regulatory B cells, depending on the tumor subtype. These cells can prevent promotor activation involved in 
the antitumor immune response and significantly inhibit the efficacy of immunotherapy25–27. Similarly, PD-1 and 
PD-L2 were the only immune checkpoints that were expressed to a greater extent in Subtype B than Subtype A in 
both cohorts (LUAD cohort: PPD-1 = 3.99 × 10−3, PPD-L2 = 2.20 × 10−7 via unpaired Student’s t test; TCGA LUAD 

Figure 3.  Micro-environmental signature and immune checkpoint expression in LUAD subtypes. The heatmap 
depicts the level of the tumor micro-environmental factor (cytolytic (CYT) score, stromal score, immune 
score, tumor purity), as well as the expression of activated stromal and normal stromal genes, regulatory B 
representative genes, and immune checkpoint genes in LUAD and TCGA LUAD subtypes (Subtype A, B, and 
noncancer control). A comparison of median-centered expression (log2fpkm) of each factor was performed 
between subtypes, and the p-value was indicated by an unpaired Student’s t test based on the normality. A two-
color scale was used, with blue indicating low expression values and red representing highly expressed genes.
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cohort: PPD-1 = 1.54 × 10−4, PPD-L2 = 1.51 × 10−2 via unpaired Student’s t test). Previous studies have confirmed 
that infiltrating regulatory B cells in lung cancer promote tumor growth and frequently stimulate the expression 
of immune checkpoints such as PD-L1 and PD1 by inhibiting T cell function28,29.

The clinical relevance of LUAD subtypes.  Demographic distributions of gender, age, stage, race, and 
smoking status were compared between patients with these cancer cell subtypes, who had been diagnosed with 
LUAD and TCGA LUAD. Only gender and smoking status elicited a significant difference between subtypes in 
the TCGA LUAD cohort (Pgender = 2.77 × 10−05, Psmoking status = 1.61 × 10−02 via the Mann Whitney U test; Fig. 4a).

Overall survival showed no significant difference between subtypes in both cohorts (PLUAD = 6.0 × 10−02, PTCGA 

LUAD = 8.3 × 10−01 via the log-rank test; Fig. 4b). Measured pathogenic tumor size was further compared between 
Subtypes A and B in LUAD patients (n = 51), revealing that the median tumor size in Subtype B was larger than 
that of Subtype A (Supplementary Fig. S8). Most likely, the frequency of infiltrating immune cells resulted in 
tumor progression, which increased tumor size30.

Comparison of micro-environmental signatures between NSCLCs.  PCA analyses of Subtypes A 
and B, as well as adjacent noncancer control samples for LUADs (n = 87) and LUSCs (n = 101), were performed 
on the first three principle components (PCs) of the 1,000 most variable genes. The three meshes of Subtypes A 
and B, as well as noncancer control points, were well-separated in both LUAD and LUSC samples (Fig. 5a). In 
both LUAD and LUSC cohorts, Subtype B overlapped with the noncancer control. LUSC Subtype B (n = 19) was 
more clearly distinguishable from Subtype A (n = 82) in the same sample type than Subtype B (n = 39) of LUAD 
samples, since the first PC (53% variance) of LUSC was higher than that of LUADs (30% variance).

Subtype B of LUSC samples was more closely associated with the noncancer control samples than Subtype 
A; whereas, Subtype B in LUAD samples was more closely associated with Subtype A in the same samples. The 
differentially expressed genes in each subtype were compared between LUSC and LUAD samples (Supplementary 
Table S1). The DEGs involved in each subtype were analyzed with respect to enrichment of Gene Ontology gene 
sets. There were 125 shared genes for upregulated expressed genes in LUAD and LUSC Subtype B; whereas, only 
eight genes were shared between LUAD and LUSC Subtype A (Fig. 5b).

The 125 shared genes between Subtype B in both cohorts were enriched in the humoral immune response 
as well as leukocyte and lymphocyte-mediated immunity. This result confirmed that Subtype B in LUADs and 
LUSCs can be categorized as an immune-competent subtype that signals many infiltrating lymphocytes and cytol-
ytic activity, even in fundamentally different cancer types.

To compare micro-environmental factors between LUAD and LUSC subtypes, several generated 
micro-environmental factors (stromal, immune, cytolytic score, and tumor purity) were investigated by RNA 
expression data. All scores of micro-environmental factors were significantly higher in Subtype B for both LUAD 
and LUSC samples (Supplementary Fig. S9). In particular, the correlation between stromal and immune scores 
were compared between LUAD and LUSC subtypes, and it was confirmed that this correlation followed a different 
pattern according to cancer type (Supplementary Fig. S10).

For LUADs, the stromal score was more highly correlated with the immune score in both LUAD Subtype A 
(Pearson’s r = 0.86) and LUAD Subtype B (Pearson’s r = 0.86) than for the LUAD noncancer control (Pearson’s r = 0.35). 
Conversely, LUSC Subtype B (Pearson’s r = 0.46) had a lower correlation between these parameters than LUSC Subtype 
A (Pearson’s r = 0.79) and the noncancer control (Pearson’s r = 0.70). Furthermore, the data for LUSC Subtype B was 
densely aggregated in the high immune and stromal score ranges; whereas, that for LUAD Subtype B was widely scat-
tered. These results affirm previous findings that the pattern of admixture between stromal and immune cells within 
tumor micro-environments results in changes to the pathogenesis of cancer and metabolism31,32.

The composition of stromal cells and their cytokine secretion in tumor micro-environments could distinc-
tively impact the tumor progression and immune response in LUADs and LUSCs33. In addition, modulations to 
the micro-environment could take on a different pattern of admixture of stromal and immune cells depending on 
the immune and cancerous subtypes34.

Similarly, the abundance of six types of infiltrating immune cells (B, CD4+ T, CD8+ T, neutrophils, mac-
rophages, and dendritic cells) in LUAD and LUSC samples were estimated and compared between subtypes. All 
immune cells were more abundant in Subtype B than Subtype A (Fig. 6a). Interestingly, compared to LUSCs, mac-
rophages and CD4+ T cells had no significant difference in population between subtypes in LUADs. Macrophages 
had the most detrimental impact on LUSC Subtype B, while B cells played this role in LUAD Subtype B.

The impacts of micro-environment and immune checkpoints on NSCLCs.  To ensure that B cells 
and macrophages had detrimental impacts on LUAD and LUSC Subtype B, correlations between six type of 
immune cells and micro-environmental factors were analyzed (Supplementary Fig. S11). Macrophages in LUSC 
Subtype B (Pearson’s r = −0.54) had a higher negative correlation with the cytolytic score compared to Subtype 
A (Pearson’s r = −0.1), while B cells in LUAD Subtype B (Pearson’s r = 0.16) had a lower correlation than Subtype 
A (Pearson’s r = 0.54; Fig. 6b).

Consistent with previous findings, it was found that B cells and macrophages had a low correlation with 
intra-tumoral immune cytolytic activity35, and correlations were further reduced in Subtype B than Subtype A 
in both LUADs and LUSCs. This indicated that the cytolytic activity upon CD8+ T cell activation as well as the 
efficacy of immune checkpoint blockade therapies were decreased by the abundance of B cells and macrophages 
in Subtype B, since the CD8+ T cell activation and immune checkpoint blockades had a more immediate and vital 
influence on cytolytic activity than B cells and macrophages36.

Through a comprehensive analysis of the NSCLC micro-environment, the activated and normal stromal 
genes, regulatory B cells, and macrophages 1 and 2 were over-expressed in LUAD and LUSC Subtype B and not 
in Subtype A (Fig. 7a). However, there was a gap in immune checkpoint expression between LUADs and LUSCs. 
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Although both PD1 and PD-L1 expression was higher in Subtype B, PD-L2 expression was significantly higher in 
LUAD Subtype B only. Other immune checkpoints such as CTLA4, B7-1and2, Tim-2, and Galectin-9 were also 
over-expressed in LUSC Subtype B.

The z scores for signature genes in macrophages 1 and 2, activated and normal stroma, Breg, and immune 
checkpoints in Subtype B were significantly elevated in LUAD and LUSC samples (Fig. 7b), while that for all 
micro-environmental factors was higher in LUSC Subtype B than LUAD Subtype B. The z score for immune 

Figure 4.  The clinical association in LUADs. (a) Distribution of gender, age, stage, race, and smoking status 
was analyzed between subtypes, and a p-value was indicated by an unpaired Student’s t test in LUAD and TCGA 
LUAD samples, respectively. (b) Survival curves and a risk table for LUAD (n = 51) and TCGA LUAD (n = 341) 
samples were visualized based on Kaplan-Meier estimates.
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checkpoints and macrophage 2 were also far higher in LUSC Subtype B than in LUAD Subtype B. This finding 
confirmed that immune checkpoint expression was affected by subtype and cancer type, and an immense influ-
ence of tumor micro-environment was apparent in NSCLCs especially. Thus, determining these conditions for 
immune cells and tumor micro-environment is necessary for the success of immune checkpoint inhibitors in 
response to NSCLCs37–39.

The LUSC subtypes were also more strongly influenced by the tumor micro-environment as well as immune 
checkpoints than LUAD subtypes. It was confirmed by the previous finding that differential expression patterns of 
immune response related genes between LUAD and LUSC progression were more rapidly and strongly repressed 
in LUSCs than in LUAD as well as immune response promoting genes40. Therefore, one of the characteristics in 
LUAD could be the weak association with immune signature even in the immune competent subtype of LUAD 
than in LUSC. In addition, a strong association with smoking-associated gene alterations and somatic copy num-
ber variation might explain the higher micro-environmental influence in LUSCs17,41.

Overall, LUAD Subtype B (immune-competent; n = 39) and LUSC Subtype B (n = 19) shared obvious simi-
larities and differences (Table 1). Gene expression-based clusters for dividing Subtypes A and B were more clearly 
separated in LUSCs than LUADs, and the percentage of Subtype Bs in LUADs was larger. LUSC Subtype B was 
most similar to the noncancer control groups, and the correlation pattern between stromal and immune scores 
was higher in LUAD Subtype B than in LUSC Subtype B. This indicated that the degree of admixture between 
stromal and immune cells was varied depending on the cancer type even if two different cancer tissue shared the 
same immune competent subtype21.

Figure 5.  Comparison of micro-environmental signatures between subtypes in LUAD (n = 87) and LUSC 
(n = 101) samples. (a) PCA analysis for Subtypes A and B, and adjacent noncancer control samples in LUAD 
and LUSC samples. LUAD and adjacent noncancer control samples in LUADs and LUSCs were analyzed via the 
first three PCs of the top 1,000 most variable genes, and the three separated meshes of Subtypes A and B and 
noncancer control points with 95% confidence interval ellipsoids. (b) Venn diagrams were visualized with the 
shared genes for LUAD and LUSC subtype-specific up regulated genes, and shared top 10 GO gene sets between 
LUAD Subtype B and LUSC Subtype B.
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Further, macrophages had no significant impact on LUAD subtypes, but did affect LUSCs. As evidence, 
PD-1 and PD-L1/L2 only had statistical differences in gene expression between subtypes in LUADs; whereas, 
all immune checkpoint expression was statistically different between subtypes in LUSCs. Therefore, identifying 
immune subtypes and assessing the fundamental differences in micro-environmental signatures of NSCLCs were 
essential for understanding the state of stromal and immune cells in lung cancer and selecting the appropriate 
immune checkpoint blockades to observe, depending on subtype and cancer type. These observations are impor-
tant for predicting potential immunotherapy responses.

Discussion
Although the previously established biomarkers for predicting clinical outcomes of immunotherapy, such as PD1/
PD-L1 expression, have not been a guarantee of success for all cancer patients, it is still important to find the 
most accurate and generalized predictive signatures in each patient42. Somatic mutations in coding regions, as 
well as mutations and neoantigen burden, have been influential factors in the efficacy of immunotherapy, and 
it has been demonstrated that immunogenic gene expression has been correlated with the type and extent of 

Figure 6.  The distribution of infiltrating immune cells and the association with cytolytic score in NSCLCs. 
(a) The abundance of six types of infiltrating immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and dendritic cells) in LUAD and LUSC samples were estimated and compared between subtypes, 
and each p-value was indicated by an unpaired Student’s t test and the Mann-Whitney U test based on the 
sample distribution. (b) The scatter plots between cytolytic (CYT) score and immune cells (B cells for LUADs 
and macrophages for LUSCs) are illustrated with the Pearson’s correlation coefficient and p-value.
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responses to immunotherapies43,44. Therefore, gene expression can be utilized to estimate the impact of immune 
subtypes and tumor micro-environment on the efficacy of immunotherapy in NSCLCs. Especially, quantifying 
tumor-infiltrating lymphocytes should be considered as a method of increasing response rates in patients45,46.

Figure 7.  The impact of micro-environment and immune checkpoint expression on immune subtypes in 
NSCLCs. (a) The heatmap depicted the degree of the tumor micro-environmental factor (cytolytic (CYT) score, 
stromal score, immune score, and tumor purity), and the comparison of log2-transformed gene expression 
(log2(fpkm)) of the stromal (activated stroma and normal stroma), macrophage (M1 and M2), B reg, immune 
checkpoint genes was performed between LUAD and LUSC subtypes. A p-value was indicated by the Mann-
Whitney U test and unpaired Student’s t test, based on the sample normality. (b) The average z score for M1, 
M2, B reg, activated and normal stromal genes, and immune checkpoints was computed and compared between 
LUAD and LUSC subtypes. The p-value was indicated by the Mann-Whitney U test and unpaired Student’s t 
test, based on the sample normality.
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In this study, PCA analysis and hierarchical clustering based on the variance in gene expression were use-
ful tools in determining the immune-deficient and competent subtypes in NSCLCs. The properties of defined 
immune subtypes were finally described by gene enrichment analysis with differentially expressed genes and 
tumor micro-environment factors, as well as clinical association.

Through a comprehensive analysis of tumor micro-environments, we showed that recruited tumor-associated 
stromal cells, such as activated and normal stromal cells as well as immune cells, in LUADs and LUSCs affect the 
tumor micro-environment and control tumor progression within immune-competent subtypes. This result is in 
accordance with reported tumor-associated stromal cells that play critical roles in the development of the tumor 
micro-environment, tumor angiogenesis, invasion, and therapeutic resistance23.

On the other hand, the impacts of tumor micro-environment on NSCLCs were varied depending on the 
specific immune subtype and cancer type, even if patients were grouped with the identical immune subtype in 
LUADs and LUSCs. Here, the degree of admixture between stromal and immune cells engendered significant 
differences in the tumor micro-environment.

Our results suggest that the immunosuppressive role and tumorigenesis of tumor-associated macrophages and 
regulatory B cells in the immune-competent subtype of NSCLCs could prevent promotion from the antitumor 
immune response and stimulate the expression of immune checkpoints such as PD-L1 and PD1 by inhibiting 
CD8+ T cell activation. The prevalence of these cells could reduce the effectiveness of immune checkpoint block-
ades in NSCLC patients. Therefore, understanding these cells and their interactions with immune checkpoints 
could help to treat NSCLC patients with immunotherapy successfully.

In conclusion, this work demonstrated that our computational methodologies for immune subtyping 
using gene expression patterning could be utilized to identify NSCLC patients who will be affected by tumor 
micro-environments and immune checkpoints. Therefore, characterizing recruited immune and stromal cells 
should help in identifying the prognostic and predictive factors that could guide a personalized approach to can-
cer immunotherapy. Additionally, understanding the state of stromal and immune cells in lung cancer, and iden-
tifying fundamental tumor micro-environment factors that impact cancer metabolism and immunity will give 
clinicians significant predictive power with respect to patient receptiveness to immunotherapies. Considering the 
immune subtypes and tumor micro-environment is a better target for predicting responses to immune therapy 
and is applicable for all cancer types. Future studies should seek to clinically and experimentally validate RNA 
expression-based immune subtypes by measuring immune cell populations in patients.

Methods
Sample Data Sets.  The LUAD and LUSC RNA sequencing data as well as the matched adjacent noncancer 
control data–which were previously published by Seo et al.8,17–were used to analyze tumor micro-environments 
and immune subtypes for NSCLCs. LUAD and LUSC expression datasets (htseq count value) in The Cancer 
Genome Atlas (TCGA) were included for validation of our results.

RNA-seq pre-processing.  The pre-processed data from raw reads to htseq count was prepared by previ-
ously reported methods17. The RNA-seq reads were mapped to GRCh37 via the spliced transcripts alignment to 
a reference aligner, and the data processing steps on the GTAK website were followed for our data47. The number 
of raw reads was generated from the pre-processed data via HTSeq count for Ensembl-annotated genes, and the 
raw read expression values were transformed to variance-transformed data(VSD) (R package ‘DESeq2’). The 

Characteristics

Type of NSCLC

LUAD LUSC

# of patients 87 101

      Subtype A 48 (55.17%) 82 (81.19%)

      Subtype B 39 (44.83%) 19 (18.81%)

Subtype clustering between A and B Not a clear separation A clear separation between subtypes

The description of subtype B cluster High similarity to Subtype A Very high similarity to noncancer control samples

The correlation between stromal and immune score

      Subtype A High positive correlation (0.86) High positive correlation (0.79)

      Subtype B High positive correlation (0.86) Low positive correlation (0.46)

Impacts of stromal cells on subtype

      Subtype A Moderate activated and low normal stromal cells Moderate activated and low normal stromal cells

      Subtype B High activated and moderate normal stroma cells High activated and high normal stromal cells

The influential immune cells to subtypes B, CD8+ T, neutrophil, dendritic cells B, CD4+ T,CD8+ T, neutrophil, macrophage, dendritic cells

The correlation between macrophage/B cells and cytolytic activity

      Subtype A Weak correlation (0.08)/positive correlation (0.54) Weak correlation (−0.1)/weak correlation (0.01)

      Subtype B Weak correlation (−0.02)/low correlation (0.16) Negative correlation (−0.54)/weak correlation (0.05)

Clinical association with subtypes Gender, Stage None

The association with immune checkpoints PD1-PD-L1/L2 only Closely associated with all immune checkpoints

Table 1.  The descriptions of gene expression-based immune subtypes of NSCLC. Subtype A = Immune 
deficient subtype. Subtype B = Immune competent subtype.
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HTseq count values were converted to fragments per kilobase million (FPKM) using the R package’edgeR’, and 
the expression values of both raw reads and FPKM were adjusted to median-centered and log2 gene expression 
(Cluster 3.0).

The library preparation for all our LUAD and LUSC samples was prepared in the same batches, and batch 
effect adjustment was not required48. However, TCGA data cannot be grouped with our LUAD and LUSC sam-
ples, since library preparation for the samples and human reference sources, as well as options for HT-seq counts 
for computing RNA expression values in our and TCGA samples, were totally different, and unknown batch 
effects also existed in RNA-seq data. Therefore, it was difficult to remove the batch effects between our LUAD and 
TCGA LUAD samples. Thus, we analyzed them separately and the results from TCGA LUAD samples were used 
for the validation of our LUAD sample subtypes because of the low quality reads in several LUAD samples, which 
made classification of the TCGA LUAD samples harder49.

Unsupervised immune subtyping and differentially expressed gene (DEG).  Immune subtyping 
was performed based on a PCA analysis using the 1,000 most variable genes within all tumor and noncancer con-
trol samples. Hierarchical clustering and k-means (n = 3) based on the principal components were clustered to 
three different groups: cancer only, cancer and noncancer control, and mixed clusters using the R package ‘rgl’50,51. 
Based on such clustering, the subtypes were defined and the samples within each subtypes were plotted between 
each of the three highest PCA components, with a 95% confidence interval.

DEGs of Subtype B were compared to those of Subtype A, and the adjusted p value was estimated by previ-
ously reported methods and criteria (adjusted P < 0.05, |Log2 (fold change)| ≥ 1, and base mean ≥ 100)17. The 
expression of DEGs was visualized by a heatmap using JAVA treeview. The DEGs (Subtype A-UP and B-DOWN, 
Subtype A-DOWN and B-UP) were enriched for Gene Ontology (GO) gene sets via the web version of the Gene 
Set Enrichment Analysis (GSEA), and the top ten GO sets were indicated by the bar graph.

Estimation of micro-environmental factors and distribution of infiltrating immune 
cells.  Several micro-environmental factors (stromal, immune, and tumor purity) were generated by previously 
reported methods using the ESTIMATE algorithm20. The, CYT score and abundance of six types of infiltrating 
immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) were estimated 
via the TIMER algorithm and compared between subtypes in LUAD and LUSC cohorts21.

The signature genes in stromal, macrophage 2, and regulatory B cells.  The expression (FPKM) of 
signature genes in stromal, macrophage 2, and regulatory B cells from previously validated gene sets was adjusted 
to median-centered and log2 transformed via cluster 3.0, then visualized by a heatmap (JAVA treeview)52,53.

Calculation of z scores for micro-environmental factors.  The z scores for signature genes in mac-
rophages 1 and 2, activated and normal stroma, Breg, and immune checkpoints were calculated from log2 trans-
formed and median-centered FPKM expression values, and the average z score for each factor was computed and 
compared between LUAD and LUSC subtypes54.

− =
−

Z score
Expression in tumor samples FPKM Mean expression in noncancer control samples FPKM

standard deviation of expression in noncancer control samples FPKM
( ) ( )

( )

Statistical test.  Statistical analyses were performed using R-3.3.0. The p-value was computed based on the 
sample distribution, using the Shapiro-Wilk normality test. Comparisons between subtypes were analyzed using 
the unpaired Student’s t test or Mann-Whitney U test. Comparisons among more than two subgroups were ana-
lyzed using the Kruskal-Wallis or one-way ANOVA test. The correlation coefficient (r) was calculated via the 
Pearson’s coefficient and distance correlation methods. The overall survival curves and risk tables were visualized 
based on Kaplan-Meier estimates, using the R package ‘survminer’. The p-value was computed via a log-rank test.

Data Availability
LUSC and LUAD transcriptome sequencing data was uploaded to public databases. LUSC transcriptome se-
quencing data are available under the NCBI Sequence Read Archive accessions (no. SRP114315), and LUAD tran-
scriptome sequencing data are available under the EBI European Nucleotide Archive accessions (no. ERP001058).
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