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ABSTRACT Sulfurospirillum sp. strain ACSDCE couples growth with reductive dech-
lorination of tetrachloroethene to cis-1,2-dichloroethene at pH values as low as 5.5.
The genome sequence of strain ACSDCE consists of a circular 2,737,849-bp chromo-
some and a 39,868-bp plasmid and carries 2,737 protein-coding sequences, including
two reductive dehalogenase genes.

Bioremediation of chlorinated contaminants in acidic groundwater is challenging
because most organohalide-respiring bacteria cease growth under acidic condi-

tions (1–3). Sulfurospirillum strains that grow via tetrachloroethene (PCE) reductive
dechlorination under acidic conditions are candidates for bioremediation of chlori-
nated contaminants in low-pH groundwater (2, 4). Sulfurospirillum sp. strain ACSDCE was
isolated from a PCE-dechlorinating microcosm established with contaminated soil col-
lected at the Axton Cross Superfund site (Holliston, MA, USA) (2). Strain ACSDCE couples
growth with PCE-to-cis-1,2-dichloroethene (cDCE) reductive dechlorination at pH val-
ues as low as 5.5 (2) and shares 99.3% and 98.5% 16S rRNA gene sequence identities
with the PCE-to-trichloroethene dechlorinating Sulfurospirillum sp. strain ACSTCE (GenBank
accession number CP045453.2) (5) and the PCE-to-cDCE dechlorinating Sulfurospirillum
multivorans strain DSM 12446 (CP007201.1) (4), respectively.

Strain ACSDCE was grown in anoxic, 2-(N-morpholino)-ethanesulfonic acid-buffered
mineral salt medium (pH 5.5) with acetate as the carbon source, hydrogen as the elec-
tron donor, and PCE as the electron acceptor (2). Cells were collected from a 2-liter cul-
ture by centrifugation, and DNA was extracted using the cetyltrimethylammonium bro-
mide method (6). Genome sequencing used a hybrid approach incorporating the
Illumina and PacBio platforms. For Illumina sequencing, a library with an average insert
size of 350 bp was constructed using the TruSeq DNA sample preparation kit (Illumina,
San Diego, CA, USA), and paired-end sequencing (2� 150 bp) was performed on an
Illumina HiSeq 2000 instrument. Adaptors and low-quality sequences were removed
from the raw reads using Cutadapt version 1.9.1 (7). For PacBio sequencing (PacBio RS
II/Sequel SMRT), genomic DNA was sheared using g-TUBEs (Covaris, Inc., Woburn, WA,
USA) to generate 10-kb fragments, followed by ligation with universal hairpin adapters
using the SMRTbell template prep kit version 1.0 (Pacific Biosciences, Menlo Park, CA,
USA) (8). The PacBio raw read N50 value was 3,932 bp. Genome assembly with 273,566
PacBio raw long reads (coverage, 300�) using Flye version 2.6 (9) was refined with
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25,162,740 Illumina short reads (coverage, 1,387�) using Pilon version 1.20.1 (10). The
assembly resulted in a 2,737,849-bp circular chromosome with a G1C content of
38.8% and a 39,868-bp circular plasmid with a G1C content of 35.6%. Circlator version
1.5.1 (11) was used to remove the overlapping ends, circularize the genome, and rotate
the chromosomal origin of replication to the starting position of the dnaA gene. Gene
identification and functional annotation were performed using the NCBI Prokaryotic
Genome Annotation Pipeline version 4.12 (12). Default parameters were used for all
software unless otherwise specified.

The strain ACSDCE chromosome contains 2,737 protein-coding sequences, 47 tRNAs,
and 3 rRNA operons organized in the order 16S, 23S, 5S. The chromosome harbors two
putative reductive dehalogenase (rdh) A genes (FA584_00035 and FA584_00060), both
adjacent to a downstream rdhB gene encoding a membrane anchor protein. The
strain ACSDCE chromosome harbors a fumarate reductase gene cluster (FA584_09715,
FA584_09720, and FA584_09725) and a gene (FA584_11415) coding for the catalytic
subunit NapA of periplasmic nitrate reductase, suggesting that nitrate and fumarate are
alternate electron acceptors. The plasmid harbors 47 genes, including genes encoding
transposases (four), DNA polymerase IV (two), and subunits of type II toxin-antitoxin sys-
tems (six). The results expand the Sulfurospirillum pangenome and identify biomarkers
for monitoring reductive dechlorination activity in low-pH groundwater.

Data availability. The genome project and sample are indexed at GenBank under
BioProject PRJNA534159 and BioSample SAMN11478956. The GenBank accession num-
bers of the chromosomal and plasmid sequences are CP039734 and CP059996, respec-
tively. The raw sequencing reads have been deposited in the Sequence Read Archive
(SRA) under accession numbers SRR12322185 (Illumina) and SRR12322184 (PacBio).
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