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England has been heavily affected by the SARS-CoV-2 pandemic, with
severe ‘lockdown’ mitigation measures now gradually being lifted. The
real-time pandemic monitoring presented here has contributed to the
evidence informing this pandemic management throughout the first wave.
Estimates on the 10 May showed lockdown had reduced transmission
by 75%, the reproduction number falling from 2.6 to 0.61. This regionally
varying impact was largest in London with a reduction of 81% (95% credible
interval: 77–84%). Reproduction numbers have since then slowly increased,
and on 19 June the probability of the epidemic growing was greater than 5%
in two regions, South West and London. By this date, an estimated 8% of the
population had been infected, with a higher proportion in London (17%).
The infection-to-fatality ratio is 1.1% (0.9–1.4%) overall but 17% (14–22%)
among the over-75s. This ongoing work continues to be key to quantifying
any widespread resurgence, should accrued immunity and effective contact
tracing be insufficient to preclude a second wave.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.
1. Introduction
As of the 20 June more than eight million people have been reported as
being infected by SARS-CoV-2 globally with over 450 000 confirmed deaths
[1]. Having first been identified in Wuhan, SARS-CoV-2 rapidly spread to
other Chinese provinces, Thailand, Japan and the Republic of Korea in the first
three weeks of January 2020 [2], with an early incursion into Europe centred
around clusters in Bavaria, Germany and Haute-Savoie, France, both linked to
subsequent cases in Spain [3]. This international spread eventually led the
World Health Organisation to declare a pandemic on 11 March 2020 [4]. In the
UK, pandemic preparedness plans, developed since 2009 A/H1N1pdm, were
rapidly activated with governmental emergency bodies and advisory groups
convening before the end of January [5].

The UK response to the COVID-19 pandemic escalated from an initial con-
tainment effort to the suppression or ‘lockdown’ strategy introduced on the
23 March [6]. Over this period, through participation in governmental advisory
groups, scientists from a number of research institutions fed into the pandemic
decision-making processes through the work of the Scientific Pandemic Influ-
enza Sub-Group on Modelling (SPI-M) [7]. This work has informed the
various phases of the UK response, from constructing planning scenarios for
the health system, to monitoring these scenarios through regular nowcasting
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of new infections and forecasting of severe disease and health
service demand, see [8,9] and papers available from [7].

Here, we report the contribution of one of the participating
groups, the Public Health England (PHE)/University of
Cambridge modelling group. This collaboration, funded to
developmodellingmethodology for real-time pandemic influ-
enza monitoring [10], was re-activated for the COVID-19
pandemic [11]. The age and spatially structured transmission
model developed for influenza [12,13] has been adapted to
the SARS-CoV-2 epidemiology and implemented through a
Bayesian statistical analysis of pandemic surveillance data,
incorporating knowledge on the natural history of infection
from emerging literature. Throughout the first pandemic
wave, the model has been continuously developed to include
the information that progressively become available. Through
this regular monitoring, we have been able to: anticipate and
understand the impact of the lockdown; provide sequential
updates of the pandemic transmission dynamics, by estimat-
ing the basic (R0) and effective (Rt) reproduction numbers,
(i.e. the average number of individuals infected by an infec-
tious individual in a totally and partially susceptible
population, respectively), and inform the gradual relaxation
of the lockdown.

In what follows, we focus on our contribution to the
monitoring of the first pandemic wave at specific dates span-
ning three key periods: pre-lockdown (before 23 March),
lockdown (until 11 May); and two subsequent dates (3 and
19 June) that allowed the assessment of the gradual easing
of the lockdown; we then conclude with an update over the
summer and final consideration on the experience so far.
2. Data and methods
(a) The transmission model
We model SARS-CoV-2 transmission through an age-stratified
transmission models in each of the seven National Health Ser-
vice (NHS) regions of England, where the regional epidemics
share common parameters. Within each region, the infection
dynamics are governed by a system of ordinary differential
equations, discretized to give the following set of first-order
difference equations:

Sr,tk ,i ¼ Sr,tk�1,i(1� lr,tk�1,idt)

E1
r,tk ,i ¼ E1

r,tk�1,i 1� 2dt
dL

� �
þ Sr,tk�1,ilr,tk�1,idt

E2
r,tk ,i ¼ E2

r,tk�1,i 1� 2dt
dL

� �
þ E1

r,tk�1,i
2dt
dL

I1r,tk ,i ¼ I1r,tk�1,i 1� 2dt
dI

� �
þ E2

r,tk�1,i
2dt
dL

and I2r,tk ,i ¼ I2r,tk�1,i 1� 2dt
dI

� �
þ I1r,tk�1,i

2dt
dI

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(2:1)

where: Sr,tk ,i, E
l
r,tk ,i, I

l
r,tk ,i, l ¼ 1, 2 represent the time tk, k = 1,…,

K, partitioning of the population of individuals in a region r,
r = 1,…, nr, in age-group i, i = 1,…, nA, into S (susceptible),
E (exposed) and I (infectious) disease states. The mean latent
and infectious periods are dL and dI, respectively; and lr,tk ,i is
the time- and age-varying rate with which susceptible individ-
uals become infected. Note that two E and I states are specified
to make the model more flexible by allowing Gamma distri-
buted times in the each of these disease states. Time steps of
δt = 0.5 days are chosen to be sufficiently small relative to the
anticipated latent and infectious periods. New infections are
generated as

Dinfec
r,tk ,i ¼ Sr,tk ,ip

l
r,tk ,i, (2:2)

where

plr,tk ,i ¼ 1�
YnA
j¼1

(1� btkr,ij)
I1r,tk ,j

þI2r,tk ,j
h i0

@
1
Adt � lr,tk ,idt: (2:3)

Here, btkr,ij is the probability of a susceptible individual in
region r of age group i being infected by an infectious indi-
vidual in age group j at time tk. It is a function of:

(i) a set of time-varying contact matrices Ctk ¼ {Ctk
ij }, with

{Ctk
ij } describing the expected number of contacts

between individuals in strata i and j within a single
time unit tk;

(ii) Mtk
r ¼ {Mtk

r,ij}, a region-specific matrix, whose (i, j )th
element gives the relative susceptibility of someone
in age-group i to an infection from an infectious indi-
vidual in age-group j assuming contact between the
two. Many of the components of this matrix are
assumed to be 1, but some are specified as unknown
parameters mr,l, describing the relative susceptibility
in the over-75s and the proportionate change in sus-
ceptibility for both under- and over-75s after the
lockdown;

(iii) btk ,r, a time-varying parameter encapsulating further
temporal fluctuation in transmission that applies to
all ages (see the electronic supplementary material,
equation (9));

(iv) R0,r, the initial reproduction numbers for the pandemic
in each region at time t0. This is a function of two
unknown parameters, a region-specific growth rate,
ψr and dI; and

(v) R�
0,r, the dominant eigenvalues of the initial next-

generation matrices, L0,r:

L0,r,ij ¼ Nr,i~C
t0
r,ijdI , (2:4)

where Nr,i is the population size in region r and
age-group i; and ~C

tk
r are a set of matrices defined by

~C
tk
r ¼ Ctk �Mtk

r

with the � notation indicating element-wise
multiplication, such that A ¼ B� C if Aij = BijCij.

The Ctk matrices encode the information about contact rates
between different age groups derived from the POLYMOD
study [14], Google mobility and the time-use survey. The
Mtk

r matrices capture any mis-specification of these matrices
in terms of the changing pattern of infection between the
age groups, whereas the btk parameters account for mis-
specification of the changing scale of transmission over time
as described by the matrices.

The general expression of btkr,ij is:

btkr,ij ¼
btk ,rR0,r

R�
0,r

~C
tk
r,ij; (2:5)

although analyses in the earliest periods involve a simplified
version of equation (2.5) (see the electronic supplementary
material) for details on the specific expressions).
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Figure 1. (a) Data on deaths by region, and (b) age; and (c) serological positivity by region and sampling date.
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The transmission dynamics described above depend on
the parameters dI and dL in equation (2.1); the parameters
specifying btkr,ij; and the initial conditions of the system,
which can also be expressed as parameters (see the electronic
supplementary material, table S3). These unknown par-
ameters are either fixed to values derived from the
literature or estimated from the combination of different
data sources linked to the latent transmission process through
observational models (see §2c).

(b) Data sources
The surveillance data used are age- and region-specific
counts of deaths of people with a laboratory-confirmed
COVID-19 diagnosis (figure 1a,b). From 21 April onwards,
weekly batches of serological data, indicating the fraction of
the population carrying COVID-19 antibodies, from NHS
Blood and Transplant (NHSBT) samples (figure 1c) [15]
have also been included.
The Wuhan outbreak additionally provides information
on epidemiological parameters: the duration of infectious-
ness, the mean time from infection to symptom onset [16];
the probability of dying given infection and the mean time
from symptoms onset to death [17]. Central to age-specific
epidemic modelling, contact patterns between age groups
have been derived from the POLYMOD study [14] stratified
by setting (school, workplace, leisure etc), with these matrices
sequentially updated using the Google mobility study and
the UK time-use survey [18], to quantify the change in popu-
lation mobility and access to these contact settings over time
(see the electronic supplementary material, Contact matrices).

(c) Parameter estimation
Estimation is carried out in a Bayesian framework, and par-
ameter estimates (and attached uncertainty) are based on
the joint posterior distribution of all the parameters, derived
by combining prior knowledge on model parameters with
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the likelihood of the data. The likelihood for each data source
is constructed by treating the data as imperfect observations
of modelled quantities with error taking an appropriate stat-
istical distribution. For example, the daily number of deaths
are derived from the model by assuming that each day a frac-
tion of new infections will die and specifying a time from
infection to death. The observed deaths then follow a nega-
tive binomial distribution with mean the model-derived
deaths and an appropriate (unknown) dispersion parameter.
Similarly, serological data are assumed to be binomially dis-
tributed with a mean related to the susceptible fraction of
the population.

The total number of unknown parameters to be estimated
includes the transmission dynamics parameters, the natural
history parameters (e.g. the probability of dying given infec-
tion) and the parameters of the observational models (see
the electronic supplementary material, Inference section and
table S3 for more details).

The posterior distribution cannot be evaluated analytically
and is estimated using Markov chain Monte Carlo (MCMC)
[12,13]. The most recent analysis featured in this paper was
based on 900 000 iterations, with an initial adaptive phase of
45 000 iterations within a burn-in period of 90 000 iterations.
Parameter estimates are based on the full sample following
burn-in thinned to retain every 125 iterations, and projections
are based on a sample thinned to every 250 iterations. All cen-
tral estimates are pointwise medians of quantities calculated
on the basis of this sample, and uncertainty is expressed
through 95% credible intervals (CrI) derived from the 2.5%
and 97.5% quantiles. The implementing code (in C++) and
model framework are available from https://gitlab.com/
pjbirrell/real-time-mcmc/-/tree/COVID.
3. Results
(a) Pre-lockdown
After initial attempts to contain the pandemic through trace
and test strategies [19] and to mitigate the burden on the
NHS through combinations of non-pharmaceutical interven-
tions (e.g. case isolation, restrictions on foreign travel,
shielding of vulnerable groups, cancellation of mass gather-
ings), the pressing question became: what level of stringent
social distancing measures would be necessary to suppress
transmission? At this stage, infection was not sufficiently
widespread in each of the seven NHS regions for the data to
inform a fully stratified model, by this time there had only
been four deaths in the whole of the South West. Therefore,
no age structure was used and the country was stratified
into two regions: London, where the number of deaths was
significantly higher (figure 1a), and outside London. Assum-
ing a pandemic intervention is imposed on 23 March, the
model was fitted to data on COVID-19 confirmed deaths to
15 March, and then used to project epidemic curves forward
a further eight weeks. These projections assumed differing
reductions in contact rates (24%, 48%, 64%) (see the electronic
supplementarymaterial, equation (8)) and consequently trans-
mission. The suggested reductionswere achieved by removing
‘school’ and ‘leisure’ based contacts from contact surveys in
the socialmixr package for statistical software R [20].

Figure 2 shows the projections for different levels of this
reduction. The dashed red vertical line shows the date of
the most recent data included in the analysis and the
dashed purple line represents the timing of the intervention.
Each column shows the projected epidemic infection and
death rates under three assumed intervention impacts.

The most optimistic scenario in figure 2 corresponded to an
immediate 64% reduction in transmission. Under this assump-
tion, Rt was estimated to be 1.2 (95% CrI: 0.83–2.1) in London
and 1.2 (95%CrI: 0.84–2.2) elsewhere. In this scenario, the prob-
ability that the imposed measures were successful in reducing
Rt to the threshold of 1 required for declining transmission
was only 19% and 17% in the two regions, respectively. To be
95% certain that the intervention would lead to a sustained
decline in infection, the intervention would need to induce an
81% reduction in transmission. Such a reduction could only
be achieved through the implementation of extreme mitigation
measures.
(b) The lockdown period
The number of deaths continued to rise until 8 April, particu-
larly in older age-groups (figure 1b), permitting stratification
of the model by both age (eight groups) and region (seven
NHS regions). Also, new information from serological studies
(figure 1c) started to become available and weekly data,
downloaded from the Google mobility survey, could be
used to update contact matrices.

A rhythm for pandemic monitoring was established. The
model was run daily, with results feeding into local planning
tools as well as the SPI-M consensus view on the state of the
pandemic, and with periodic publication of web-reports sum-
marizing the latest results [21]. These outputs included a
number of key indicators: regional estimates of Rt and epi-
demic growth rates r, indicating whether transmission is
increasing (Rt > 1) and the rate at which it is increasing [22];
region and age-specific attack rates (AR) (i.e. the proportion
of the population already infected); and predictions of the
burden owing to mortality, both in terms of age-specific infec-
tion-fatality ratios (IFR) and number of COVID-19 deaths.
Public attention has focused on Rt as a headline figure for the
state of the pandemic, but a more complete assessment
requires all these indicators. Table 1 presents estimates of a
selection of these indicators, giving snapshots of the pandemic
state at the three chosen times.

The 10 May section of the table shows the success of the
lockdown at curtailing transmission: the Rt in England is
now estimated to be 0.75 (95% CrI: 0.72–0.77) having dropped
from 2.6 (95% CrI: 2.4–2.9) to 0.61 (95% CrI: 0.57–0.67) at the
time of the lockdown, a reduction of 75% (95% CrI: 73–77%),
in line with the anticipation of the pre-lockdown modelling.
The ‘growth’ rate for England indicates the daily number of
infections were halving every log (2)/r = 11.5 days. London
stands out as the region with the highest estimated attack
rate (20% of people infected, CrI: 16–26%), largely owing to
pre-lockdown levels of infection; the largest reduction in trans-
mission, a drop of 81% (95% CrI: 77–84%) to Rt = 0.4, 95% CrI:
0.36–0.43, and the steepest rates of decline in both the number
of infections (halving every 4 days) and the observed fall in the
number of deaths (figure 1a). The temporal patterns in infec-
tion are disrupted at the lockdown date, with the top row of
figure 3a illustrating the size of this effect for both the
London and North West regions, alongside the estimated Rt.

Launched on the 10 May, the UK COVID-19 4-level Alert
System, coordinated by the newly established Joint Biosecur-
ity Centre (JBC) and based on both estimated Rt and current
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infections, highlighted the key role of these indicators [6] in
guiding the relaxation of lockdown measures without re-
igniting transmission.
(c) Lockdown relaxation
The first tranche of relaxations were announced on the 10 May.
From this time, accounting for likely changes in behaviour
became crucial. In addition, it was clear, from the
over-precision of the estimates of both incidence and Rt in the
top row of figure 3a, that the model required a greater flexibility
to capture such changing behaviours. From an appropriately
adapted model (see the electronic supplementary material,
Transmission model for details), we estimated that at the
3 June, Rt for England reached 0.99 (95% CrI: 0.91–1.09), with
the probability of exceeding the value of 1 rapidly increasing
over time (figure 3b). This figure masks regional heterogeneity
in transmission. The North West and the South West were
characterized by Rt values above 1 (with a probability Rt > 1
of over 50%, figure 3b) and growth rate estimates encompassing
positive values. For the North West, we estimated 4170 (95%
CrI: 1580–9840) daily infections, the highest number in the
country (table 1). The step changes in the plots of Rt over time
in figure 3 for 10 May are entirely owing to changes in the
Google mobility matrices. Looking at the equivalent plot for
the 3 June analysis, over the same interval, the step changes
are larger. This difference in the level of fluctuation over time
suggests that the increases in Rt are too large to be solely attrib-
uted to mobility-driven changes in the contact matrices.
Furthermore, for theNorthWest, the drop inRt around the lock-
down is not as sharp as in London, but rather staggered over
three weeks. This might suggest a different response to the
lockdown in these two regions, which we had previously not
been able to identify. The estimated steady resurgence of Rt in
the North West ultimately led to a policy change, delaying
the staged re-opening of schools [23].

Continuing tomonitor the pandemic evolution in the post-
lockdown era, we adapted the model to incorporate new evi-
dence on differential susceptibility to infection by age [24]
(see the electronic supplementary material, around equation
(10)). Results from 19 June data (table 1 and figure 3a) show
lower estimates forRt, negative growth rates and the estimated
number of infections in England decreasing to 4300 (95% CrI:
2400–7300). There is still regional heterogeneity, with two
regions for which the CrIs for Rt exclude 1 (North East & York-
shire, and the South East); and the probability that the
epidemic is growing is 30% in the South West and below
15% in each of the other regions (electronic supplementary
material, figure S3b). Throughout, we have been estimating
age-specific infection-fatality ratios (see table 1; electronic sup-
plementary material, table S4). Allowing for differential age
susceptibility, the age-specific estimates of the infection-fatal-
ity ratio fall to 17% (95% CrI: 14–22%) in the over-75s (from
23%, 95% CrI: 20–27%) with a rise to 2.9% in the 65–74s, (see
the electronic supplementary material, table S4) and to 1.1%
(95% CrI: 0.9–1.4%) from 0.9% (95% CrI: 0.8–1.0%) overall.
These less severe estimates (in comparison to the 3 June analy-
sis) led to the UK Chief Medical Officers agreeing with a JBC
recommendation that the alert level should be downgraded
to level three.

(d) The summer
Since the 19 of June the weekly updating has continued. Sub-
sequent estimates of the IFR have varied in the region of
0.9 to 1.4% overall and 14 to 19% in the over-75s. Rt has
approached the value of 1 in most regions without exceeding
it, which, together with a decreasing number of daily infec-
tions indicates an epidemic still in decline, although local
outbreaks are being increasingly detected [25]. The estimates



Table 1. Table of estimates (with 95% credible intervals attached) for key epidemic parameters and derived quantities.

analysis region Rt r infections AR IFR (overall) IFR (75+)

date

10th May East 0.71 −0.07 1130 10% — —

(0.68, 0.74) (−0.08, −0.06) (758, 1660) (8%, 13%) — —

London 0.40 −0.18 24 20% — —

(0.36, 0.43) (−0.20, −0.16) (10, 53) (16%, 26%) — —

Mids 0.68 −0.08 1490 11% — —

(0.65, 0.71) (−0.08, −0.07) (1080, 2040) (9%, 15%) — —

NE&Y 0.80 −0.05 4320 11% — —

(0.76, 0.83) (−0.05, −0.04) (3230, 5650) (8%, 14%) — —

North West 0.73 −0.06 2380 14% — —

(0.70, 0.76) (−0.07, −0.06) (1750, 3160) (11%, 18%) — —

South East 0.71 −0.07 1260 8% — —

(0.68, 0.74) (−0.08, −0.06) (855, 1810) (6%, 11%) — —

South West 0.76 −0.06 739 5% — —

(0.72, 0.80) (−0.07, −0.05) (438, 1200) (4%, 6%) — —

England 0.75 −0.06 11400 12% 0.6% 16%

(0.72, 0.77) (−0.06, −0.05) (9150, 14200) (9%, 15%) (0.5%, 0.8%) (12%, 21%)

3rd June East 0.94 −0.01 1660 9% — —

(0.73, 1.14) (−0.06, 0.03) (502, 4610) (8%, 10%) — —

London 0.95 −0.01 1310 17% — —

(0.72, 1.20) (−0.07, 0.04) (247, 4670) (15%, 19%) — —

Mids 0.90 −0.02 2460 10% — —

(0.73, 1.07) (−0.07, 0.01) (809, 6070) (9%, 11%) — —

NE&Y 0.89 −0.02 2450 9% — —

(0.75, 1.04) (−0.07, 0.01) (865, 5870) (8%, 11%) — —

North West 1.01 0.0 4170 12% — —

(0.83, 1.18) (−0.04, 0.04) (1580, 9840) (10%, 14%) — —

South East 0.97 −0.01 2420 7% — —

(0.78, 1.17) (−0.05, −0.03) (782, 6040) (6%, 8%) — —

South West 1.00 0.0 778 4% — —

(0.77, 1.29) (−0.06, 0.06) (162, 3080) (3%, 5%) — —

England 0.99 0.0 16700 10% 0.9% 23%

(0.91, 1.09) (−0.02, 0.02) (10700, 25300) (9%, 11%) (0.8%, 1.0%) (20%, 27%)

19th June East 0.80 −0.05 292 7% — —

(0.60, 1.01) (−0.10, 0.00) (60, 1050) (6%, 8%) — —

London 0.87 −0.03 837 17% — —

(0.67, 1.12) (−0.08, 0.02) (159, 3070) (15%, 18%) — —

Mids 0.82 −0.04 709 8% — —

(0.64, 1.01) (−0.09, 0.00) (189, 2040) (7%, 9%) — —

NE&Y 0.76 −0.05 351 7% — —

(0.58, 0.95) (−0.11, −0.01) (84, 1110) (6%, 8%) — —

North West 0.84 −0.04 872 10% — —

(0.69, 1.02) (−0.08, 0.00) (255, 2460) (9%, 11%) — —

South East 0.77 −0.05 342 6% — —

(0.59, 0.96) (−0.10, −0.01) (79, 1120) (5%, 6%) — —

South West 0.94 −0.01 312 3% — —

(0.69, 1.21) (−0.07, 0.04) (60, 1180) (3%, 4%) — —

England 0.88 −0.03 4260 8% 1.1% 17%

(0.79, 1.01) (−0.05, 0.00) (2370, 7290) (8%, 9%) (0.9%, 1.4%) (14%, 22%)
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presented here are consistent with the SPI-M consensus on the
values of Rt both nationally and regionally [26]. Incidence
estimates can be contrasted with estimates from community
cross-sectional studies. In a report of the 9 July, the Office for
National Statistics (ONS) estimates 1700 (range 700–3700)
new daily infections over the two weeks leading up to 4 July
[27], while the COVID Symptom Study app developed by
ZOE Global Ltd [28] reports an average 1470 infections per
day over a similar period. In our work, incidence ranges
from a central estimate of 4200 daily infections down to 3500
over the period. These are not incongruous to the ZOE app
estimates, which only refer to symptomatic infection and
require some scaling to derive an estimate for total
infections. The ONS estimate is likely to be an underestimate
as the survey does not include individuals in institutionali-
zed settings, e.g. care homes, where incidence may be far
higher than in the community. The degree to which this is
an underestimate, however, is unclear.

The ONS also reports [29] that 6.3% (95% CrI: 4.7–8.1%) of
individuals showed the presence of antibodies to the COVID-
19 in blood sera samples (as of 19 June), a little lower than the
8% estimated attack rate for England. This discrepancy may
well be owing to the timing of the samples, due to the waning
of the antibody response over time. Estimates of attack rates
(table 1) show that our belief on the proportion of the population
that has been infected is being revised downwards at each
sequential analysis. This, together with the emerging evidence
of waning immunity [30], paint a muddied picture in terms of
the potential for a population-level resurgence in infection.

On the 4 July, there was a significant step change in the gra-
dual relaxation of pandemic mitigation measures as leisure
facilities, tourist attractions, pubs and cafes all became accessible
to the public once again [31]. The impact of this has beenprogress-
ively observed throughout the summer via increasing episodes of
localized outbreaks, with the public health emphasis moving
from national and regional monitoring to the identification of
local hot-spots and the imposition of local measures.

The estimated Rt have oscillated around 1 in a number of
regions, although they become progressively more uncertain
as the number of deaths have continued to decrease. The inci-
dence of new infections has also slowly decreased from
around 4000 new infections per day at the beginning of July
(see the electronic supplementary material, figure S3). By the
end of August, infection levels are relatively low at 2400 (95%
CrI: 1300–4500) total daily infections, consistent with the ZOE
app and ONS estimates of 1980 and 2200 (95% CrI: 1100–
3800), respectively; and 8% (95% CrI: 7–13%) of the population
had been infected in England, 16% (95% CrI: 13–24%) in
London and 10% (95% CrI: 8–15%) in the North West.

In the first two weeks of September, following patterns
already observed in other European countries, signs of resur-
gence are accumulating: an increasing number of regions are
reporting multiple localized outbreaks; incidence estimates
from ONS and the ZOE app have risen to 3200 and 3800
new daily infections, respectively; and results from ONS
and REACT (https://www.imperial.ac.uk/medicine/research-
and-impact/groups/react-study/) studies show increased
COVID-19 prevalence.
(e) Final considerations
Tracking the pandemic throughout its first wave has been an
incredibly interesting and challenging experience. The pace of
the updates required by SPI-M as data accumulated has been
fast. We have learned to interpret newly emerging information
swiftly, to adapt the model’s structure rapidly and to tailor the
fitting algorithm promptly. We have developed a monitoring
tool and progressively adapted it to deal with emerging chal-
lenges. Inevitably, the rate at which results had to be provided
demanded compromises. We have not been able yet, for
instance, to understand and incorporate data on hospitaliz-
ations, nor account properly for waning antibody responses,
limiting the use of the NHSBT data. Also, the running times
of the naive MCMC algorithm we used in the fitting of the
model isO(K2), and, as data continue to accumulate, our ability
to produce results in a timely manner is going to be reduced.

As the pandemic progresses, short-term and longer-term
model developments will be required. We can anticipate
the need to specify different susceptibilities to infection,
time-varying IFRs, seasonality in transmission and mortality,
and, eventually, vaccine efficacy. These will all be required in
the model at some stage, with possible heterogeneity across
age-groups and regions. When to adapt the model to increase
the complexity with which we handle each of these aspects
will be a key modelling question, particularly if it involves
a trade-off with model running times. Beyond this pandemic,
methods for automatically handling the increasing complex-
ities as data accumulate should be developed to ease the
burden of real-time in-pandemic model development. This
should motivate work for years to come.
4. In context
As hinted at in the various parts of the paper, this work
has contributed, and is still contributing, to the SPI-M
consensus on the evolution of the pandemic. Initially,
we provided evidence of the likely effect of social restric-
tions on infections, deaths and hospitalizations, showing that
a reduction in COVID-19 burden could only be
achieved through the implementation of extreme measures
(https://www.gov.uk/government/publications/phe-real-
time-model-initial-results-1-march-2020). We then regularly
produced updates of the current state of the pandemic as sum-
marized by estimates of R values, infection growth rates (and
doubling times) as well as infection incidence and prevalence,
for England and the English NHS regions. The model has also
been (and is being) used to derive medium term predictions
(six weeks) of the number of deaths, again both nationally
and by English regions. Our estimates of the IFR have been
employed to produce worse case scenarios for mortality [32];
and, less public, but equally important, our regular outputs
have been used extensively across PHE and JBC, also inform-
ing PHE regional resource planning and the scheduling of
paediatric elective surgeries. Finally, our regular publications
https://www.mrc-bsu.cam.ac.uk/tackling-covid-19/now-
casting-and-fore casting-of-covid-19/ have attracted
significant media interest. We were, controversially, the first
to highlight the regional heterogeneity in transmission, leading
to local changes (e.g. https://www.theguardian.com/edu-
cation/2020/jun/06/all) in policy.

We started producing regular modelling outputs, albeit
from a very simple model, at the end of March 2020. However,
we were only able to make our work publicly available on
MedRxiv (https://www.medrxiv.org/content/10.1101/2020.
08.24.20180737v1) in the summer. Like with other groups,
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thepressure toprovide results at pace to inform thegovernmen-
tal response,while allowing adaptation of themodel to account
for accumulating data and the imposition of pandemic inter-
ventions, did not leave much time to the production of
academic outputs.

We can now incorporate data on prevalence from the
ONS Infection Survey; we have allowed for changes in IFR,
following recent publications (https://arxiv.org/ftp/arxiv/
papers/2103/2103.04867.pdf); and introduced vaccination.
All of these have required a number of model developments.
We look forward to publishing our methods and results for
the second wave and beyond.
Data accessibility. Mobility data and time use data are freely available.
The death data used are daily totals aggregated to the seven NHS
Regions and age-groups of broad width. These data are available
upon the signing of a data-sharing agreement with Public Health
England (contact wncov.modelling@phe.gov.uk).

https://arxiv.org/ftp/arxiv/papers/2103/2103.04867.pdf
https://arxiv.org/ftp/arxiv/papers/2103/2103.04867.pdf
https://arxiv.org/ftp/arxiv/papers/2103/2103.04867.pdf
mailto:wncov.modelling@phe.gov.uk
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