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Abstract

Background: Environmental DNA and metabarcoding allow the identification of a mixture of species and launch a new era
in bio- and eco-assessment. Many steps are required to obtain taxonomically assigned matrices from raw data. For most of
these, a plethora of tools are available; each tool’s execution parameters need to be tailored to reflect each experiment’s
idiosyncrasy. Adding to this complexity, the computation capacity of high-performance computing systems is frequently
required for such analyses. To address the difficulties, bioinformatic pipelines need to combine state-of-the art technologies
and algorithms with an easy to get-set-use framework, allowing researchers to tune each study. Software containerization
technologies ease the sharing and running of software packages across operating systems; thus, they strongly facilitate
pipeline development and usage. Likewise programming languages specialized for big data pipelines incorporate features
like roll-back checkpoints and on-demand partial pipeline execution. Findings: PEMA is a containerized assembly of key
metabarcoding analysis tools that requires low effort in setting up, running, and customizing to researchers’ needs. Based
on third-party tools, PEMA performs read pre-processing, (molecular) operational taxonomic unit clustering, amplicon
sequence variant inference, and taxonomy assignment for 16S and 18S ribosomal RNA, as well as ITS and COI marker gene
data. Owing to its simplified parameterization and checkpoint support, PEMA allows users to explore alternative algorithms
for specific steps of the pipeline without the need of a complete re-execution. PEMA was evaluated against both mock
communities and previously published datasets and achieved results of comparable quality. Conclusions: A
high-performance computing–based approach was used to develop PEMA; however, it can be used in personal computers as
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well. PEMA’s time-efficient performance and good results will allow it to be used for accurate environmental DNA
metabarcoding analysis, thus enhancing the applicability of next-generation biodiversity assessment studies.

Keywords: pipeline; container; Docker; singularity; high performance computing; HPC; eDNA; metabarcoding

Background

Environmental DNA (eDNA) metabarcoding inaugurates a new
era in bio- and eco-monitoring [1]. eDNA refers to genetic ma-
terial obtained directly from environmental samples (soil, sedi-
ment, water, etc.) without any obvious signs of biological source
material [2]. Metabarcoding is the combination of DNA taxon-
omy, based on taxa-specific marker genes (e.g., 16S ribosomal
RNA [rRNA] for Bacteria and Archaea, cytochrome oxidase sub-
unit 1 [COI] and 18S rRNA for Metazoa, ITS for Fungi), and
high-throughput DNA sequencing technologies; thus, simulta-
neous identification of a mixture of organisms is attainable [3].
eDNA metabarcoding attempts to turn the page on the way bio-
diversity is perceived and monitored [3]. This combination is
considered to be a potential holistic approach that, once stan-
dardized, allows for higher detection capacity and at a lower
cost compared to conventional methods of biodiversity assess-
ment. However, from the raw read sequence files to an amplicon
study’s results, the bioinformatics analysis required can be trou-
blesome for many researchers.

Well-established pipelines are available to process metabar-
coding data for the case of 16S and 18S rRNA marker genes and
bacterial communities (e.g., mothur [4], QIIME 2 [5], LotuS [6]).
However, certain limitations accompany each of these and oc-
casionally they can be far from easy-to-use software. Moreover,
there is a great need for similarly straightforward and bench-
marked approaches for the analysis of other marker genes. With
respect to the COI and ITS marker genes, a number of pipelines
have been implemented, e.g., Barque [7], ScreenForBio [8], and
PIPITS [9]. However, there is still need for a fast, flexible, easy-
to-install, and easy-to-use pipeline for both COI and ITS marker
genes.

The pipelines mentioned above, although entrenched, are
still hindered by a series of hurdles. Among the most prominent
are technical difficulties in installation and use, strict limitations
in setting parameters for the algorithms invoked, and incompe-
tence in partial re-execution of an analysis.

Moreover, given the computational demands of such anal-
yses, access to high-performance computing (HPC) systems
might be mandatory, e.g., to process studies with a large num-
ber of samples. This is timely given the ongoing investment of
national and international efforts (e.g., [10]) to serve the broad
biological community via commonly accessible infrastructures.

PEMA (Pipeline for Environmental DNA Metabarcoding Anal-
ysis) is an open source pipeline that bundles state-of-the-art
bioinformatic tools for all necessary steps of amplicon analysis
and aims to address the aforementioned issues. It is designed
for paired-end sequencing studies and is implemented in the
BDS [11] programming language. BDS’s ad hoc task parallelism
and task synchronization supports heavyweight computation,
which PEMA inherits. In addition, BDS supports ”checkpoint”
files that can be used for partial re-execution and crash recovery
of the pipeline. PEMA builds on this feature to serve tool and pa-
rameter exploratory customization for optimal metabarcoding
analysis fine tuning. Switching effortlessly between (molecular)
operational taxonomic unit ([M]OTU) clustering and amplicon
sequence variant (ASV) inference algorithms is a pertinent ex-
ample. Finally, via software containerization technologies such

as Docker [12] and Singularity [13], with the latter being HPC-
centered, PEMA is distributed in an easy to download and install
fashion on a range of systems, from regular computers to cloud
or HPC environments.

From the biological perspective, monitoring biodiversity at all
its different levels is of great importance. Because there is not a
single marker gene to detect all taxa, researchers need to use
different genes targeting each great taxonomy group separately
[14]. To that end, PEMA supports the metabarcoding analysis of
both prokaryotic communities, based on the 16S rRNA marker
gene, and eukaryotic ones, based on the ITS (for Fungi) and COI
and 18S rRNA (for Metazoa) marker genes [14].

As high-throughput sequencing (HTS) data become more and
more accurate, ASVs, i.e., marker gene amplified sequence reads
that differ in ≥1 nucleotide from each other, become easier to
resolve [15]. The use of ASVs instead of OTUs has been suggested
[15]; however, the choice of which approach to use should be
based on each study’s objective(s) [16].

PEMA supports both OTU clustering and ASV inference for
all marker genes (see “OTU clustering vs ASV inference” in the
“Results and Discussion” section). Two clustering algorithms,
VSEARCH [17] and CROP [18], are used for the clustering of reads
in (M)OTUs—the former for the case of the 16S/18S rRNA marker
genes, the latter for the case of COI and ITS. Swarm v2 [19] allows
ASV inference in all cases.

Taxonomic assignment is performed in an alignment-based
approach, making use of the CREST LCAClassifier [20] and the
Silva database [21] for the case of 16S and 18S rRNA marker
genes; the Unite database [22] is used for the ITS gene. In the
16S marker gene case, phylogeny-based assignment is also sup-
ported, based on RAxML-ng [23], EPA-ng [24], and Silva [21]. For
the COI marker gene, the RDPClassifier [25] and the MIDORI
database [26] are used for the taxonomic assignment. In addi-
tion, ecological and phylogenetic analysis are facilitated via the
“phyloseq” R package [27].

All the pipeline- and third-party module–controlling param-
eters are defined in a plain “parameter-value pair” text file. Its
straightforward format eases the analysis fine tuning, comple-
mentary to the aforementioned checkpoint mechanism. A tu-
torial about PEMA and installation guidance can be found on
PEMA’s GitHub repository [28].

Implementation

PEMA’s architecture comprises 4 main parts taking place in tan-
dem (Fig. 1). A detailed description of the tools invoked by PEMA
and their licenses is included in Additional File 1: Supplemen-
tary Methods.

Part 1: Quality control and pre-processing of raw data

First, FastQC [29] is used to obtain an overall read-quality sum-
mary; visual inspection of each sample’s quality may recom-
mend removing those insufficient quality, as well as samples
with a low number of reads, and rerunning the analysis. To
correct errors produced by the sequencer, PEMA incorporates a
number of tools. Trimmomatic [30] implements a series of trim-
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Figure 1: PEMA comprises 4 parts. The first step (top left) is the quality control and pre-processing of the Illumina sequencing reads. This step is common for both 16S
rRNA and COI marker genes. The second step (top right) is the clustering of reads to (M)OTUs or their inferring to ASVs. The third step (bottom left) is the taxonomy
assignment to the generated (M)OTUs/ASVs. In the fourth step (bottom right), the results of the metabarcoding analysis are provided to the user and visualized. ∗noun

project icons by: ProSymbols (US), IconMark (PH), Nithinan Tatah (TH). clustering figure adapted from DOI: 10.7717/peerj.1420/fig-1.

ming steps, which either remove parts of the sequences corre-
sponding to the adapters or the primers, trim and crop parts of
the reads, or even remove a read completely, when it fails to
reach the quality-filtering standards set by the user. Cutadapt
[31] is used additionally for the case of ITS to address the vari-
ability in length of this marker gene (see Additional File 1: Sup-
plementary Methods). BayesHammer [32], an algorithm of the
SPAdes assembly toolkit [33], revises incorrectly called bases.
PANDAseq [34] assembles the overlapping paired-end reads, and
then the “obiuniq” program of OBITools [35] groups all the iden-
tical sequences in every sample, keeping track of their abun-
dances. The VSEARCH package [17] is then invoked for chimera
removal; however, if the Swarm v2 algorithm is selected, this
step will be performed after the ASV inference (see next
section).

Part 2: (M)OTU clustering and ASV inference

Quality-controlled and processed sequences are subsequently
clustered into (M)OTUs or treated as input for inferring ASVs.
For the case of 16S and 18S rRNA marker genes, VSEARCH [17]
is used for OTU clustering, while ASVs can be identified by the
Swarm v2 algorithm [19]. VSEARCH is an accurate and fast tool
that can handle large datasets; at the same time it is a great alter-
native for USEARCH [36] because it is distributed under an open
source license.

For the ITS and COI marker genes, CROP [18], an unsuper-
vised probabilistic Bayesian clustering algorithm that models
the clustering process using birth-death Markov chain Monte
Carlo (MCMC), is used. The CROP clustering algorithm is ad-
justed by a series of parameters that need to be tuned by the
user (namely, b, e, and z). These parameters depend on specific
dataset properties such as the length and the number of reads.
PEMA automatically adjusts b, e, and z by collecting such infor-
mation and applying the CROP recommended parameter-setting
rules [18]. ASV inference is conducted by Swarm v2 [19] in this
case too.

Because the Swarm v2 algorithm is not affected by chimeras
(F. Mahé, personal communication), when Swarm v2 is selected,
chimera removal occurs after the clustering (see Additional File
1: Supplementary Methods: Swarm v2). This leads to a compu-
tational time gain as chimeras are sought among ASVs, instead
of ungrouped reads.

Last, any singletons, i.e., sequences with only 1 read, occur-
ring after the (M)OTU clustering or the ASV inference may be
removed according to the user’s parameter settings.

Part 3: Taxonomy assignment

Alignment-based taxonomy assignment is supported for all
marker gene analyses. In the case of the 16S/18S rRNA and
ITS marker genes, the LCAClassifier algorithm of the CREST
set of resources and tools [20] is used together with the Silva
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[21] and the Unite [22] database, respectively, to assign tax-
onomy to the OTUs. Two versions of Silva are included in
PEMA: 128 (29 September 2016) and 132 (13 December 2017). Be-
cause classifiers need first to be trained for each database they
use, for future Silva [21] versions new PEMA versions will be
available.

For the COI marker gene, PEMA uses the RDPClassifier [25]
and the MIDORI reference database [26] to assign taxonomy of
the MOTUs. The MIDORI database contains quality-controlled
metazoan mitochondrial gene sequences from GenBank
[37].

Intended primarily for studies from less explored environ-
ments, phylogeny-based assignment is available for 16S rRNA
marker gene data. PEMA maps OTUs to a custom reference
tree of 1,000 Silva-derived consensus sequences (created using
RAxML-ng [23] and gappa [phat algorithm] [38], Fig. 2A). PaPaRa
[39] and EPA-ng [24] combine the OTU clustering output and
the reference tree to produce a phylogeny-aware alignment and
map the 16S rRNA OTUs to the custom reference tree. Beyond
the context of PEMA, users may visualize the output with tree
viewers such as iTOL [40] (Fig. 2B).

Part 4: Ecological downstream analysis of the
taxonomically assigned (M)OTU/ASV tables

PEMA’s major output is either an (M)OTU or an ASV table
with the assigned taxonomies and the abundances of each
taxon in every sample. For each sample of the analysis, a
subfolder containing statistics about the quality of its reads,
as well as the taxonomies and their abundances, is also
returned.

Via the “phyloseq” R package [27], downstream ecological
analysis of the taxonomically assigned OTUs or ASVs is sup-
ported. This includes α- and β-diversity analysis, taxonomic
composition, statistical comparisons, and calculation of corre-
lations between samples.

When selected, in addition to the phyloseq [27] output, a mul-
tiple sequence alignment (MSA) and a phylogenetic tree of the
OTU/ASVs retrieved can be returned; for the MSA, the MAFFT
[41] aligner is invoked while the latter is built by RAxML-ng
[23].

PEMA container-based installation

An easy way of installing PEMA is via its containers. A Dock-
erized PEMA version is available [42]. Singularity users can
“pull” the PEMA image from [43]. Between the 2 containers, the
Singularity-based one is recommended for HPC environments
owing to Singularity’s improved security and file accessing prop-
erties [44]. PEMA can also be found in the bio.tools (id: PEMA) and
SciCruch (PEMA, RRID:SCR 017676) databases. For detailed doc-
umentation, visit [28].

PEMA output

All PEMA-related files (i.e., intermediate files, final output,
checkpoint files, and per-analysis parameters) are grouped in
distinct (self-explanatory) subfolders per major PEMA pipeline
step. In the last subfolder, i.e., subfolder 8, the results are fur-
ther split into folders per sample. This eases further analysis
both within the PEMA framework (e.g., partial re-execution for
parameter exploration) and beyond. An extra subfolder is cre-
ated when an ecological analysis via the “phyloseq” package has
been selected.

Results and Discussion
Evaluation

To evaluate PEMA, 2 approaches were followed. First, PEMA was
benchmarked against mock community datasets. Second, PEMA
was used to analyse previously published datasets. PEMA’s out-
put was then compared with the original study outcome, as well
as with the output of QIIME2, LotuS, Mothur, and Barque (where
applicable).

Four mock communities, 1 for each marker gene, were used.
With respect to the 16S rRNA marker gene, a mock community
of Gohl et al. [45] with 20 different bacterial species was stud-
ied. Correspondingly, in the case of the 18S rRNA marker gene, a
mock community of Bradley et al. [46] with 12 algal species was
used; for the ITS, one of Bakker [47] including 19 different fungal
taxa; and for the case of the COI marker gene, a mock commu-
nity of Bista et al. [48] containing 14 metazoan species. More in-
formation on the mock communities, their original studies, and
the results of PEMA for various combinations of parameters can
be found in Additional File 2: Mock Communities.

Complementary to the mock community evaluation, 2 pub-
licly available datasets from published studies were investigated
through PEMA. For the 16S rRNA marker gene, the dataset re-
ported by Pavloudi et al. [49] was used; the original study aimed
at investigating the sediment prokaryotic diversity along a tran-
sect river–lagoon–open sea. For the COI case, the dataset of Bista
et al. [50] was used; this study investigated whether eDNA can
be used for the accurate detection of chironomids (a taxonomic
group of macroinvertebrates) in a freshwater habitat.

In both approaches, the respective .fastq files were down-
loaded from the European Nucleotide Archive (ENA) of the Euro-
pean Bioinformatics Institute ENA-(EBI) using “ENA File Down-
loader version 1.2” [51] and PEMA was run on the in-house HPC
cluster.

All analyses were conducted on identical Dell M630 nodes
(128 GB RAM, 20 physical Intel Xeon 2.60 GHz cores).

Mock community evaluation

PEMA was tested against mock communities. An evaluation of
its accuracy must capture (i) how many of PEMA’s predictions are
true (i.e., the percent of correctly assigned taxa among all pre-
dicted taxa) and (ii) how many of the taxa existing in the mock
community were recovered successfully by PEMA. The precision
statistical metric was used to assess the former, and recall, the
latter. In addition, the F1-score was used as a combined metric
of both precision and recall. Precision is calculated as the ratio
of true-positive results (TP) over the total number of true- (TP)
and false-positive results (FP) predicted by a model, as follows:
precision = TP/(TP + FP); recall is the ratio of TP over the total
number of TP and false-negative results (FN): recall = TP/(TP +
FN). The F1-score is the precision and recall harmonic mean and
is calculated by means of the following formula: F1 = 2 × (preci-
sion × recall)/(precision + recall) [52].

Adequate accuracy was achieved when PEMA was used to re-
cover the marker gene–specific mock communities at the genus
level. Precision and recall scores of ∼80% or more were observed,
with 2 exceptions in precision but also 3 very high scores in re-
call. Overall the F1-scores ranged from 74% to 86%. A detailed
description of the benchmark methodology and statistics anal-
ysis is given in Additional File 2: Mock Communities.

Detailed presentation of per-marker-gene–specific mock
community recovery via PEMA is provided in the following
sections. Several different sets of parameters were chosen for

https://scicrunch.org/resolver/RRID:SCR_017676
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Figure 2: Phylogeny-based taxonomy assignment. A: Building a reference tree for the phylogeny-based taxonomy assignment to 16S rRNA marker gene OTUs: from the
latest edition of Silva SSU, all entries referring to Bacteria and Archaea were used and using the “art” algorithm, 10,000 consensus taxa were kept. B: Using PaPaRa and
the OTUs that come up from every analysis, an MSA was made and EPA-ng took over the phylogeny-based taxonomy assignment. ∗noun project icons by: Rockicon
and A Beale.

each marker gene. Each marker gene has special features (e.g.,
length variability, sequence variability), and each Illumina run
has its own intrinsic biases (e.g., primers used, PCR protocol);
thus, parameter tuning plays a crucial part in metabarcoding
analyses.

In an attempt to thoroughly analyse the sequence data from
the mock communities, various sets of parameters were tested
on the basis of the experimental details of the published studies
but also in an exploratory way. Many different parameter set-
tings were tested, especially for the steps of quality trimming
of the reads and the OTU clustering/ASV inference. The differ-
ences in their output indicate how sensitive this method is, as
well as the great need of a mock community in every metabar-
coding study—both as a control but also as a “tuning system” for
the parameter setting of the pipeline used.

16S rRNA

When PEMA was performed with the Swarm v2 algorithm (d =
3, strictness = 0.6) without removal of singletons, 18 of the 20
taxa were identified to the genus level and 3 of these even to
the species level. There were 2 species that were not found in
any of the PEMA runs. According to Gohl et al. [45], there was
a discrepancy in the identification of those 2 species that was
dependent on the amplification protocol used. It is worth men-
tioning that as d increases, taxa cannot be identified to species
level at all; however, FP assignments decrease. Thus, when d =
30 and strictness = 0.6 for the KAPA samples, Enterococcus was
not identified at all; however, PEMA finds its greatest F1 value
(at the genus level, see Table 1) as the FP assignments returned
are minimized. When PEMA was run using the VSEARCH cluster-
ing algorithm, high precision values were returned in all cases

Table 1: Summary benchmark of PEMA marker-gene–specific mock
community recovery (precision)

Marker gene Precision Recall F1

16S rRNA 0.81 0.85 0.83
18S rRNA 0.75 0.90 0.82
ITS 0.79 0.94 0.86
COI 0.62 0.93 0.74

(>0.79). However, the recall values were decreased when using
Swarm v2 (0.65–0.68).

18S rRNA

When PEMA was performed using the Swarm v2 algorithm (d
= 1, strictness = 0.5), 3 of 12 community members were iden-
tified to species level (Isochrysis galbana, Nannochloropsis oculata,
and Thalassiosira pseudonana), 6 to genus, and the remaining 3 to
class; the latter were all the green algae species (Chlorophyta)
of the mock community. However, a better F1-score (0.82) was
achieved when the class of Chlorophyceae was not found at all
(d = 1, strictness = 0.3) because the FPs were decreased to only
1. When the VSEARCH algorithm was used, I. galbana was iden-
tified only to the genus level, the Nannochloropsis to the order
level (Eustigmatales), and the Poterioochromonas genus to its class
(Chrysophyceae).

ITS

When PEMA was performed using the Swarm v2 algorithm (d =
20) and targeting the ITS2 region, ASVs from 5 of the 19 species
of the mock community were assigned to species level, 10 to
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genus, 2 to family, and 2 to class level. Contrary to the study
by Bakker [47], PEMA identified the genus Chytriomyces in all 3
samples, as well as the Ustilaginaceae family. Only 1 FP assign-
ment was recorded. When the CROP algorithm was used, PEMA’s
output was less accurate; the Fusarium species contained in the
mock community were not identified further than their family
(Nectriaceae). As mentioned by Bakker [47], many reads deriving
from the Fusarium spp. were not assigned to species level be-
cause of the quality-trimming step. In addition, a manually as-
sembled reference database for the taxonomy assignment was
used in the initial study, containing only sequences of the mock
community species, which biased this step, making the results
not directly comparable to our case.

COI

When PEMA was performed on the Bista et al. dataset [48] and
using Swarm v2 (d = 10), it identified 12 of the 14 species in-
cluded in the mock community. The sole non-identified species
were Bithynia leachii and Anisus vortex. For B. leachii no entry ex-
ists in the MIDORI database, version MIDORI LONGEST 1.1. How-
ever, the existence of another species of the genus Bithynia was
recorded. With respect to A. vortex, PEMA returned a high abun-
dance ASV assigned to the Anisus genus but with a low confi-
dence level. PEMA managed to identify all the members of the
mock community. This includes Physa fontinalis, which was orig-
inally not designed to be a member of the mock community
but, as Bista et al. [48] explain, was recorded owing to cross-
contamination. In the case of the COI marker gene, unique se-
quences with low abundances (singletons or doubletons) of-
ten lead to spurious MOTUs/ASVs. Thus, as shown in Addi-
tional File 2: Mock Communities, the FP assignments are de-
creased when these low-abundant sequences are removed; also,
the abundance of the assignments (i.e., read counts) retrieved
can indicate FP assignments. Thus, TP assignments occur in
greater abundance, with hundreds or even thousands of reads—
contrary to most of the FP results, whose abundance is <10 read
counts. That is mostly for the case of the COI marker gene be-
cause eukaryotes are under study; eukaryotes have a great num-
ber of copies of this marker gene—different numbers of copies
among the different species—and not just a single one as is al-
most always the case in bacteria. Therefore, assignments with
such low abundances should be doubted as TP results in analy-
ses on real datasets.

Comparison with existing software

PEMA’s features were compared with those of mothur [4], QIIME
2 [5], LotuS [6], and Barque [7]. Table 2 presents a detailed com-
parison among the 4 tools’ features in terms of marker gene sup-
port, diversity and phylogeny analysis capability, parameter set-
ting and mode of execution, operation system availability, and
HPC suitability. As shown, PEMA is equally feature-rich, if not
richer in certain feature categories, compared with the other
software packages. In particular, PEMA’s support for COI marker
gene studies is distinctive; 2 methods for taxonomy assignment
are supported, and PEMA’s easy parameter setting, step-by-step
execution, and container distribution render it user and analysis
friendly.

Evaluation on real datasets and against other tools

In the following sections, a comparative study on real datasets
of the 16S rRNA and COI marker genes is presented. Analyses

using PEMA and the pipelines mentioned above that support
each of these 2 marker genes were performed, both with mul-
tiple sets of parameters. It is typical for pipelines to invoke a va-
riety of established tools. In many cases, a number of tools are
common among different pipelines. Therefore, it is important
to stress that such comparisons should not be taken into ac-
count strictly; declaring that one pipeline is better than another
is not trivial. Potentials and limitations of both the pipelines
and the metabarcoding method, as well as the importance of
the role of the pipeline user, are underlined in the following
sections.

16S rRNA marker gene analysis evaluation

To evaluate PEMA’s performance, a comparative analysis of the
Pavloudi et al. [49] dataset with mothur [4], QIIME 2 [5], LotuS [6],
and PEMA was conducted.

It is known that the choice of parameters affects the output of
each analysis; therefore, it is expected that different user choices
might distort the derived outputs. For this reason and for a di-
rect comparison of the pipelines, we have included all the com-
mands and parameters chosen in the framework of this study
in Additional File 1: Supplementary Methods. The results of the
processing of the sequences by PEMA are presented in Table S1.
All analyses were conducted on identical Dell M630 nodes (128
GB RAM, 20 physical Intel Xeon 2.60 GHz cores). LotuS, mothur,
and QIIME 2 operated in a single-thread (core) fashion. PEMA,
given the BDS intrinsic parallelization [11], operated with up to
the maximum number of node cores (in this case 20).

The execution time and the reported OTU number of each
tool are presented in Table 3. LotuS and PEMA resulted in a fi-
nal number of OTUs comparable to that of Pavloudi et. al [49].
Clearly, owing to PEMA’s parallel execution support, the analy-
sis time can be significantly reduced (∼1.5 hours in this case).
The execution time depends on the parameters chosen for each
software (see Additional File 1: Supplementary Methods).

Owing to the non-full overlap of the sequence reads, mothur
resulted in an inflated number of OTUs; thus, it was ex-
cluded from further analyses. The results of all the pipelines
were analysed with the phyloseq script that is provided with
PEMA. The taxonomic assignment of the PEMA-retrieved OTUs
is shown in Fig. 3. The phyla that were found in the sam-
ples are similar to the ones that were found in the orig-
inal study [49]. Although the lowest number of OTUs was
found in the marine station (Kal) (Supplementary Table S3),
which is not in accordance with Pavloudi et. al [49], the gen-
eral trend of a decreasing number of OTUs with increasing
salinity was observed as in the original study (Supplemen-
tary Fig. S1). Notably, this result was not observed with the
other tested pipelines (Supplementary Table S3). Furthermore,
each of the pipelines resulted in a different taxonomic pro-
file (Supplementary Figs S2–S4), with an extreme case of miss-
ing the order of Betaproteobacteriales (Supplementary Figs
S5–S7).

Moreover, when the PERMANOVA analysis was run for the
results of PEMA, LotuS, and DADA2, it was clear that the mi-
crobial community composition was significantly different in
each of the 3 sampled habitats (i.e., river, lagoon, open sea) (PER-
MANOVA: F.Model = 7.0718, P < 0.001; F.Model = 6.5901, P < 0.001;
F.Model = 2.2484, P < 0.05, respectively), which is in accordance
with Pavloudi et al. [49]. However, this was not the case with
Deblur (PERMANOVA: P > 0.05). Overall, PEMA’s output is in ac-
cordance with the original study [49], and seen through this
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Table 2: Comparison of the basic features of the different pipelines

Feature LotuS QIIME 2 mothur Barque PEMA

16S rRNA

18S rRNA

ITS

COI

diversity indices

alignment-based taxonomy assignment

phylogenetic-based taxonomy 

assignment

parameters assigned in the command 

line

parameters assigned through a text file

step-by-step execution

all steps in one go possible

available for any Operating System 

(Linux, OSX, Windows)

traditional application installation

available as a virtual machine

available as a container

available for HPC as a container 

(Singularity container)

Table 3: OTU predictions and execution time for the different pipelines

Parameter LotuS mothur
QIIME 2

PEMA
Pavloudi et al.

[49]
Deblur DADA2

No. of OTUs 9,849 142,669 517 1,023 6,028 7,050
Execution time (h) ∼9 ∼67∗ 2.5 ∼5 ∼1.5 ∼26

∗(∼56 if the reference database is already built).
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Figure 3: OTU bar plot at the phylum level. Bar plot depicting the taxonomy of the retrieved OTUs from PEMA for the dataset of Pavloudi et al. [49], at the phylum
level for the case of the 16S marker gene. AR: Arachthos; ARO: Arachthos Neochori; ARDelta: Arachthos Delta; LOin: Logarou station inside the lagoon; LOout: Logarou
station in the channel connecting the lagoon to the gulf; Kal: Kalamitsi.

perspective PEMA performed equally well with the other tested
pipelines, along with having the shortest execution time.

COI marker gene analysis evaluation

Bista et al. [50] created 2 COI libraries of different sizes: COIS
(235- bp amplicon size) and COIF (658 -bp amplicon size). The se-
quencing reads of COIS were selected for PEMA’s evaluation; the
COIF sequencing read pairs had no overlap so as to be merged
and therefore were not considered appropriate for the analysis.

As previously, PEMA’s performance was evaluated through a
comparative analysis of the Bista et al. [50] dataset with Barque
[7]; the commands and parameters chosen can be found in Ad-
ditional File 1: Supplementary Methods. Regarding the creation
of the MOTU table, in the Bista et al. [50] study VSEARCH [17]
was used with a clustering at 97% similarity threshold. After-
wards, the BLAST+ (megablast) algorithm [53] was used against
a manually created database including all NCBI GenBank COI se-
quences of length >100 bp (June 2015) while excluding environ-
mental sequences and higher taxonomic level information [50].

As discussed in the publication, this approach resulted in 138
unique MOTUs of which 73 were assigned to species level. For
PEMA’s evaluation, the chosen clustering algorithm was Swarm
v2, using different options for the cluster radius (d) parameter
(Table 4); according to Mahé et al. [19], this is the most impor-
tant parameter because it affects the number of MOTUs that are
being created. The resulting MOTUs were classified against the
MIDORI reference database [26] using RDPClassifier [25]. The re-
sults of the processing of the sequences are reported in Supple-
mentary Table S3. For the case of Barque, the BOLD Database was
used [54].

As shown in Table 4, PEMA resulted in 83 species-level MO-
TUs with a cluster radius (d) of 2, which is similar to the findings
of the published study (i.e., 73 species). Although both the clus-
tering algorithm and the taxonomy assignment methods were
different between the original [50] and the present study, the
results regarding the number of unique species present in the
samples are in agreement to a considerable extent.

The computational time required by PEMA for the comple-
tion of the analysis is also reported in Table 4. Regardless of
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Table 4: PEMA’sa output and execution time

Parameter d = 1 d = 2 d = 3 d = 10 d = 13

MOTUs after pre-process and clustering steps 83,791 59,833 33,227 7,384 4,829
MOTUs after chimera removal 80,347 57,863 32,539 7,339 4,796
Non-singleton MOTUs 6,381 4,947 2,658 1,914 1,634
Assigned species 62 83 86 86 84
Execution time (h) 2:01:35 2:09:49 1:51:44 2:17:26 2:31:15

aPEMA’s output and execution time (using a 20-core node) for different values of Swarm’s d parameter.

the value of the d parameter, all analyses were completed in
∼2 hours, i.e., fast enough to allow parameter testing and cus-
tomization. Regarding Barque, the analysis resulted in the iden-
tification of 51 species-level MOTUs and was concluded in 15
minutes. This difference is due to the error correction step of
PEMA (BayesHammer algorithm [32]), which plays an impor-
tant part in the enhanced results that PEMA returns, but it also
requires a certain computational time; Barque does not have
an analogous step, and therefore its overall execution time is
shorter.

PEMA performed better than Barque at identifying taxa that
were included in the positive control contents of the published
study (Table 5).

OTU clustering vs ASV inference

There is an ongoing discussion about whether ASVs exceed
OTUs. The strongest argument to this end is that ASVs are real
biological sequences. Hence, they can be compared between dif-
ferent studies in a straightforward way; considered as consistent
labels. In comparison, de novo OTUs are constructed, or “clus-
tered,” with respect to the emergent features of each specific
dataset. Therefore, OTUs defined in 2 different datasets cannot
be directly compared.

However, the OTU concept is not compulsorily related to the
clustering approach; it is widely used to describe results based
on its biological meaning but it does not imply clustering. In ad-
dition, according to Callahan et al. [15], “ASV methods infer the
biological sequences in the sample prior to the introduction of
amplification and sequencing errors, and distinguish sequence
variants differing by as little as one nucleotide.” As a result, ASVs
could be considered as OTUs of higher resolution.

It is due to this concept confusion that algorithms whose ra-
tionale is considerably closer to the variant-based approach are
still considered as OTU clustering algorithms [15]. Swarm v2 pro-
duces all possible “microvariants” of an amplicon to implement
an exact-string comparison [19]. Furthermore, real biological se-
quences, “clouds of microvariants,” are produced as its output,
which can be used for comparisons between different studies.
Thus, Swarm v2 can be considered as an ASV-inferring algo-
rithm.

Traditional clustering methods have certain limitations such
as arbitrary global clustering thresholds and centroid selec-
tion because they depend on the input order and are time-
consuming, etc. [55], which variant-based approaches manage
to address. However certain algorithms for OTU clustering such
as VSEARCH have been proven to be especially reliable, and they
are widely used by many researchers. Furthermore, ASVs intend
to improve taxonomic resolution; however, a vast number of in-
ferred ASVs [56] can lead to inflation of diversity estimates, es-
pecially in the case of microbial communities, thus making the
analysis even more complicated.

ASV or OTU approaches are supported by PEMA, although we
have found that similar ecological results are produced by both
these methods, as also suggested by Glassman and Martiny [57].

Beyond environmental ecology, ongoing and future
work

PEMA is mainly intended to support eDNA metabarcoding anal-
ysis and be directly applicable to next-generation biodiver-
sity/ecological assessment studies. Given that community com-
position analysis may also serve additional research fields, e.g.,
microbial pathology, the potential impact of such pipelines is
expected to be much higher. Ongoing PEMA work focuses on
serving a wide scientific audience and on making it applicable
to more types of studies. The easy set-up and execution of PEMA
allows users to work closely with national and European HPC/e-
infrastructures (e.g., ELIXIR Greece [58], LifeWatch ERIC [59], EM-
BRC ERIC [60]). To that end and in a mid-term perspective, a CWL
version of PEMA will be explored. The aim of this effort is to
reach out to a wider scientific audience and address both their
ongoing as well as future analysis needs.

By supporting the analysis of the most commonly used
marker genes for Bacteria and Archaea (16S rRNA), Fungi (ITS),
and Metazoa (COI/18S rRNA), a holistic biodiversity assessment
approach is now possible through PEMA and eDNA metabarcod-
ing; although, from a mid-term perspective, it is our intention to
allow ad hoc and in-house databases to be used as reference for
the taxonomy assignment.

Conclusions

PEMA is an accurate, execution-friendly and fast pipeline for
eDNA metabarcoding analysis. It provides a per-sample analysis
output, different taxonomy assignment methods, and graphics-
based biodiversity/ecological analysis. This way, in addition to
(M)OTU/ASV calling, it provides users with both an informative
study overview and detailed result snapshots.

Thanks to a nominal number of installation and execution
commands required for PEMA to be set and run, it is considered
essentially user friendly. In addition, PEMA’s strategic choice of
a single parameter file, implementation programming language,
and multiple container-type distribution grant it speed (running
in parallel), on-demand partial pipeline enactment, and provi-
sion for HPC-system–based sharing.

All the aforementioned features render PEMA attractive for
biodiversity/ecological assessment analyses. By supporting the
analysis of the most commonly used marker genes for Prokary-
otes (Bacteria and Archaea), as well as Eukaryotes (Fungi and
Metazoa), PEMA allows assessment of biodiversity in different
levels of biodiversity. Applications may mainly concern environ-
mental ecology, with possible extensions to such fields as mi-
crobial pathology and gut microbiome, in line with modern re-
search needs, from low volume to big data.
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Table 5: Comparison of the taxonomy of retrieved MOTUs among PEMA, Barque, and the positive controls of Bista et al. [50]

Barque PEMA Bista et al. [50]

Ablabesmyia monilis∗ Ablabesmyia monilis∗ Ablabesmyia monilis
Crangonyx pseudogracilis∗ Crangonyx pseudogracilis
Radix sp.∗ Radix sp.
Chironomidae sp.∗ Chironomidae sp.
Ancylus sp.∗∗ Ancylus fluviatilis
Athripsodes aterrimus, Athripsodes cinereus∗∗ Athripsodes albifrons

Chironomus anthracinus∗∗ Chironomus sp., Chironomus anthracinus, Chironomus
pseudothummi, Chironomus riparius∗∗

Chironomus tentans

Polypedilum sordens∗∗ Polypedilum nubeculosum
Athripsodes aterrimus∗∗ Athripsodes albifrons

∗: Taxonomies identical to the published study (species level).
∗∗: Taxonomies identical to the published study (genus level).

Availability of Supporting Source Code and
Requirements

Project name: PEMA
Project home page: https://github.com/hariszaf/pema
Dockerized version: https://hub.docker.com/r/hariszaf/pema
Singularity image: https://singularity-hub.org/collections/2295
Operating system(s): Platform independent
Programming language: BigDataScript
Other requirements: Singularity (in case of HPC use)
License: GNU GPLv3. For third-party components separate li-
censes apply. See Additional File 1 for a list of tools invoked by
PEMA and their respective licenses.
bio.tools id: PEMA
RRID:SCR 017676

Availability of Supporting Data and Materials

The sequence data that support the findings of this study, with
respect to the mock community–based evaluation, are available
in the European Nucleotide Archive (ENA) with the following
study accession numbers—for the 16S, 18S rRNA, ITS, and COI
marker genes, respectively:
PRJNA305443 (https://www.ebi.ac.uk/ena/browser/view/PRJNA
305443),
PRJNA314977 (https://www.ebi.ac.uk/ena/browser/view/PRJNA
314977),
PRJNA377530 (https://www.ebi.ac.uk/ena/browser/view/PRJNA
377530), and
PRJEB23036 (https://www.ebi.ac.uk/ena/browser/view/PRJEB23
036)
The real datasets used are also available in ENA:
PRJEB20211 (http://www.ebi.ac.uk/ena/data/view/PRJEB20211)
and
PRJEB13009 (https://www.ebi.ac.uk/ena/data/view/PRJEB13009).
An archived version of the code and supporting data
is also available via the GigaScience database GigaDB
[61].

Additional Files

Additional File 1: Supplementary Methods: Description of tools
invoked by PEMA and their licences. Description of the com-
mands, along with their parameters, used to run PEMA, mothur,
LotuS, and QIIME 2.
Additional File 2: Mock Communities: Details about the mock
communities chosen and their corresponding studies, as well

as the returned output of PEMA for each for a number of sets of
parameters.
Supplementary Table S1: Number of sequences after each pre-
processing step for the case of 16S rRNA gene.
Supplementary Table S2: Diversity indices of the samples.
Supplementary Figure S1: Linear regression between the num-
ber of OTUs (averaged per sampling station) and the salin-
ity of the sampling stations. L: Lagoon; S: Sea; R: River; AR:
Arachthos; ARO: Arachthos Neochori; ARDelta: Arachthos Delta;
LOin: Logarou station inside the lagoon; LOout: Logarou sta-
tion in the channel connecting the lagoon to the gulf; Kal:
Kalamitsi.
Supplementary Figure S2: Bar plot depicting the taxonomy of
the retrieved OTUs from LotuS at the phylum level.
Supplementary Figure S3: Bar plot depicting the taxonomy of
the retrieved OTUs from QIIME 2 using Deblur at the phylum
level.
Supplementary Figure S4: Bar plot depicting the taxonomy of
the retrieved OTUs from QIIME 2 using DADA2 at the phylum
level.
Supplementary Figure S5: Bar plot depicting the taxonomy of
the retrieved OTUs from LotuS at the class of Betaproteobacteri-
ales.
Supplementary Figure S6: Bar plot depicting the taxonomy of
the retrieved OTUs from QIIME 2 using Deblur at the class of Be-
taproteobacteriales.
Supplementary Figure S7: Bar plot depicting the taxonomy of
the retrieved OTUs from PEMA at the class of Betaproteobacte-
riales.
Supplementary Table S3: Number of sequences after each pre-
processing step for the case of COI, dataset from Bista et al.
[50].

Abbreviations

BDS: BigDataScript; bp: base pairs; COI: cytochrome oxidase
subunit 1; CREST: Classification Resources for Environmental
Sequence Tags; CROP: Clustering 16S rRNA for OTU Predic-
tion; CWL: Common Workflow Language; eDNA: environmen-
tal DNA; FN: false negative; FP: false positive; HCMR: Hellenic
Centre for Marine Research; HPC: high-performance computing;
iTOL: Interactive Tree of Life; MAFFT: Multiple Alignment us-
ing Fast Fourier Transform; MCMC: Markov chain Monte Carlo;
MOTU: molecular operational taxonomic unit (used for eu-
karyotes); MSA: multiple sequence alignment; NCBI: National
Center for Biotechnology Information; OTU: operational tax-
onomic unit (used for prokaryotes); PaPaRa: Parsimony-based

https://github.com/hariszaf/pema
https://hub.docker.com/r/hariszaf/pema
https://singularity-hub.org/collections/2295
https://scicrunch.org/resolver/RRID:SCR_017676
https://www.ebi.ac.uk/ena/browser/view/PRJNA305443
https://www.ebi.ac.uk/ena/browser/view/PRJNA314977
https://www.ebi.ac.uk/ena/browser/view/PRJNA377530
https://www.ebi.ac.uk/ena/browser/view/PRJEB23036
http://www.ebi.ac.uk/ena/data/view/PRJEB20211
https://www.ebi.ac.uk/ena/data/view/PRJEB13009
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Phylogeny-Aware Read Alignment; PEMA: Pipeline for Environ-
mental DNA Metabarcoding Analysis; PERMANOVA: permuta-
tional multivariate analysis of variance; RAM: random access
memory; RAxML: Randomized Axelerated Maximum Likelihood;
rRNA: ribosomal RNA; SPAdes: St. Petersburg genome assembler;
SSU: small subunit; TP: true positive.
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