
Citation: Rovera, G.; Grimaldi, S.;

Dall’Armellina, S.; Passera, R.;

Oderda, M.; Iorio, G.C.; Guarneri, A.;

Gontero, P.; Ricardi, U.; Deandreis, D.

Predictors of Bone Metastases at
68Ga-PSMA-11 PET/CT in

Hormone-Sensitive Prostate Cancer

(HSPC) Patients with Early

Biochemical Recurrence or

Persistence. Diagnostics 2022, 12, 1309.

https://doi.org/10.3390/

diagnostics12061309

Academic Editor: Jochen Neuhaus

Received: 28 April 2022

Accepted: 23 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Predictors of Bone Metastases at 68Ga-PSMA-11 PET/CT in
Hormone-Sensitive Prostate Cancer (HSPC) Patients with Early
Biochemical Recurrence or Persistence
Guido Rovera 1 , Serena Grimaldi 1, Sara Dall’Armellina 1 , Roberto Passera 1,* , Marco Oderda 2,
Giuseppe Carlo Iorio 3 , Alessia Guarneri 3, Paolo Gontero 2, Umberto Ricardi 3 and Désirée Deandreis 1

1 Nuclear Medicine, Department of Medical Sciences, AOU Città Della Salute e Della Scienza di Torino,
University of Turin, 10126 Turin, Italy; guido.rovera@unito.it (G.R.); sgrimaldi@cittadellasalute.to.it (S.G.);
sara.dallarmellina@unito.it (S.D.); desiree.deandreis@unito.it (D.D.)

2 Urology, Department of Surgical Sciences, AOU Città Della Salute e Della Scienza di Torino,
University of Turin, 10126 Turin, Italy; marco.oderda@unito.it (M.O.); paolo.gontero@unito.it (P.G.)

3 Department of Oncology, University of Torino, 10125 Torino, Italy; giuseppecarlo.iorio@libero.it (G.C.I.);
alessia.guarneri.ag@gmail.com (A.G.); umberto.ricardi@unito.it (U.R.)

* Correspondence: passera.roberto@gmail.com

Abstract: Prostate-specific-membrane-antigen/positron-emission-tomography (PSMA-PET) can
accurately detect disease localizations in prostate cancer (PCa) patients with early biochemical
recurrence/persistence (BCR/BCP), allowing for more personalized image-guided treatments in
oligometastatic patients with major impact in the case of bone metastases (BM). Therefore, this study
aimed to identify predictors of BM at PSMA-PET in early-BCR/BCP hormone-sensitive PCa (HSPC)
patients, previously treated with radical intent (radiotherapy or radical prostatectomy ± salvage-
radiotherapy (SRT)). A retrospective analysis was performed on 443 68Ga-PSMA-11-PET/CT scans.
The cohort median PSA at PET-scan was 0.60 (IQR: 0.38–1.04) ng/mL. PSMA-PET detection rate
was 42.0% (186/443), and distant lesions (M1a/b/c) were found in 17.6% (78/443) of cases. BM
(M1b) were present in 9.9% (44/443) of cases, with 70.5% (31/44) showing oligometastatic spread
(≤3 PSMA-positive lesions). In the multivariate binary logistic regression model (accuracy: 71.2%,
Nagelkerke-R2: 13%), T stage ≥ 3a (OR: 2.52; 95% CI: 1.13–5.60; p = 0.024), clinical setting (previous
SRT vs. first-time BCR OR: 2.90; 95% CI: 1.32–6.35; p = 0.008), and PSAdt (OR: 0.93; 95% CI: 0.88–0.99;
p = 0.026) were proven to be significant predictors of bone metastases, with a 7% risk increment for
each single-unit decrement of PSAdt. These predictors could be used to further refine the indication
for PSMA-PET in early BCR/BCP HSPC patients, leading to higher detection rates of bone disease
and more personalized treatments.

Keywords: prostatic neoplasm; hormone-sensitive prostate cancer; PSMA PET; bone disease;
predictive model

1. Introduction

Accurate disease restaging represents a key step in the appropriate management of
high-risk prostate cancer (PCa) patients with either biochemical recurrence (BCR) or persis-
tence (BCP). Conventional imaging, such as computed tomography (CT) and bone scan, has
shown suboptimal accuracy in disease localization compared to molecular imaging [1–3],
and radiopharmaceuticals, such as 11C-choline and 18F-fluciclovine, could not reach high
detection rates at low prostate-specific antigen (PSA) values (<2.0 ng/mL) [4,5].

In this context, molecular imaging with prostate-specific membrane antigen/positron
emission tomography (PSMA-PET) has shown promising results for detecting loco-regional
and distant metastases [6–8], and the European Association of Urology (EAU) Guidelines
recommend performing PSMA-PET in patients with PSA failure after radical treatment, if
the results could influence subsequent treatment decisions [9].
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Thanks to a more accurate detection of disease localizations, molecular imaging
with PSMA-PET can significantly influence clinical management [10–12], leading to more
personalized therapies. Specifically, in patients with oligometastatic spread, PSMA-PET was
successfully used to guide stereotactic ablative radiotherapy/stereotactic body radiation
therapy (SABR/SBRT) [13–16]. In the ORIOLE phase II trial [16], SABR improved outcomes
with significant advantages in terms of median progression-free survival (PFS) (unreached
at 24 months follow-up vs. 11.8 months; HR 0.26; 95% CI: 0.09–0.76; p = 0.006) and distant
metastasis-free survival (29.0 vs. 6.0 months; HR 0.19; 95% CI: 0.07–0.54; p < 0.001) in
men who received consolidation of all of the disease localizations detected by PSMA-PET
(baseline data blinded by protocol), supporting the use of molecular imaging in conjunction
with metastasis-directed therapy (MDT) for patients with oligometastatic PCa. With regards
to bone-only oligometastatic PCa patients, previous studies [14] also documented PSMA-
PET guided SBRT to be an effective treatment, with a 2-year PFS rate of 72.0%, a PSA
decline in 75.7% of patients, and a 2-year local control rate per lesion of 95.4%.

The identification of predictive factors, in particular of PCa bone involvement at
molecular imaging, could help to refine the indication for PSMA-PET in early-BCR/BCP
HSPC-patients, leading to higher detection rates, more personalized treatments, and higher
cost-effectiveness from a patient and health-care perspective [17].

Therefore, this study was aimed to identify predictors of bone metastases at PSMA-PET
in early-recurrent/persistent hormone-sensitive prostate cancer (HSPC) patients.

2. Materials and Methods
2.1. Study Design

A retrospective analysis was conducted on four hundred forty-three (443) consecutive
68Ga-PSMA-11-PET/CT scans performed between November 2016 and December 2021 at
our institution (Department of Nuclear Medicine, University Hospital of Turin) in HSPC
patients with early biochemical recurrence/persistence, according to the Guidelines.

Inclusion criteria were: (1) histologically proven PCa; (2) previous treatment with radi-
cal intent, either radical prostatectomy (RP) or radiotherapy (RT); (3) proven biochemical
recurrence (BCR) or biochemical persistence (BCP), as defined by the EAU Guidelines [9];
(4) hormone-sensitive prostate cancer (HSPC), not treated with androgen deprivation ther-
apy (ADT) during the 6 months preceding the PET scan; (5) PSA < 2.5 ng/mL or any
PSA in case of negative choline-PET/CT or RT as primary therapy. Exclusion criteria
were: (1) patients not eligible for salvage therapy; (2) inability to undergo a PET/CT scan;
(3) castration resistant PCa (CRPC); (4) concurrent administration of androgen-receptor
targeted therapy or chemotherapy. This retrospective analysis was conducted in confor-
mance with the Helsinki Declaration and, according to Italian law (Italian Drugs Agency
(AIFA)], Guidelines for Observational Studies, 20 March 2008), no formal IRB/IEC approval
was needed.

2.2. Objectives

The primary objective of this study was to identify potential independent predictors
of bone metastatic involvement in a cohort of hormone-sensitive prostate cancer (HSPC)
patients undergoing 68Ga-PSMA-11 PET/CT for PSA failure after radical treatment.

2.3. Procedures and Image Interpretation

The 68Ga-PSMA-11 was synthesized in the radiochemistry laboratory of the Division
of Nuclear Medicine of the AOU Città della Salute e della Scienza, University of Turin,
as previously reported [11], in accordance with procedure guidelines [18,19]. All patients
were injected intravenously with a 1.8–2.2 MBq/kg dose of 68Ga-PSMA-11 and received
intravenous hydration with 0.5 L saline solution during uptake. Informed consent was
obtained from all of the subjects before administration. No specific patient preparation was
needed before the procedure, and no administration of furosemide or oral contrast media
was required.
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The 68Ga-PSMA-11 PET was performed in accordance with standard techniques, as
previously reported [11], using dedicated tomographs (Gemini Dual and Vereos, Philips
HealthCare, Cambridge, MA, USA). Attenuation correction of the PET emission data was
performed by acquiring a low-dose CT scan. If standard images proved to be inconclusive,
late pelvic scans were acquired at 120 (±15) minutes post-injection, 6 min per bed position,
two beds centered on the pelvis.

Two experienced nuclear medicine physicians independently reviewed the PET/CT
images, and any resulting discrepancy was solved by consensus. In accordance with the
E-PSMA procedure Guidelines [19,20], a per-region analysis was performed, and prostate
cancer lesions were suspected in the case of focal tracer uptake (higher than surrounding
background) not corresponding to the physiological areas of radiotracer localization.

2.4. Statistical Analysis

For each patient, the collected data included information about disease staging,
histopathologic grading, previous treatments, PSA kinetics, and PSMA-PET result.

Three different clinical settings of PSA failure were identified by the uro-oncological
tumor board (genitourinary oncology group, AOU Città della Salute e della Scienza, Uni-
versity Hospital of Turin, Turin, Italy): first-time BCR (subgroup 1), defined as rising PSA
levels ≥ 0.2 ng/mL in patients treated with RP or PSA levels ≥ 2 ng/mL above the nadir
in case of primary RT; PSA recurrence after prostate-bed SRT (subgroup 2), defined as a
PSA rise ≥ 0.2 ng/mL above the PSA nadir after SRT; BCP after RP (subgroup-3), defined
as PSA ≥ 0.1 ng/mL, at least 6 weeks after RP.

At baseline, population characteristics were presented as absolute/relative frequencies
for categorical variables and median (Inter Quartile Range (IQR)) for continuous ones. The
PSA doubling time estimations were performed in accordance with Khan et al. [21], as
previously documented [11].

Inferential statistics was performed using the Mann–Whitney test for continuous
covariates, and the Fisher’s exact test for categorical ones, respectively.

The likelihood of bone disease at PSMA-PET was estimated by a complete series of uni-
and multi-variate binary logistic regression models. While the dependent variable was the
PSMA-PET bone metastatic status (M1b: positive vs. negative), the potential determinants
were T stage (≥3a), ISUP grade (≥4), PSA doubling time (as a continuous covariate) and
clinical setting (first-time BCR, previous salvage-radiotherapy [SRT], BCP). The number
of potential determinants in the multivariate analysis was limited in order to preserve a
1: 10 ratio between predictors and events (M1b cases).

All reported p-values were two-sided, at the conventional 5% significance level. Data
were analyzed as of January 2022 using IBM SPSS Statistics for Windows, version 26.0 (IBM
Corp., Armonk, NY, USA).

3. Results
3.1. Cohort Characteristics

Four hundred forty-three (443) 68Ga-PSMA-11-PET/CT scans were performed in
HSPC patients with early BCR/BCP and were considered eligible for the primary endpoint
analysis. Table 1 shows the demographic and clinical characteristics of the study cohort.
The median PSA was 0.60 (IQR: 0.38–1.04) ng/mL at the time of the PET scan, while the
median PSAdt was 8.20 (IQR: 4.15–14.55)] months. Clinical settings of PSA relapse were
distributed as follows: 215 first-time BCR, 174 BCR after salvage-radiotherapy (SRT), and
54 BCP cases.

3.2. PSMA-PET Results

The overall PSMA-PET detection rate was 42.0% (186/443). In accordance with molec-
ular imaging TNM (miTNM) definition [19,20], the identified PCa lesions were categorized
as follows: prostate bed (miTr) in 8.1% of cases (36/443); pelvic nodes (miN1) in 21.2%
(94/443); extra-pelvic nodes (miM1a) in 7.7% (34/443); bone metastasis (miM1b) in 9.9%
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(44/443); and visceral non-nodal metastasis (miM1c) in 2.5% (11/443). Overall, 17.6%
(78/443) of cases showed disease involvement outside the pelvis (miM1a, miM1b, miM1c),
mostly oligometastatic (≤3 PSMA-positive localizations—80.8% (63/78)) (Figure 1). The
prevalence of bone metastases at PET imaging varied among different clinical settings: 5.6%
(12/215) in subgroup 1 (first-time BCR); 14.4% (25/174) in subgroup 2 (BCR after SRT);
and 13.0% (7/54) in subgroup 3 (BCP), as detailed in Figure 2. Overall, 73% (32/44) of
the miM1b cases showed exclusive skeletal involvement, and oligometastatic spread was
found in 70.5% (31/44) of miM1b cases.

Table 1. Cohort characteristics (retrospective analysis of 443 68Ga-PSMA-11 PET/CT scans).

Clinical Features Median IQR

Age (years) 74 68–78

iPSA (ng/mL) 7.85 5.73–12.00

PSA at PET scan (ng/mL) 0.60 0.38–1.04

PSAdt at PET scan (months) 8.2 4.2–14.6

PSAvel at PET scan
(ng/mL/year) 0.5 0.3–1.2

Clinical features Frequency n (%)

ISUP Grade

1 49 (11.1%)
2 96 (21.7%)
3 137 (30.9%)
4 80 (18.1%)
5 57 (12.9%)
Missing 24 (5.4%)

pT stage
<3a 192 (43.3%)
≥3a 228 (51.5%)
Missing 23 (5.2%)

pN stage N1 42 (9.5%)

R (margin) R1 160 (36.1%)

Time to PSA relapse (months) >12 314 (70.9%)
≤12 124 (28.0%)

Primary therapy RP ± LND ± adjuvant RT 417 (94.1%)
Primary RT 20 (4.5%)

Clinical stage of PSA failure
at PSMA PET/CT

First-time BCR
(subgroup-1) 215 (48.5%)

PSA relapse after prostate-bed
SRT (subgroup-2) 174 (39.3%)

BCP after RP (subgroup-3) 54 (12.2%)

3.3. Predictors Analysis

The Mann–Whitney/Fisher’s exact test proved the T stage ≥ 3a (p = 0.009), ISUP-grade ≥ 4
(p = 0.013), clinical-setting (first-time BCR vs. previous SRT vs. BCP, p = 0.010), PSA
doubling-time (PSAdt, p < 0.001), and PSA value at PET-scan (p = 0.015) to be significantly
associated with bone disease at PSMA-PET. On the contrary, no significant associations were
observed when stratifying the population by N-stage at diagnosis or primary treatment
(radiotherapy/radical prostatectomy ± PLND).

In the univariate binary logistic regression model series, T stage ≥ 3a (OR 2.59;
95% CI: 1.26–5.30; p = 0.009), ISUP grade ≥ 4 (OR 2.37; 95% CI: 1.24–4.54; p = 0.009),
clinical setting (previous SRT vs. first-time BCR OR 2.83; 95% CI: 1.38–5.83; p = 0.005,
BCP vs. first-time BCR OR 2.52; 95% CI: 0.94–6.74; p = 0.066), and PSAdt (OR 0.91;
95% CI: 0.86–0.97; p = 0.004) proved to be significant predictors of bone metastases.
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In the multivariate model (accuracy: 71.2%, Nagelkerke R2: 13%, sensitivity: 68.4%,
specificity: 71.6%) significant results were confirmed for the T-stage (OR: 2.52; 95% CI: 1.13–5.60;
p = 0.024), PSAdt (OR: 0.93; 95% CI: 0.88–0.99; p = 0.026), and clinical setting (previous
SRT vs. first-time BCR OR: 2.90; 95% CI: 1.32–6.35; p = 0.008), but not for ISUP-grade
(p = 0.146).

Based on this predictive model, a PSAdt decrease of one month would result in a 7%
increment in the likelihood of bone metastatic involvement at PSMA-PET. These results are
reported in detail in Table 2.
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Table 2. Univariate and multivariate logistic regression models for bone disease at PSMA-PET.

Potential Predictors of
Bone Recurrence

Univariate Model Multivariate Model

OR 95% CI p OR 95% CI p

T stage (≥3a) 2.59 1.26–5.30 0.009 2.52 1.13–5.60 0.024

ISUP Grade (≥4) 2.37 1.24–4.54 0.009 - - 0.146

Clinical Setting
BCR after SRT vs. first-BCR
BCP vs. first-BCR

2.84 1.38–5.83 0.005 2.90 1.32–6.35 0.008

2.52 0.94–6.74 0.066 - - -

PSA (ng/mL) at PSMA-PET 0.98 0.82–1.17 0.84 - - -

Time to recurrence (months) 1.00 0.99–1.01 0.46 - - -

PSA doubling time (months) 0.91 0.86–0.97 0.004 0.93 0.88–0.99 0.026

PSA velocity (ng/mL/year) 1.03 0.98–1.09 0.27 - - -

4. Discussion

This study represents a retrospective analysis of four hundred forty-three (443) 68Ga-
PSMA-11-PET/CT scans performed in BCR/BCP HSPC patients previously treated with
radical intent (RT or RP ± SRT). Our study showed a PSMA-PET overall detection rate of
42.0% (186/443). Although higher detection rates were previously reported in literature [22],
our study investigated a cohort composed exclusively by HSPC ADT-free patients at an
early stage of recurrence and eligible for salvage therapy. Thus, a higher proportion of
negative scans is expected, due to lower PSA levels, lower tumor burdens, and a higher
chance of micro-metastatic disease. Considering the previous findings in cohorts with
comparable characteristics [5,7,23], the PSMA-PET positivity rate reported in our study
falls in line with previous literature data.

PSMA-PET showed systemic disease recurrence (M1a/b/c) in 17.6% (78/443) of
the study cohort, while skeletal involvement was detected in 9.9% (44/443) of the cases,
mostly oligometastatic. These data are in accordance with a previous study from Calais
et al. [5], conducted in PCa patients with post-RP BCR and low PSA levels (≤2.0 ng/mL),
in which the prevalence of distant localizations was 16%, and 8% of cases presented bone
metastases. Fendler et al. [7] also showed a similar prevalence of bone metastases (~11%)
in a subgroup of BCR patients with a PSA range of 0.5–1 ng/mL, comparable to the PSA
IQR of our study. Although values of up to 18.7% were reported for M1b prevalence in
similar cohorts [23], these findings are in line with the previous studies performed at our
center on smaller sample sizes, in which 16.6–22.2% of cases showed distant recurrence
(M1), while 10.3–12.5% presented bone localizations [11,24].

In regard to predictors of bone metastases at PSMA-PET in early BCR/BCP HSPC
patients, limited evidence is currently available in literature. Recently, Bidakhvidi et al. [25]
evaluated 175 18F-PSMA-1007 PET scans performed in PCa patients with BCR after primary
treatment. The PSA value at PET scan was proved to be a significant predictor of bone
lesions (OR 1.007, p = 0.04), while both PSA value at scan time (IRR 1.003, p = 0.0002) and
Gleason Score (IRR 1.57, p = 0.003) were independent predictors of the number of bone
localizations. However, the reported PSA values were considerably higher compared to
our study, both in the overall cohort (median: 1.6 ng/mL, range: 0.07–429 ng/mL), and
in the subgroup treated with RP (median: 1.3 ng/mL, range: 0.07–250 ng/mL); moreover,
patients with prior or ongoing treatment with ADT were also included, despite the potential
influence of ADT on PSMA expression and the PSMA-PET detection rate. The association
between PSA value at PET-scan and the presence/number of PSMA-avid bone metastasis
was also documented by Pomykala et al. [26] in different clinical indications, including
biochemical recurrence. However, as in the study by Bidakhvidi et al., the cohort PSA
values were spread across a significantly wider range, with 22% having PSA values higher
than 5 ng/mL. Both previously mentioned studies build upon prior literature evidence
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derived from other imaging techniques (such as bone scintigraphy [27]), in which the
PSA absolute value and PSA kinetics were proved to be significant predictors of bone
metastases in BCR HSPC patients after radical treatment (RP or RT). However, contrary to
the aforementioned studies, our analysis was designed to include only patients with early
BCR/BCP, in whom the tumor burden is lower and the salvage therapies are more effective.
Therefore, the cohort PSA IQR was considerably narrower (0.38–1.04 ng/mL), and PSA
kinetics measured with PSA doubling time resulted in being the more accurate predictor
of bone metastatic involvement (OR: 0.93; 95% CI: 0.88–0.99; p = 0.026). This finding is
also in line with previous evidence by Verburg et al. [28], in which PSAdt was the only
significant independent determinant for bone metastases at 68Ga-PSMA-11 PET in a cohort
of 155 recurrent PCa patients (p = 0.001).

In our study, the prevalence of bone metastases at PET imaging varied among different
clinical settings, with lower rates for first-time BCR (5.6%), compared to BCR after SRT and
BCP cases (14.4% and 13.0%, respectively). These results are in accordance with previous
PSMA-PET studies, which documented different rates of overall positivity [11,23,24,29]
and distant metastases (M1a/b/c) [23,24,29] among clinical settings, with first-time BCR
representing the most favorable subgroup. At logistic regression analysis, our data showed
clinical setting to be an independent predictor of skeletal involvement, with BCR patients
previously treated with SRT on prostate-bed being at higher risk of bone metastases,
compared to the first-time BCR patients (OR: 2.90; 95% CI: 1.32–6.35; p = 0.008). The higher
incidence of bone metastases in post-SRT BCR patients is not surprising since these patients
have already experienced a recurrence and have already failed a previous line of treatment.
Regarding the BCP setting, only a marginal significance (p = 0.066) was found at univariate
analysis. However, considering the high prevalence of bone metastases in this subgroup
(13% vs. 14.4% in BCR after SRT cases), this result might be biased by the significantly
lower sample size (n = 54 vs. 174 BCR after SRT vs. 215 first-time BCR). Moreover, it is
possible that the T stage and PSAdt determined a confounding effect on the BCP setting,
due to the higher prevalence of T stages ≥ 3a in this subgroup (66% vs. 51% in BCR
after SRT vs. 54% in first-time BCR), and the lower PSAdt (3.4 months vs. 9.0 in BCR
after SRT vs. 8.3 in first-time BCR). The hypothesis of a predictive role of BCP in bone
recurrence is supported by previous studies by Ferdinandus J. et al. [30], Meijer et al. [31]
and Farolfi et al. [32], in which high proportions (40%, 39%, and 33%, respectively) of BCP
patients were found to already have distant metastatic localizations (≥miM1) at PSMA-PET.
Moreover, in 2015 Bianchi et al. [33] already reported skeletal/visceral metastases to be the
first site of recurrence in up to ~50% of BCP patients with a history of node-positive PCa
treated with RP and extended pelvic lymph node dissection (ePLND).

Besides PSAdt and clinical setting, our study found the T stage ≥ 3a to be an inde-
pendent predictor of bone metastases in BCR patients. This finding builds upon previous
literature evidence in which the T stage, together with PSA and PSAdt [34–36], was proved
to be a predictor of both overall positivity [11,24] and distant localizations at PSMA-PET in
BCR patients [11].

Finally, contrary to the T stage, the ISUP grade did not reach significance at multi-
variate analysis, despite being previously shown to be a significant predictor of overall
PSMA-PET positivity (with a possible stronger role in the BCP setting [29]).

4.1. Future Perspectives

The accuracy of the predictive model could be further improved by including addi-
tional promising parameters, such as the tumor PSMA-expression quantification and the
alkaline phosphatase velocity (APV). Indeed, the ability of PSMA-PET to detect PCa local-
izations depends on the degree of PSMA expression by cancer cells, and Ferraro et al. [37]
already showed how PSMA-PET can be falsely negative in 85% of BCR patients with a
tumor PSMA-negativity ≥ 50%. Furthermore, increasing evidence has linked higher PSMA
expression levels with more aggressive features (such as higher Gleason Scores, hormone



Diagnostics 2022, 12, 1309 8 of 10

resistance, and overall worse prognosis), which are also more likely to result in earlier
metastatic spread.

Alkaline phosphatase velocity (APV) could also represent a promising predictive
factor, since alkaline phosphatase is a known marker of bone-turnover, and rapid APV has
shown potential in predicting distant metastasis-free survival in PCa patients with BCR
after RP [38].

4.2. Limitations

This study is not exempt from limitations. First, due to ethical and practical reasons,
positive PSMA-PET findings could not be histologically validated in all of the cases. How-
ever, images were independently evaluated by all of the clinicians in accordance with
procedure Guidelines [19], and discrepancies were solved by consensus; moreover, high
positive predictive values (PPV) for PSMA-PET were already established by previous
studies [7,39]. Second, data commonly available in clinical practice did not include markers
specifically linked to bone tropism: as previously stated, a better understanding of the
interactions between prostate cancer cells and the bone microenvironment could allow
an increase in the accuracy of the predictive model by including markers more closely
involved in initial bone homing mechanisms. Finally, although a nomogram to predict
PSMA-PET positivity was proposed [29,40], it could not be validated in our retrospective
study since the nomogram was also originally built in a retrospective observational context,
and, therefore, a prospective cohort would be needed for its validation. Moreover, such
nomogram is not specific for the miM1b subgroup considered in this study, and a larger
sample size would be required to perform nomogram validation.

5. Conclusions

The T stage (≥3a), clinical setting (BCR after SRT) and short PSAdt were proved to
be significant predictors of bone metastases in early BCR/BCP HSPC patients, with a 7%
risk increment for each single-unit decrement of PSAdt. These predictors could be used to
further refine the indication for PSMA-PET in early BCR/BCP HSPC patients, thus leading
to higher detection rates of bone disease and more personalized treatments.
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