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A feasibility study was conducted to investigate the use of a wearable gait analysis system for classifying gait speed using a low-cost wearable
camera in a semi-structured indoor setting. Data were collected from 19 participants who wore the system during indoor walk sequences at
varying self-determined speeds (slow, medium, and fast). Gait parameters using this system were compared with parameters obtained from a
vest comprising of a single triaxial accelerometer and from a marker-based optical motion-capture system. Computer-vision techniques and
signal processing methods were used to generate frequency-domain gait parameters from each gait-recording device, and those parameters
were analysed to determine the effectiveness of the different measurement systems in discriminating gait speed. Results indicate that the
authors’ low-cost, portable, vision-based system can be effectively used for in-home gait analysis.
1. Introduction: Gait analysis is an area of research that has seen
an increasing focus due to its applicability to a wide range of
age-related health issues, which may affect our growing elderly
population [1]. For example, Beauchet et al. [2] found evidence
that dementia can be predicted by poor gait performance.
Similarly, Valkanova and Ebmeier [3] show that evidence
strongly supports a relationship between gait and impairment of
cognitive functions in patients with mild cognitive impairment
and Alzheimer’s disease. These findings illustrate the potential of
using gait analysis in detecting symptoms of age-related illnesses.
While many objectively quantifiable gait parameters could be

used for effective decision support and automated monitoring, the
simple measure of gait speed has shown to be an accurate predictor
of mobility, health, and even mortality [4–6]. Gait speed is thus a
critical parameter for evaluating the utility of candidate gait analysis
systems. Therefore, the goal of this Letter was to determine the
feasibility of using our system, comprising of an affordable and
non-invasive wearable camera and computer-vision-based process-
ing methods, to classify gait speed of healthy individuals. Samples
of gait were collected at three self-determined overground walking
speeds (slow, medium, and fast). Since accelerometer-based
methods have been successfully used to quantify gait, we deployed
an accelerometer near the subject’s right hip to provide a direct
point of comparison for our system to a more widely used device.
We also compared the capabilities of both devices to a research-
grade optical motion-capture system, which represents the ‘gold
standard’ for gait analysis. The comparison to both another wear-
able system and a high-precision standard provides validation for
using our single-camera system for gait analysis tasks.

2. Related work: Expensive laboratory-based gait analysis systems
can provide extremely robust quantification of human gait and
locomotion. For example, highly precise three-dimensional (3D)
motion-capture systems have recently been used to study detailed
gait features across age groups in healthy individuals [7] as well
as individuals with Parkinson’s disease [8] and Alzheimer’s
disease [9]. While these systems can often provide an in-depth
description of gait, they are not feasible for the use case of
continuous monitoring due to their size, complexity, and cost.
Continuous monitoring of patients in their natural environments
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during everyday activity provides a more constant and natural
sampling of gait activity, enabling the detection of changes in
performance over time. Additionally, user-friendly and lower-cost
pervasive health monitoring systems reduce the burden on
patients to make trips to a physician’s office, which may be
especially cumbersome for the elderly persons.

Recent work has focused on providing convenient, in-home solu-
tions for activity recognition, eliminating the need for a laboratory
setup. Video-based methods may offer inexpensive solutions with
performance similar to more sophisticated motion-capture systems
or floor sensors [10], but suffer from obstructed line-of-sight
within the home environment. Audio-based systems have also
been used to analyse gait in indoor environments [11, 12]. While
both audio- and video-based systems have shown promise, their
use is limited to a specifically preconfigured location. To overcome
these issues, gait analysis is also being performed with wearable
devices such as smartwatches [13], shoe-based wearable sensors
[14], and wearable accelerometers [15–18]. By instrumenting the
subject instead of the environment, the systems become portable
and problems such as line-of-sight obstruction can be avoided.
While these solutions provide promising results for gait analysis,
they tend to be either still too complicated for in-home use
(e.g. due to the number of components) or incapable of matching
the level of precision and capturing gait performance as comprehen-
sively as laboratory-grade motion analysis systems. Thus, there are
trade-offs between accuracy and cost for laboratory-grade motion
analysis systems and in-home wearable systems for gait analysis.

Our system uses a single head-worn camera to collect first-person
video. Using computer-vision techniques, we can extract optical
flow output from the video that mimics the ability of a low-
resolution accelerometer to register movement parameters [19].
A benefit of a vision-based sensor such as our system is that the
video data can provide additional context to the in-home monitoring
scenario. For instance, if an unexpected event occurs for gait speed,
the monitoring system could notify additional automated or manual
review processes to analyse the specifically related video segment
and determine whether the event was a clinically significant event
such as a fall or simply an abrupt stop. It may also be possible to
analyse the coarse direction of the subject’s visual attention while
walking and to identify objects that are being interacted with or
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Fig. 2 Placement of sensors on the subject and alignment of axes between
sensors
other factors that may affect gait performance. Methods based en-
tirely on accelerometer or pressure sensors are unable to explain
variations or interruptions that are seen in daily gait activities and
would not be able to inform further analysis processes. While
vision-based in-home monitoring systems may raise privacy con-
cerns by recording subjects and others in their home, automated
methods of processing the video on recording would eliminate
the need to store the raw video, mitigating the privacy risk. The
storage or transmission of computed motion-based features
removes nearly all-identifying information as these features are
essentially equivalent to those recorded by inertial sensors, which
do not raise the same concerns.

Our previous work based on the use of a wearable camera
(and accelerometer for comparison as a well-established device)
has involved collecting data from subjects on a treadmill [20].
However, limiting the data collection to occur on a treadmill was
an artificial limitation, especially for the in-home use-case being
described. In this Letter, we remove this limitation and also inves-
tigate the impact of changing this aspect of the experimental design
to incorporate semi-structured, natural gait sequences from 19
participants.

3. Methods
3.1. Data collection: Accelerometer, motion capture, and
first-person video data were collected from 19 participants as they
walked overground six times over a distance of 4 m in a large
motion-capture laboratory, free from any physical obstructions
such as furniture or walls (Fig. 1). The participants were healthy
college students ranging from 18 to 21 years old. About ten of
the participants were male, and the remaining nine were female.
Participants were instructed to walk at three self-determined
speeds: slow, medium, and fast. Categorical speeds were used for
multiple reasons. First, as participants were walking over the
ground, and not on a treadmill, it would have been difficult to
control gait speed adequately. Second, the time-series data from
inertial sensors and the processed video features indicated the
frequency of each subject’s gait. Estimating the continuous gait
speed requires knowledge of the exact stride length of a subject.
Categorical gait speed was thus more appropriate as slow,
medium, and fast gaits naturally correspond to an increasing step
frequency regardless of stride length or distance covered.

Each subject wore two commercial devices during data collection
(see Fig. 2). The Pivothead SMART Architect Edition glasses [21]
were used to record video of the activity in high definition reso-
lution (1920 × 1080) at 30 fps. The device is worn as a pair of eye-
glasses, and the camera is located at the centre of the glasses, above
the nasal bridge, aimed directly forward. The glasses are nearly in-
distinguishable in shape and weight from a normal pair of glasses,
Fig. 1 Motion-capture laboratory in which data was collected from
participants

26
This is an open access article published by the IET under the
Creative Commons Attribution-NonCommercial-NoDerivs
License (http://creativecommons.org/licenses/by-nc-nd/3.0/)
providing a comfortable and natural sensor that is easily integrated
into daily routine with no encumbrance or health risks to the wearer.
The Hexoskin smart shirt [22, 23] was also worn, providing triaxial
accelerometer readings at 64 Hz (data from the remaining sensors in
the Hexoskin shirt were not analysed for this Letter). The acceler-
ometer was located near the right hip on the torso of the subject.
Gait data were also recorded with a 20-camera Motion Analysis
Corporation Kestrel motion-capture system at a sampling rate of
120 Hz, and motion data were processed using Cortex v. 6.2 soft-
ware (Motion Analysis Corp., Santa Cruz, CA). Each participant
was instrumented with motion-capture markers, according to the
Cleveland Clinic marker set. This model includes markers tracking
the position of the feet, legs, trunk, arms, and head. While the
position of each marker was recorded, our analysis focused on
the head marker (for comparison with the head-worn glasses
results) and estimates of whole-body centre of mass derived from
the global marker set using a whole-body mass model calculated
from Zatsiorsky–Seluyanov’s body segment inertia parameters
[24]. Each of the three systems independently and simultaneously
recorded the gait sequences that were performed.

The Pivothead glasses were purchased for $300 United States
dollar (USD) and the Hexoskin vest and device may be purchased
together for $499 USD, making them easily available to consumers.
While the exact price of the motion-capture system is not
immediately available and will vary based on configuration, the
cost of the 20-camera system is roughly $100,000 USD. A
minimal set of four lower-precision cameras could be obtained
for <$10,000 USD. Even considering the lower-cost motion-
capture option, the consumer-grade devices have the advantage of
being easy to use, while the motion-capture system requires an
expert user and extensive instrumentation of the subject. While
the motion-capture system presents an excellent means for collect-
ing our high-precision truth data, the cost and complexity imply that
the motion-capture system will only be feasible in a controlled clin-
ical laboratory, and not for continuous, in-home monitoring. While
we did not investigate real-time processing, the computational
requirements for data from the single camera and inertial sensor
would also be much lower than the 20-camera system.
3.2. Signal processing: The intent of incorporating the glasses worn
camera into the experiment was to use the collected video to
describe the subject’s head motion in two dimensions (the frontal
and vertical planes) throughout the gait sequence. Since the
camera faces directly forward from the glasses, the frontal and
vertical axes in physical space correspond to the x and y axes of
the recorded video. While the camera device collects less data at
a lower sampling rate and spatial resolution than a highly
Healthcare Technology Letters, 2020, Vol. 7, Iss. 1, pp. 25–28
doi: 10.1049/htl.2019.0015



accurate 3D motion-capture system, the device is extremely
portable, affordable, and simple to operate. However, the visual
data requires processing to extrapolate information about the
movement of the subject who is not in the view of the camera.
The Lucas–Kanade optical flow technique was applied to the
collected video samples to quantify participant motion from the
videos [25]. This method outputs a displacement vector for a
series of significant keypoints within a given video frame. An
average vector was computed from all keypoint vectors per frame
to find a single 2D vector, which represented the overall
displacement in each frame of video. This approach was
previously validated against other possible computer-vision
techniques and was found to provide the most accurate
representation of the actual displacement between frames [19].
The 2D (frontal and vertical) components of the optical flow dis-

placement vectors were considered over time to generate two separ-
ate sets of time-series data. Three-axis time-series data were also
collected from the body-worn accelerometer, and head and centre
of mass data (each in three dimensions) from the motion-capture
system were also analysed. The time-series data were manually
separated into segments collected during each of the six trials.
The collected data were manually segmented by examining the
video and audio, and then recording the start and stop times of
each gait segment within the video on a per-frame basis. None
of the systems directly provide a determination of when a gait
sequence occurs, though it would be feasible to automate this
detection based on the collected features and the video data.
For this initial work, such a system was not developed since the
focus was the output of the system during gait activities.
Motion-capture data were filtered in Cortex using a fourth-order
low-pass Butterworth filter with a cut-off frequency of 6 Hz,
which is the default setting for the low-pass filter in Cortex.
Cut-off frequencies in motor control research generally range
from 6 to 10 Hz, depending on the behaviour being observed.
Given that the observed behaviour was walking, 6 Hz was much
higher than the frequencies of interest and only filtered out sensor
noise.
Since the wearable devices are commercial devices, which

operate independently of each other, it was not possible to guaran-
tee synchronisation of the data collection. This precluded any direct
comparison of the raw time-series data from each of the sensing
devices, since errors in synchronisation of the collected data
would negatively affect any calculations. However, it is not neces-
sary to directly compare the time-series data – gait speed alone has
been shown in clinical applications to be a predictor of cognitive
disorders such as dementia [26]. To overcome the limitation on
direct comparison between the time-series data from each device,
we moved data out of the time domain and instead derived
frequency-based features in the following manner.
A periodogram calculation was applied over the entirety of each

walk segment for each channel of data being considered. As shown
in [19], the periodogram transformation can be used to identify
main frequencies that occur in each time series. We identified for
Fig. 3 Mean plots with standard error bars for recorded features by gait speed
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each time series the frequency with the highest amplitude from
the computed periodogram to serve as our gait metric. While the
periodogram provides an analysis of constant gait speed in [19]
and a successful indication of gait speed in temporally short gait
sequences collected for this Letter, longer gait sequences containing
changes in gait speed may be better analysed with methods that con-
sider time locality such as a spectrogram. For this Letter, we have
assumed that gait speed is constant in each gait segment.

3.3. Statistical analysis: The goal of this work was to determine the
feasibility of classifying gait samples categorically by their speed
with a specific interest in the performance of the video-based
wearable system. We determined whether the collected
video-based features were impacted by gait speed in a manner
similar to the features from more traditional gait analysis devices.
We used analysis of variance (ANOVA) to determine whether our
gait metric was significantly impacted by gait speed. Separate
ANOVAs were conducted for each plane of motion for each gait
measurement system. Data were screened for outliers (±2.5 standard
deviations from the median) prior to analysis; six trials were iden-
tified as outliers, all for the motion-capture system in the sagittal
plane and likely resulting from obstruction of one or more
markers from the cameras’ view. Violations of the sphericity as-
sumption were resolved by correcting the degrees of freedom of
the statistical test using the Greenhouse–Geisser method.

4. Results: Fig. 3 illustrates the mean gait frequency detected in the
vertical and frontal planes for each speed category in the study.
ANOVA on the frequency-based gait metric derived from the
eyeglass camera data revealed no significant differences across
gait speed conditions in the vertical plane (p = 0.55, h2

p = 0.04).
However, in the frontal plane, there was a significant effect of
gait speed F(1.49, 22.39) = 36.0, p , 0.001, and h2

p = 0.71.
Pairwise post-hoc comparisons revealed significant differences
among all three speed conditions (fast versus medium: Cohen’s
d = 1.96; fast versus slow: d = 1.76; medium versus slow:
d = 0.75; and all p , 0.05). This indicates that using the frontal
plane data (u for the glasses), the sensor was able to distinguish
between gait speeds across the three categories.

As was the case with the camera data, the accelerometer data did
not discriminate gait speed conditions in the vertical plane (p = 0.26
and h2

p = 0.09). There was a significant effect of gait speed in the
frontal plane F(1.6, 23.98) = 11.43, p , 0.001, and h2

p = 0.43.
Post-hoc tests again identified significant differences among all
three speed conditions (fast versus medium: d = 0.69; fast versus
slow: d = 0.99; medium versus slow: d = 0.68; and all p , 0.05).

For the motion-capture system, we first consider data from the
head marker. A significant effect of gait speed condition was
observed in the vertical plane F(1.41, 21.1) = 160.2, p , 0.001,
and h2

p = 0.91. All three speed conditions were found to differ sig-
nificantly according to post-hoc tests (fast versus medium:
d = 2.78; fast versus slow: d = 3.51; medium versus slow:
d = 2.65; and all p , 0.001). A significant effect was also
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observed in the frontal plane F(1.25, 18.79) = 66.97, p , 0.001,
and h2

p = 0.82. All three speed conditions were found to differ sig-
nificantly according to post-hoc tests (fast versus medium:
d = 0.78; fast versus slow: d = 3.11; medium versus slow:
d = 2.81; and all p , 0.01).

For the centre of mass displacements calculated from the
motion-capture data, ANOVA revealed significant effects of
gait speed in each plane of motion. In the vertical plane
[F(1.37, 20.04) = 175, p , 0.001, and h2

p = 0.92], post-hoc
tests revealed significant differences among all conditions (fast
versus medium: d = 3.17; fast versus slow: d = 3.64; medium
versus slow: d = 2.69; and all p , 0.001). Similarly, for the
frontal plane [F(1.19, 17.88) = 68.52, p , 0.001, and
h2
p = 0.82], all pairwise post-hoc comparisons were significant

(fast versus medium: d = 1.06; fast versus slow: d = 2.3;
medium versus slow: d = 3.81; and all p , 0.05).

5. Conclusion: In this Letter, we evaluated the performance of a
gait analysis system, which uses only a wearable camera to
collect 2D, first-person video. Optical flow and frequency-domain
analyses were used to generate a dataset from video, and this
dataset was then compared with data collected with a wearable
triaxial accelerometer and a 20-camera motion-capture system.
This is a crucial step to validate our single-camera wearable
system against the vest device and the gold standard
motion-capture system. While both of the latter devices (the
accelerometer and motion-capture systems) have seen more use in
the domain of wearable gait analysis than the wearable camera,
our camera-based system has several advantages including cost,
simplicity, and the ability to analyse the visual scene to provide
context for the gait analysis data. Although the motion-capture
system provided superior discrimination of gait speed in all
planes of motion, as expected, the eyeglass-based camera system
nonetheless discriminated gait speed significantly and
outperformed the vest-based accelerometer system. This suggests
considerable promise for its use for a variety of health-related gait
applications. Plans include using the camera for in-home activity
analysis to perform automated detection of gait activities
(eliminating the need for manual segmentation) and measuring
changes in gait speed over time as a possible measure of fall risk
and physical decline in older adults.
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