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Simple Summary: The Casein Kinase 1 (CK1) family of serine-threonine specific protein kinases
regulates the activity of key regulatory proteins and signaling pathways being involved in embryonic
development but also in the adult organism. Furthermore, it plays an important role in the regulation
of proliferation, differentiation, apoptotic processes, circadian rhythm, chromosome segregation,
and other microtubule-associated processes. Deregulation of CK1 expression and activity, as well as
mutations in the coding region, contribute to the development of many human pathologies, including
cancer. Alternations in the site-specific phosphorylation of α/β-tubulin and microtubule-associated
proteins affect microtubule stability, finally resulting in mitotic defects and genomic instability. Here
we review our knowledge about CK1 functions in general and especially in chromosome segregation.
Furthermore, an update in modulating CK1 activity by small molecule inhibitors and peptides
specifically inhibiting CK1 protein interactions as new therapy concepts for the treatment of cancer
will be discussed.

Abstract: Protein kinases of the Casein Kinase 1 family play a vital role in the regulation of numerous
cellular processes. Apart from functions associated with regulation of proliferation, differentiation,
or apoptosis, localization of several Casein Kinase 1 isoforms to the centrosome and microtubule
asters also implicates regulatory functions in microtubule dynamic processes. Being localized to
the spindle apparatus during mitosis Casein Kinase 1 directly modulates microtubule dynamics by
phosphorylation of tubulin isoforms. Additionally, site-specific phosphorylation of microtubule-
associated proteins can be related to the maintenance of genomic stability but also microtubule
stabilization/destabilization, e.g., by hyper-phosphorylation of microtubule-associated protein 1A
and RITA. Consequently, approaches interfering with Casein Kinase 1-mediated microtubule-specific
functions might be exploited as therapeutic strategies for the treatment of cancer. Currently pursued
strategies include the development of Casein Kinase 1 isoform-specific small molecule inhibitors and
therapeutically useful peptides specifically inhibiting kinase-substrate interactions.

Keywords: Casein Kinase 1; CK1; RITA; microtubule dynamics; cell cycle progression; microtubule
transport; microtubule-associated proteins; MAPs; mitotic spindle; tumorigenesis

1. Introduction

Microtubules are helical fibers with an outer diameter of approximately 25 nm that
consist of tubulin subunits (heterodimer of α- and β-tubulin) [1]. They present one of
the main components of the eukaryotic cytoskeleton responsible for cell stability but also
play a critical role in cell motility, intracellular transport, and mitosis [2]. Microtubules
are organized by microtubule-organizing centers (MTOCs), including centrosomes, which
serve as important nucleating factors that initiate microtubule polymerization [3,4]. The
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centrosome consists of two centrioles, surrounded by the pericentriolar material (PCM),
which contains components such as γ-tubulin, which is important for anchoring and
nucleating cytoplasmic microtubules to build up the mitotic spindle during cell division [5].
The mitotic spindle is organized by more than 1000 microtubule-associated proteins (MAPs),
indispensable for the controlled regulation of the mitotic spindle [6].

If mitotic processes are not proceeding correctly, unequal distribution of chromosomes
to the daughter cells and aneuploidy could have severe consequences, which might exert
tumor-promoting functions. Therefore, mitosis needs to be strictly regulated and controlled.
These regulatory processes are mainly driven by components of the mitotic kinome, includ-
ing several kinase families such as NIMA-related kinases (Neks), cyclin-dependent kinases
(CDKs), Polo-like kinases (Plks), and Aurora kinases, as well as phosphatases and kinase
inhibitors [7]. More than 1000 phosphoproteins have been detected to be regulated in a cell
cycle-dependent manner, and site-specific phosphorylation (in-) activates mitotic proteins
or might even target them for degradation [8,9].

Major kinases regulating the microtubule network belong to the Aurora and Plk fami-
lies. The primary function of Aurora kinases is the control of cell division. Two pools of
Aurora A (AurA) are involved in the regulation of mitosis: a first one supporting centro-
some maturation in the G2 stage of the cell cycle and a second one supporting assembly
and proper function of the bipolar spindle by associating with centrosome-proximal mi-
crotubules in metaphase [10]. Aurora B (AurB) and Aurora C (AurC) are involved in
chromosome condensation, kinetochore attachment, and alignment of chromosomes in
later stages of mitosis [11]. In several aneuploid human tumors (including breast, colorectal,
hepatic, lung, and oral cancer), amplification, overexpression, or hyperactivation of AurA
and AurB can be found; however, high levels of AurB might rather be a consequence than
the cause of malignant transformation [12–14]. Similar to Aurora kinases, Plks are also
involved in the regulation of cell division by controlling essential mitotic processes. Plk1
and Plk4 are the most studied Plks, and while Plk1 regulates centrosome maturation, spin-
dle formation, and cytokinesis, Plk4 is important for controlling centriole division [15,16].
Apart from the regulation of centrosome- and spindle-associated processes, Plk1 is also
able to phosphorylate p53, thereby initiating its degradation [17].

Besides Aurora kinases and Plks, CDKs and Neks also play critical roles in cell cycle
regulation by phosphorylating multiple mitosis-related substrates. CDKs are known to
be activated at each stage of the cell cycle by the formation of stage-specific cyclin/CDK
complexes [18]. After activation, cyclin/CDK complexes promote DNA replication, cen-
trosome duplication, spindle formation, and other cell cycle-associated processes by the
phosphorylation of mitotic key regulators [19]. Members of the Nek family are initially
characterized by their function in the regulation of mitosis, primarily including DNA
damage response, cell cycle regulation, and centrosome organization [20–25].

In addition to the abovementioned kinase families, members of the CK1 family of
protein kinases are also known to be involved in the regulation of mitotic processes. The
CK1 family is evolutionary highly conserved, ubiquitously expressed, and constitutes
one of the first serine/threonine-specific protein kinases discovered [26,27]. The CK1
isoforms α, β, γ1, γ2, γ3, δ, ε, together with the closely related Tau Tubulin Kinase 1
(TTBK1) and the Vaccine-related kinases (VRKs), form their own independent branch
of the kinome tree of eukaryotic protein kinases [28,29]. Due to their wide range of
substrates, CK1 isoforms are involved in many developmental pathways, including Wnt
(Wingless/Int-1), Hh (Hedgehog), and Hippo signaling pathways, which are important
in growth, homeostasis, and tissue development. Mutations of components and aberrant
regulation of these pathways have been connected to various cancer entities [26,30]. The
following section concentrates on the current knowledge of the contribution of CK1 in
tumorigenesis and tumor progression.
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2. Participation of CK1 in Tumorigenesis and Tumor Progression

Cancer-related functions of the CK1 family are closely connected to the role of CK1
in the abovementioned signaling pathways. Besides that, numerous studies substantiated
the oncogenic potential of CK1 by findings that CK1 isoforms modulate key regulatory
proteins such as β-catenin, MDM2, and p53, which can be seen as crucial regulators in
tumorigenesis [26,27]. So far, various mutations within CSNK1D encoding for CK1δ have
been identified and observed in different types of cancer. According to cBioPortal for Cancer
Genomics, 852 different mutations have been reported in a curated set of 202 nonredundant
studies (including 90,279 samples) (Figure 1 and Table 1).
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Figure 1. Mutations in CSNK1D (CK1δ). According to cBioPortal for Cancer Genomics, 852 different
mutations have been reported in a curated set of 202 nonredundant studies, including 90,279 sam-
ples [31,32]. Positions of mutations in the CK1δ protein are shown. Highlighted mutations (n > 1) and
tumor samples are summarized in Table 1. Amino acids are shown in one-letter code. Abbreviations:
aa—amino acids, *—stop codon, fs—frame shift.

Table 1. Highlighted mutations (n > 1) in CSNK1D and the respective cancer samples.

Mutation Cancer

L25P Lung Adenocarcinoma, Stomach Adenocarcinoma
G72R Uterine Endometrioid Carcinoma, Colorectal Adenocarcinoma
E90D Uterine Endometrioid Carcinoma, Lung Adenocarcinoma
F95I
F95L

Cutaneous Melanoma
Mucinous Adenocarcinoma of the Colon and Rectum (2×)

R98M
R98S

Mucinous Adenocarcinoma of the Colon and Rectum
Serous Ovarian Cancer

T104I
T104Pfs*9

Cutaneous Squamous Cell Carcinoma, Skin Cancer, Non-Melanoma
Uterine Endometrioid Carcinoma

R115H Colon Adenocarcinoma, Head and Neck Squamous Cell Carcinoma, Uterine
Endometrioid Carcinoma, Colorectal Adenocarcinoma

K122N Endometrial Carcinoma, Lung Adenocarcinoma
R127W
R127Q

Cervical Squamous Cell Carcinoma, Colorectal Adenocarcinoma
Bladder Urothelial Carcinoma

R160P
R160H

Colon Adenocarcinoma
Colorectal Adenocarcinoma

I165T Colorectal Adenocarcinoma, Intestinal Type Stomach Adenocarcinoma
P166H
P166S

Cutaneous Melanoma
Glioblastoma

R168S
R168C
R168H

Acute Myeloid Leukemia
Skin Cancer, Non-Melanoma
Uterine Endometrioid Carcinoma, Melanoma

R178W Prostate, Colorectal Adenocarcinoma
L211F
L211I

Lung Adenocarcinoma
Uterine Serous Carcinoma/Uterine Papillary Serous Carcinoma

W213C
W213*

Cutaneous Squamous Cell Carcinoma, Melanoma
Lung Adenocarcinoma
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Table 1. Cont.

Mutation Cancer

S246= Breast Invasive Lobular Carcinoma, Cutaneous Squamous Cell Carcinoma
E247K Rectal Adenocarcinoma, Uterine Endometrioid Carcinoma (2×)
R256C Angiosarcoma, Intestinal Type Stomach Adenocarcinoma
R270L
R270Q

Cutaneous Melanoma (2×)
Cutaneous Melanoma

R274Q Colon Adenocarcinoma, Uterine Serous Carcinoma/Uterine Papillary Serous
Carcinoma, Uterine Endometrioid Carcinoma

T344Hfs*26 Colon Adenocarcinoma, Mucinous Adenocarcinoma of the Colon and Rectum

R358Gfs*12 Colon Adenocarcinoma (3×), Uterine Endometrioid Carcinoma (2×), Cervical
Squamous Cell Carcinoma

P378L Glioblastoma, Skin Cancer, Non-Melanoma
V379Sfs*52 Breast Invasive Lobular Carcinoma
T392I Stomach Adenocarcinoma (2×)
S411F Cutaneous Squamous Cell Carcinoma, Bladder Urothelial Carcinoma

*—stop codon, =—splice mutation.

Although the mutation rate of CSNK1D is very low, a TCGA database analysis from cer-
tain tumor tissues and tumor cell lines clearly indicates genomic amplification of CSNK1D
with the highest frequency in lung cancer and bladder/urinary tract cancer (Figure 2).
Genomic alterations could explain that alterations in the expression levels in different
cancer entities including urinary tract/bladder cancer [33], lung cancer [34], colorectal can-
cer [35], breast carcinomas [36], ductal pancreatic carcinomas [37], and blood cancer [38,39]
(reviewed in [40,41]) contribute to tumorigenesis and tumor progression.
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CSNK1D was detected in Lung Cancer and Bladder/Urinary Tract Cancer (approx. 15%).
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Several studies provide evidence that the CK1 family exhibits oncogenic potential by
promoting genome instability, promoting proliferation, and inhibiting apoptotic processes
(reviewed in [42]), which is provoked by increased kinase activity caused by mutations in
CSNK1D and, in particular, by overexpression of CK1δ in tumors.

Within the last few years, several CK1 isoforms were shown to be involved in the reg-
ulation of mitotic spindle organization and mitotic processes. Since cancer is characterized
by uncontrolled cellular proliferation, which is caused by the aberrant activity of various
cell cycle regulating proteins, cell cycle regulators, such as CK1, are seen as interesting
targets in cancer therapy. A detailed presentation of CK1 isoforms in regulating cell cycle
progression, modulating cytoskeleton components, and the role in microtubule transport
will be described in detail in the following chapters.

3. The Role of CK1 in Cell Cycle Progression

Members of the CK1 family are known to be important regulators of genomic stability,
microtubule dynamics, cell cycle progression, mitosis, and meiosis [43–54]. Interestingly,
the Saccharomyces cerevisiae orthologue of CK1δ, Hrr25, was one of the first kinases being
described to regulate cell cycle progression [55]. Recently, a study demonstrated that the
inhibition of Hrr25 led to the assembly of unusually long cytoplasmic microtubules and
incorrect spindle positioning [56]. P-bodies, cytoplasmic RNA-proteins (RNP), were found
to provide protection for Hrr25 and CK1 in meiotic cells. Inhibition of this interaction led
to decreased levels of Hrr25 and disturbed meiosis progression [57,58]. In addition to the
S. cerevisiae orthologue Hrr25, the Schizosaccharomyces pombe orthologues of CK1, Hhp1,
and Hhp2, have also been reported to be involved in the mitotic checkpoint by delaying
cytokinesis under mitotic stress. In the context of these studies, it was shown that CK1
localizes to the spindle pole bodies (SPBs) and thereby phosphorylates septation initiation
protein 4 (Sid4), leading to its degradation and cytokinesis suspension [47,59].

Unfortunately, the precise contribution of each mammalian CK1 isoform to central
functions in the regulation of the cell division cycle is not well understood. However,
CK1δ was shown to be associated with the centrosome, kinetochore, and microtubules,
pointing to a cell cycle checkpoint control function of CK1δ [43,46]. The hypothesis that
CK1 fulfills regulatory roles at the centrosome is further supported by the findings that
CK1δ and CK1ε interact with the scaffold protein A-kinase anchor protein 450 (AKAP450).
AKAP450 acts as an anchor point for CK1δ at the centrosome enabling the CK1-mediated
phosphorylation of the microtubule plus-end-binding protein 1 (EB1) and presenting a
relevant factor for centrosome positioning during T cell activation [60] (Figure 3). Moreover,
silencing of CK1δ led to decreased expression of the cell division cycle 2 (CDC2)/CDK1 and
checkpoint kinase (Chk)1, both being involved in mitotic checkpoints and DNA damage
response [54]. Interaction of CK1δ with Chk1 and Chk1-mediated regulation of CK1δ
activity have previously been shown [61]. Additionally, CK1δ-mediated degradation of
Wee1-GC checkpoint kinase (Wee1) induced increased levels of active CDK1 and, thus,
the entrance of cells into mitosis [50] (Figure 3). Interestingly, inhibition or depletion of
CK1δ provoked reduced Wee1 turnover, increased phosphorylation of CDK1, and, as a
consequence, cell cycle exit [49,50]. However, it has still to be proven if the centrosome-
associated fraction of CK1δ is involved in mediating this control. This assumption is
supported by the fact that CK1δ-mediated phosphorylation of phosphoprimed Sid4, a
scaffold protein and anchoring point of the spindle pole body in fission yeast, triggers the
recruitment of Chk2/replication checkpoint kinase Cds1 [53] (Figure 3).

A far greater role with regard to spindle positioning and mitosis is played by CK1α.
An immunohistological approach showed that CK1α localizes to mitotic spindles [62],
and injection of CK1α-specific morpholinos caused mitotic arrest and chromosomal mis-
alignments in mouse oocytes [63]. A role in spindle positioning and cell division was
shown for the interaction of CK1α with the FAMily of sequence similarity (FAM)83 [64].
A recent study demonstrated that CK1α is recruited to the mitotic spindle by FAM83D,
and CK1α-binding deficient FAM83DF283A/F283A knocking mutations exhibit prolonged
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mitosis and spindle positioning defects [65]. However, stronger interaction with CK1α was
observed for FAM83B, FAM83E, FAM83G, and FAM83H detected via immunoprecipita-
tion and mass spectrometry [66]. Recently, a study assumed that mutations in FAM83G,
more precisely in the conserved domain of unknown function 1669 (DUF1669), lead to
disruption of CK1α interaction and, thereby, attenuation of Wnt signaling [67]. Similar
results have recently been shown for FAM110A. In this study, it was demonstrated that CK1
interacts with FAM110A during mitosis, and inhibition of CK1 or depletion of FAM110A,
led to chromosomal alignment defects and delayed mitosis progression (Figure 3). Inter-
estingly, defects in chromosomal alignment were rescued by mimicking phosphorylation
with FAM110A-S252-255E mutants [68]. Functional binding partners of CK1, such as the
anchoring proteins FAM83 and FAM110A, could be used as alternative targets in cancer
treatment by blocking specifically the interaction of CK1 isoforms with these anchoring
proteins and thus, inhibiting CK1 isoform-mediated substrate phosphorylation (see also
Section 7.4) [68].
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Figure 3. Cell cycle-associated functions of the CK1 family. CK1 localizes to spindle pole bodies
and thereby phosphorylates Sid4 leading to its degeneration and delayed cytokinesis. Additionally,
phosphorylation of Sid4 causes the recruitment of Chk2/replication checkpoint kinase Cds1, which
supports the mitotic commitment. CK1α, CK1δ, and CK1ε are localized to the mitotic spindle
mediated through the interaction with centrosome-associated proteins, such as AKAP450, FAM83D,
and FAM110A. Site-specific phosphorylation of p53 leads to p53-dependent transcriptional activation
of target genes such as p21 and BubR1 involved in the regulation of centrosomal functions, such
as centrosome amplification and cell cycle arrest. Silencing of CK1δ leads to decreased expression
of CDK1 and Chk1, which are both involved in mitotic checkpoints and DNA damage response.
Moreover, CK1δ-mediated degradation of Wee1 increases levels of active CDK1 and, thus, initiate
the entrance of cells into mitosis. Parts of the figure were generated using templates from Servier
Medical Art [69], which is licensed under a Creative Commons Attribution 3.0 Unported License.
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4. The Contribution of CK1 to the Modulation of Cytoskeleton Components

Due to their numerous substrates, it is not surprising that CK1 isoforms have also
been implicated in the modulation of microtubule polymerization, stability, and spindle
dynamics linked to the direct phosphorylation of the microtubule subunits α-, β-, and
γ-tubulin [44,46]. In synchronized mitotic cells treated with DNA damaging agents (such
as etoposide or camptothecin), the association of CK1δwith α- and γ-tubulin increases [44],
indicating its regulatory functions at the mitotic spindle. A function for CK1 in spindle
association, microtubule modulation, and microtubule dynamics by phosphorylation of
several MAPs, which have prognostic relevance for the overall survival of cancer patients,
was also shown [65,70–73]. So far, several MAPs, such as MAP1A, MAP2, MAP4, stath-
min and tau were discovered to be phosphorylated by CK1 [44,74–76] (Figure 4). The
most studied CK1 interaction partner within the MAPs is the tau protein. Recent studies
demonstrated the importance of CK1 isoforms in the abnormal hyperphosphorylation and
deregulation of tau, finally leading to microtubule destabilization and neuronal cell death,
which is associated with Alzheimer’s disease [77]. Moreover, the involvement of tau in
the regulation of cell migration has been reported by more recent studies and reviewed
in [78]. Increased levels of tau phosphorylation in cancer cells, subsequent detachment
of tau from microtubules, and its inability to perform microtubule-related functions have
been described in several studies. Hyperphosphorylated tau has been detected in prostate
and colon cancer cell lines. Additionally, increased levels of phospho-tau were shown to be
a marker for nonmetastatic colon cancer [79–81].
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Figure 4. The role of CK1 in the modulation of cytoskeleton components. Direct CK1-mediated
phosphorylation of microtubule subunits, such as α-, β-, and γ-tubulin, leads to the modulation of
microtubule polymerization, stability, and spindle dynamics. In addition, microtubule dynamics
are also influenced by CK1-mediated phosphorylation of MAPs, such as MAP1A, MAP2, MAP4,
stathmin, and tau [44,74–76] (Figure 4). Parts of the figure were generated using templates from
Servier Medical Art [69], which is licensed under a Creative Commons Attribution 3.0 Unported
License.

The involvement of CK1 in microtubule dynamics is also supported by the close
connection of CK1δ to microtubule-associated centrosomal subfraction of the tumor sup-
pressor protein p53 [82–84] (Figure 4). Generally, p53 is involved in centrosome duplication
and, therefore, protective against defective centrosome amplification and reduplication,
preventing the occurrence of mitotic errors and the development of chromosomal insta-
bility [84–88]. In order to meet these demands, p53-dependent transcriptional activation
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of target genes, such as p21 and BubR1 (regulating centrosome functions) [89,90], as
well as transcription-independent functions of p53, are required. The latter includes the
ability of p53 to interact with several centrosome-associated proteins, such as γ-tubulin
and centrin. These interactions appear to be necessary to maintain centrosome biogen-
esis [91]. Site-specific phosphorylation of p53 seems to play an important role in this
function. Thus, phosphorylation of p53 at Ser15 is essential for colocalization with various
centrosomal proteins, thereby contributing to the inhibition of uncontrolled centrosome
duplication [92]. There is evidence that site-specific phosphorylation of p53 at Ser15, and
Ser33 by centrosome-associated and stress-induced kinases, such as AurA, ATM/ATR, and
p38, is required for the maintenance of centrosome homeostasis under normal and various
stress conditions [87,93–96]. Furthermore, the ability of p53 to bind to unduplicated centro-
somes depends on the phosphorylation of Ser315 by CDK2 and might also be important
for p53-mediated regulation of centrosome duplication [84].

In addition, since both p53 and CK1 isoforms interact with the centrosome, new
insights are needed concerning the role of CK1δ/ε-mediated site-specific phosphorylation
of p53 in modulating the centrosomal functions of p53, such as the association of p53 with
key centrosome factors necessary for inhibition of the duplication of centrioles [97]. A
particular focus should also be placed on the implications of the functional significance of
the interactions of CK1δwith centrosomal p53, as there is evidence that CK1δ and p53 are
linked by an autoregulatory feedback loop [97].

5. CK1-Associated Functions in Microtubule Transport

CK1 plays a role in regulating cell cycle progression and the interactions between mi-
crotubules and membranes. In addition to that, several studies proposed that CK1 isoforms
affect transport processes along microtubules. Recently, it was demonstrated that CK1ε is
involved in the regulation of dynein-dependent transport processes by phosphorylation of
the dynein intermediate chain component IC138, thereby inhibiting the minus-end directed
transport of membrane organelles [98,99]. Interestingly, CK1 inhibitors rescued dynein
activity, which was blocked by the phosphorylation of IC138. The hypothesis that CK1
has an inhibitory role in microtubule transport was also supported by the findings that
solubilization of CK1 and the use of CK1-specific inhibitors restored microtubule sliding in
pf17 (paralyzed flagellar mutant) axonemes [100].

6. The MAP RITA as a Putative Target for CK1

RITA (RBP interacting and tubulin-associated), a highly conserved 36 kDa protein,
was originally identified in a yeast to hybrid screen searching for novel RBPJ interact-
ing proteins [101]. The transcription factor RBPJ also called RBP or CSL, is the central
DNA-binding hub of the highly conserved Notch signaling pathway [102]. Notch sig-
naling regulates fundamental cellular processes during embryonic development and in
the adult organism. Aberrant Notch signaling results in severe congenital diseases and
cancer [103,104]. After ligand binding to the Notch receptor, signal transduction involves
the presenilin-dependent intracellular processing of the receptor and nuclear translocation
of its intracellular domain (NICD). NICD associates with RBPJ and recruits coactivator com-
plexes to activate transcription. In the absence of a Notch signal, RBPJ recruits corepressor
complexes to shut down transcription [105].

RITA binds to the beta trefoil domain (BTD) of RBPJ, and in a recent structure–function
analysis, we identified this type of interaction as a “RAM-Type” (Figure 5, upper middle
panel) since it shows a striking similarity to the interaction of RBPJ with the RAM domain
(RBPJ-associated molecule) of NICD [106] and now explains the mutually exclusive binding
of either RITA or NICD to RBPJ on the structural level [107].
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Figure 5. RITA is a tubulin- and RBPJ-binding shuttle protein with putative CK1δ phosphorylation
sites. GFP-RITA shows association to tubulin fibers (-LMB, left) and localizes to the nucleus after
inhibition of nuclear export by leptomycin B (+LMB) (right). Structure of the DNA bound RBPJ-RITA
complex (middle), (PDB-ID: 5EG6). RITA (red) interacts with the beta-trefoil domain (BTD, green)
of RBPJ in a RAM-like association. Scansite 4.0 identifies several putative CK1δ phosphorylation
sites. Conserved sites in several species are marked in red. Human RITA is a 36 kDa protein with
269 amino acid residues. Identified domains are specified. NES, nuclear export signal, RCR1 and
2, RITA conserved repeat 1 and 2, NLS, nuclear localization signal, RBPJ, RBPJ interaction domain,
Tubulin, tubulin-binding domain. Conserved amino acid residues are shown under the schematic
protein representation.

Further analysis revealed RITA not only interacts with RBPJ but also binds to tubulin in
the cytoplasm and shuttles rapidly between the cytoplasm and the nucleus [101]. (Figure 5,
upper left and right panel). We could identify and functionally characterize a nuclear
export signal (NES) as well as a nuclear localization signal (NLS) and the tubulin-binding
domain within the RITA proteins of various species (Figure 5, lower). Mechanistically, RITA
interferes with RBPJ-NICD interaction and exports RBPJ from the nucleus to down-regulate
Notch activity.

Interestingly, RITA-deficient mice show no obvious developmental defects, but aged
animals develop tissue infiltrating lymphomas. In addition, RITA down-regulation was
also found in hepatocellular carcinoma (HCC), suggesting that RITA might be a novel
tumor suppressor [108,109].

In a recent study, we found that RITA localizes to interphase microtubules as well
as to mitotic microtubule structures, thereby “bundles” the microtubules “thickened”
fibers as shown by high-resolution microscopy. Cells deficient of RITA show altered
microtubule stability together with highly acetylated α-tubulin. Microtubule dynamics
is reduced in cells after RITA knockdown as well as in RITA-deficient mouse embryonic
fibroblasts (MEF), leading to mitotic defects such as chromosome segregation errors and
chromosome misalignment.

From this study, it is suggested that RITA recruits histone deacetylase (HDAC)-6
to tubulin, and after knockdown of RITA, increased activity of microtubule-associated
acetyltransferase Mec-17 leads to an increase of tubulin acetylation and stabilization [110].
Furthermore, RITA was shown to be involved in the activation of AurA kinase activ-
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ity at spindle poles [111] and in the regulation of cellular migration and invasion [112].
Thus, RITA might play a novel critical role in modulating microtubule dynamics, and its
deregulation may contribute to chromosome instability and tumorigenesis.

To get a deeper insight into the regulation of RITA by posttranslational modifica-
tions, especially by phosphorylation, putative kinase target sites have been identified
by Scansite 4.0 analysis [113]. Interestingly, a database search revealed various putative
CK1 phosphorylation sites (Figure 5). Additional analyses are necessary to identify the
exact phosphorylation sites of CK1δ on RITA and the functional consequences. However,
RITA might be an additional target of CK1δ as shown for the MAPs MAP1A, MAP2, and
MAP4 [44,74], and CK1δ-induced deregulation of RITA might also have an impact on
tumor initiation and progression.

7. Addressing Inhibition of Cell Division in Cancer Therapy
7.1. Microtubule-Targeting Agents

Since the first approval of vinca alkaloids and taxanes for therapeutic application
in the 1960s, the microtubule skeleton has emerged as an important target for anticancer
therapy. Generally, two main categories of microtubule-targeting agents (MTAs) (also
known as tubulin-binding agents, TBAs) can be distinguished: microtubule-stabilizing
agents (MSAs), such as taxanes, increase the lateral interactions between the tubulin
heterodimers, consequently resulting in increased polymerization and stabilization of
microtubules. Microtubule-destabilizing agents (MDAs), such as colchicines and vinca
alkaloids, lead to microtubule depolymerization by decreasing or inhibiting (mainly, but
not only) longitudinal interactions between tubulin heterodimers. These MTAs interact
with tubulin via six different binding sites. While the taxane, laulimalide/peloruside, vinca,
and maytansine sites are located on β-tubulin, the colchicine site is located in proximity
to the interface between the α- and β-subunits, and the pironetin site is located on the
α-tubulin subunit (reviewed in [114]). So far, various MTAs have been already approved or
are currently in clinical investigation phases for cancer treatment (reviewed in [115]).

Most MTAs have been isolated from plant, fungi, or invertebrate origin with paclitaxel
(isolated from Taxus brevifolia) [116], vinca alkaloids (discovered in Catharantus roseus (L.)
G. Don) [117], and colchicine (isolated from autumn crocus Colchicum autumnale) [118]
being the best-known MTA compounds. While the use of paclitaxel and vinca alkaloids in
anticancer therapy is associated with severe side effects such as neurotoxicity, myelosup-
pression, or the development of multidrug resistance, the discovery of less toxic derivatives
of these compounds enabled successful treatment of various cancers including breast,
lung, bladder, prostate, and other cancers (reviewed in [119]). Due to its severe toxic-
ity, neither colchicine nor any other colchicine-site MTA has been approved for cancer
treatment so far, although some promising derivatives are currently under investigation
in clinical trials [120]. New MTAs of natural or synthetic origin are still to be discov-
ered and tested in (pre-) clinical investigation. Combretastatin and its analogs (such as
Ombrabulin, first isolated from Combretum caffeum) demonstrated potent antitumor ac-
tivity and safety in the treatment of ovarian cancer [121–124]. Epothilones belong to the
microtubule-stabilizing group of MTAs, being first discovered as antifungal agents pro-
duced by Sorangium cellulolus ([125] and references therein). The mechanism of epothilones
is similar to paclitaxel, and the epothilone derivative Ixabepilone has already been approved
for the treatment of aggressive metastatic or locally advanced breast cancer [126,127]. The
synthetic sulphonamide ABT-751 binds to the colchicine binding site on β-tubulin and
inhibits microtubule polymerization. Significant anticancer effects, which have been demon-
strated against non-small cell lung cancer and colon cancer, could be obtained by blocked
cell cycle progression and induced apoptosis [128,129].

However, MTAs still present certain drawbacks, such as poor solubility, low bioavail-
ability, toxicity, and multidrug resistance. Neurological side effects, including peripheral,
cranial, and autonomic neuropathy as well as headache, dizziness, and mental depres-
sion, and hematologic side effects referred to as myelosuppression are the main toxicities
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associated with MTAs and often have dose-limiting consequences. Common side effects
also include nausea, vomiting, and diarrhea [130]. Approaches to limit adverse events but
also to overcome resistance, therefore, include combination therapy, e.g., paclitaxel and
gemcitabine for the treatment of advanced pancreatic cancer [131] and numerous other
combinations being currently under clinical investigation (reviewed by Nawara et al., [132]),
as well as introducing novel antibody drug conjugates such as ado-trastuzumab emtansine
(the maytansine derivative emtansine was conjugated to trastuzumab), which has recently
been evaluated and approved for anticancer therapy [133]. As an alternative to directly
targeting microtubules, an intervention on microtubule dynamics can also be achieved by
targeting the mitotic kinome responsible for posttranslational modifications of microtubules
or MAPs.

7.2. Inhibitors Targeting the Mitotic Kinome

The ATP-competitive AurA-selective inhibitor Alisertib (MLN8237) induces cell cycle
arrest in the G2/M phase, apoptosis, and autophagy [134–137] (see Table 2). Alisertib
prevents AurA-induced stabilization of N-Myc [138] and is currently under clinical inves-
tigation for the treatment of various malignancies, including neuroblastoma, small cell
lung cancer, neurocrine prostate cancer, and breast cancer, among others [139–141]. The
AurB-selective inhibitor Barasertib (AZD1152) inhibits tumor growth by decreasing histone
phosphorylation resulting in the accumulation of aneuploidy cells and induction of apopto-
sis [142,143]. Cytotoxic effects of Barasertib might also be associated with stimulation of
reactive oxygen species (ROS) production [144]. Barasertib has been tested in clinical trials
for acute myeloid leukemia (AML) but induced severe side effects. Improved efficacy and
tolerability are now expected for a new Barasertib nanoparticle formulation [145]. Apart
from these compounds, a non-ATP-competitive inhibitor of AurA has also been described
(AurkinA) binding to the Tpx2-binding surface of AurA and consequently displacing AurA
from the mitotic spindle [146].

Volasertib, the most studied ATP-competitive inhibitor of Plk1, arrests cells in the
G2/M phase and subsequently induces apoptosis [147,148]. Clinical trials demonstrated
that Volasertib is more potently inhibiting the growth of hematopoietic malignancies in
comparison with solid tumors [149].

Similar to Aurora kinases and Plks—and as introduced in the previous sections—
members of the CK1 family are also involved in regulating microtubule dynamics and mi-
totic processes via their interaction with centrosomes, the phosphorylation of microtubule-
associated cellular components, and their recruitment to the mitotic spindle apparatus.
Therefore, also CK1 appears to be an attractive drug target for the induction of anti-cancer
effects mediated by interference with microtubule-related processes. Since the association
of CK1δ is significantly enhanced by treatment of the cells with DNA damage induced by
camptothecin, etoposide, or γ-irradiation [44], simultaneous treatment with CK1δ-specific
inhibitors might have synergistic or additive effects. Pharmacological inhibition, as well
as siRNA-induced knockdown of CK1δ, already demonstrated effective inhibition of pri-
mary ciliogenesis via negative regulation of centrosome-specific functions and inhibition of
(AKAP450-dependent) microtubule nucleation at the Golgi apparatus [48]. However, the
specific functions mediated by distinct CK1 isoforms and the effects of CK1 isoform-specific
inhibition need to be investigated carefully in order to obtain the desired anticancer effects.

Furthermore, therapeutic effects could also be achieved by intervening with CK1-
mediated phosphorylation of MAPs such as Tau. Tau might be able to influence tumori-
genesis by abnormal modulation of cell cycle progression, cell mobility, or organelle or-
ganization, and in fact, neurons from patients suffering from neurodegenerative diseases,
including characteristic tau pathology, display hallmarks of DNA replication and active cell
cycle as well as microtubule-mediated deformation of the nucleus [79–81]. Consequently,
treatment with CK1-specific inhibitors (described in Table 2) could have therapeutic poten-
tial in cases where hyperphosphorylated tau can be linked to tumorigenesis, and reduction
of Tau phosphorylation level has already been achieved by treatment of cells with CK1-
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specific inhibitors or CK1-specific siRNA [77,150]. In addition, more recently published
potent CK1 isoform-selective small molecule inhibitors (SMIs) could prove to be thera-
peutically active (for review, see [41,42,151]). However, since treatment with CK1-specific
inhibitors might improve tau binding to tubulin, these inhibitors may not be used together
with taxanes because tau has been shown to interfere with the binding mode of taxanes
to tubulin [152,153].

A special focus is given to the inhibitor IC261, which is one of the first potent SMI for
CK1 first published in 2000, demonstrating obvious anticancer effects in subsequent studies
within the following ten years [37,46,154,155]. However, it was observed that mitotic arrest
in prometaphase and cytotoxicity is induced by CK1δ- and ε-independent effects of IC261.
In comparison with different compounds inducing prometaphase arrest, the effects induced
by IC261 were similar to those observed for nocodazole and colchicine. Moreover, IC261
even competed with colchicine for its binding site on tubulin. Consequently, the cytotoxicity
of IC261 can be attributed to the direct inhibition of microtubule polymerization rather than
to the specific inhibition of CK1δ and ε [156]. These findings are supported by another study
demonstrating that IC261-induced centrosome fragmentation during mitosis is independent
of CK1δ [157]. Microtubule depolymerization by IC261 can furthermore be antagonized
by pretreatment of cells with the stabilizing agent paclitaxel. Lower concentrations of
IC261 affected dynamics of mitotic spindles resulting in cell cycle arrest and apoptosis [158].
Structural alterations of the centrosomes, centrosome amplification with the formation of
multipolar spindles, and the inhibition of mitosis have already been described earlier for
trophoblast cells and murine tumor cells treated with IC261 [43,46]. Interactions between
IC261 and tubulin have also been characterized by a cocrystallization study confirming
that the binding of IC261 roughly overlaps the colchicine binding pose and represents a
new colchicine site microtubule inhibitor [159].

Table 2. Overview of MTAs and inhibitors of microtubule- and MAP-associated protein kinases.

Inhibitor Target Molecular/Therapeutic Effect Tumor
Entity

Investigation
Phase Ref.

MSA-Taxol-domain binder

Paclitaxel
β-tubulin

Increase the lateral interactions between the tubulin
heterodimers resulting in increased polymerization

and stabilization of microtubules

Ovarian and
breast cancer Approved [160]

Ixabepilone Breast cancer Approved [126,127]

MDA-Vinca-domain binder

Vincristine
β-tubulin

Lead to microtubule depolymerization by decreasing
or inhibiting longitudinal interactions between

tubulin heterodimers

Breast
cancer,

lymphomas
Approved [161]

Vinblastine Lymphomas,
solid tumors Approved [161]

MDA-Colchicine-domain binder
Ombra-
bulin Interface of

α-/β-tubulin
Lead to microtubule depolymerization by decreasing

or inhibiting longitudinal interactions between
tubulin heterodimers

Ovarian
cancer

Stopped in
phase III [124]

ABT-751 Lung cancer,
colon cancer Phase II [128,129,162]

Protein kinase inhibitors

Alisertib AurA
Induce cell cycle arrest in G2/M phase, apoptosis,

and autophagy; prevents AurA-induced stabilization
of N-Myc

Leukemia, solid
tumors Phase III [134–141]

AurkinA AurA
Bind to the Tpx2-binding surface of AurA and
consequently displacing AurA from the mitotic

spindle
- Preclinical [146]

Barasertib AurB
Decrease histone phosphorylation resulting in

accumulation of aneuploidy cells and induction of
apoptosis; associated with stimulation of ROS

Leukemia, solid
tumors Phase II [142–145]

Volasertib Plk1 Arrests cells in the G2/M phase and subsequently
induces apoptosis Leukemia Phase III [147–149]
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Table 2. Cont.

Inhibitor Target Molecular/Therapeutic Effect Tumor
Entity

Investigation
Phase Ref.

CK1-specific inhibitors

IC261
Initially designed for

CK1;
tubulin

Binds to tubulin resulting in direct inhibition of
microtubule polymerization Pancreatic cancer Preclinical [37,46,154–

159]

D4476 CK1α/δ Inhibition of CK1α/δ activity; sensitizes colorectal
cancer cells to 5-fluorouracil Colorectal cancer Preclinical [163]

PF-670462 CK1δ/ε Selective inhibition of CK1δ/ε activity Leukemia Preclinical [164,165]

SR-3029 CK1δ/ε Inhibition of overexpressed CK1δ/ε Breast cancer,
skin tumor Preclinical [166,167]

IWP-2/IWP-
4 CK1δ Selective inhibition of CK1δ Pancreatic, colon

cancer cell lines Preclinical [168]

BTX-A51 CK1α/δ/ε; CDK7/9 Inhibition of CK1α and activation of p53-dependent
cell death; inhibition of CDK7/9 Leukemia Phase I [169]

Lenalidomide
CRL4CRBN E3

ubiquitin ligase;
indirectly CK1α

Induces ubiquitination and degradation of CK1α Leukemia Approved [170]

Umbralisib PI3Kδ; CK1ε
Block the phosphorylation of eukaryotic translation
initiation factor 4E binding protein (4E-BPI), leading
to the inhibition of c-Myc translation and cell death

Lymphoma Approved [171,172]

7.3. Combination of MTAs with Additional Anticancer Agents: Advantages of Dual-Specific
Inhibitors

The combination of MTAs with different anticancer agents, such as kinase inhibitors,
HDACs, or DNA-damaging agents, represents an attractive antitumor strategy of the
different mechanisms of action of the individual substances and the synergistic effects,
which, however, often suffered setbacks in the past due to drug–drug interactions, com-
plex application regimens, and poor patient compliance [173]. Inspired by the positive
synergistic effects of multitarget strategies, dual target approaches, in particular, have
been developed in recent years, largely overcoming the limitations of combination therapy
and significantly reducing drug resistance and adverse effects. Dual targeting drugs are
capable of interacting with two different drug targets. So far, numerous very effective syn-
ergistic dual inhibitors have been developed that interact with microtubule dynamics and
with either kinases, heat shock proteins (HSPs), poly(ADP-ribose)-polymerases (PARPs),
topoisomerases, HDACs, or estrogen receptors [174–178].

The development of highly potent dual-target drug inhibitors is most promising when
functional interactions exist between the two target proteins. Thus, it is quite conceivable
that the development of dual tubulin-CK1 (δ, ε, or α) inhibitors will produce significantly
better synergistic effects than the use of tubulin and CK1 isoform-specific inhibitors. This is
also supported by the fact that CK1 isoforms phosphorylate tubulin and MAPs are involved
in vesicle transport processes along microtubules, but are also associated with the mitotic
spindle apparatus, especially in cellular stress situations such as toxin exposure, mechanical
damage, environmental stress exposure [44] (reviewed in [42]).

7.4. Modulation of the CK1 Activity with Biologicals

Apart from CK1-specific SMIs, alternative therapeutic approaches such as therapeutic
peptides might be used to modulate microtubule-associated processes. By using a CK1δ-
derived peptide library, a CK1δ-derived peptide encompassing amino acids 361–375 of
CK1δ (P39) was identified as a prominent binding partner for α-tubulin. P39 inhibits
phosphorylation of α-tubulin by CK1δ and blocks cell cycle progression of cells entering
mitosis, finally leading to cell death [179]. In this context, identified peptides of a peptide
library based on human CK1δ and CK1ε were used to block the interaction of CK1δ/ε
with the DEAD-box RNA helicase DDX3X, which was shown to stimulate CK1 activity
and Wnt/β-catenin signaling [180]. Mutations of DDX3X, which have been identified
in medulloblastoma patients, increased the activity of CK1 in living cells, which led to
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aberrant stimulation of CK1-mediated pathways (such as Wnt/β-catenin signaling) [181].
The identified interacting CK1δ/ε-derived peptides were shown to block the activation of
CK1δ/ε by DDX3X (probably caused by the inhibition of the activating interaction between
both proteins) and inhibited the stimulation of CK1 activity in cell culture experiments [180].

The potential of interfering peptides was also shown by the modulation of the interac-
tion of AXIN1-CK1ε and the regulation of CK1ε-induced phosphorylation of disheveled
(DVL) and the activation of the Wnt/β-catenin signaling [182]. Furthermore, similar regula-
tory effects were shown for CK1α-derived peptides, which inhibit the interaction of CK1α
with MDM2 leading to reduced cell viability in a p53-dependent manner [183]. Biologicals,
such as these identified interaction-blocking peptides, could therefore represent promising
pharmacological tools for anticancer therapy.

8. Conclusions

The CK1 family of serine-threonine protein kinases has a major impact on multiple
cellular functions during embryogenesis and in the adult organism. Due to its role in the
regulation of tubulin dynamics by phosphorylation of multiple MAPs, the deregulation
of CK1 leads to human diseases, including cancer. Modulating the activity of CK1 as a
promising target against tumor progression could be an interesting therapeutic approach
for a multidrug treatment against tumor development. Therefore, the development of
CK1 (isoform)-specific inhibitors is essential and could offer an important contribution
to personalized medicine. However, the development of optimized CK1 isoform-specific
compounds available for in vivo application is still challenging and should include not
only the use of conventional SMIs but also dual-specific inhibitors and inhibitory peptides.
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