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Abstract

Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to
inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS)
neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of
inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to
CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability.
Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite
growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic
profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins
potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on
CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite
growth of CNS neurons.
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Introduction

Many animals have the ability to regenerate damaged neurons

after injury. Unfortunately, mature neurons in the mammalian

central nervous system (CNS) generally lack this ability [1]. Axonal

loss owing to spinal cord injury, traumatic brain injury, or

neurodegenerative disorders requires long distance axon growth

for functional recovery. However, due to intrinsic and extrinsic

factors that limit axon regeneration in the CNS, disability is

usually permanent. In contrast, peripheral nervous system (PNS)

neurons have the ability to regenerate their axons, and have been

observed to respond to regeneration-promoting manipulations in

the presence of inhibitory myelin and CSPGs even when CNS

neurons do not [2].

Intrinsic differences underlie the differing growth ability of

peripheral and central neurons. Davies et al. [3] showed that adult

dorsal root ganglion (DRG) neurons were able to grow long axons

across the myelin rich corpus callosum of adult animals. CNS

neurons transplanted under similar conditions failed to grow axons

[4] suggesting that differences between the neuronal cell types

determines their axons’ ability grow through regions containing

CNS myelin. Similarly, adult DRG neurons have been observed to

grow into sites rich in inhibitory CSPGs much more effectively

than CNS neurons [5].

Intrinsic factors also play a role in the inability of mature CNS

neurons to regenerate axons after injury. Raisman et al. [6]

showed that young (P6-8) entorhinal cortex explants could send

long axons into mature (P12-15) dentate gyrus explants. By

contrast, mature entorhinal cortex neurons were unable to grow

axons onto young dentate gyrus. Similar conclusions emerge from

studies of purified retinal ganglion cells (RGCs) cultured at low

density in isolation. Axons elongated quickly in RGCs from

embryonic (E21) rats but neurons from an animal just a few days

older (P2), were unable to elongate their axons [7]. High content

screens of genes differentially expressed during development have

identified the KLF family of transcription factors as important

regulators of axon growth, along with cytoskeletal components

such as doublecortin and doublecortin-like kinase [8,9]. Recently,

the genes for phosphatase and tensin homolog (PTEN) and

Suppressor of cytokine signaling 3 (SOCS3) were transgenically

deleted from RGCs. After optic nerve crush, these animals showed

extensive axonal regeneration by mature RGCs [10,11], without

any other manipulation. This strongly supports the idea that the

intrinsic state of CNS neurons plays a significant role in their

inability to regenerate axons.

Extrinsic factors also inhibit axon growth. After an insult to

the spinal cord, axons are often damaged, causing the proximal

portion to retract while the distal axon degenerates. Oligoden-
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drocytes that previously ensheathed the axons in the spinal

pathways also degenerate, releasing myelin debris into the injury

site. Inflammatory cells and astrocytes migrate to the injury site

and probably cause secondary damage [12]. Myelin components

derived from injured oligodendrocytes inhibit CNS axon re-

generation [13]. Unfortunately, knocking out several of the

molecules underlying that inhibition (or their receptors) has not

led to impressive recovery [14].

Another source of inhibitory molecules at the injury site is the

glial scar, formed by reactive astrocytes that express chondroitin

sulfate proteoglycans (CSPGs) and other inhibitory proteins [15].

CSPGs are highly inhibitory to neurite growth both in-vitro [16]

and in-vivo [17]. Downstream pathways mediating CSPG axon

growth inhibition in neurons are still poorly characterized,

although receptor protein tyrosine phosphatases [18], the EGF

receptor [19], and conventional PKC [2] have been implicated in

neuronal responses to these signals. Interestingly, a PKC inhibitor

(Gö6976), when applied in-vivo after spinal cord dorsal hemi-

section, induced robust regeneration of dorsal column axons across

the scar while the descending pathways of the corticospinal tract

failed to regenerate. Chondroitinase, which degrades most of the

glycosaminoglycan chains from the core CSPG protein, has also

been used to decrease the inhibitory nature of the scar. This has

achieved positive effects [20]. Thus both environmental and

neuron-intrinsic characteristics must be understood to successfully

promote regeneration of CNS axons.

One way to identify genes associated with increased re-

generative capacity is by overexpression of candidate cDNAs.

Candidate lists may be obtained by identifying genes differentially

expressed among neurons with differing regenerative abilities [21].

As previously reported, we employed a subtraction cDNA library

and microarray data to identify genes enriched in DRG (PNS)

neurons compared to CNS neurons [22]. Here we report the

testing of over 1100 genes preferentially expressed in PNS neurons

in an unbiased, high content screen to characterize the functional

effect of PNS gene overexpression in CNS neurons. In addition to

identifying individual candidate genes for subsequent study, we

have used this large data set to perform a systems-level analysis

aimed at uncovering novel gene clusters and signaling pathways

associated with axon growth.

Results

Identification of PNS Enriched Genes
We identified PNS enriched genes by subtractive hybridization

of two cDNA libraries: postnatal day 8 (P8) mouse DRG and P8

mouse cerebellum [22]. From 2,016 cDNA clones, we obtained

high quality sequence corresponding to 1,100 known genes (many

of which were sequenced more than once).

PNS enriched genes identified in the subtraction library were

initially validated two ways; by public microarray and quantitative

PCR (QPCR; Figure S1). The subtraction library was comple-

mented with an in silico subtraction of microarray data from laser

capture micro-dissected DRG neurons and whole cerebellum. The

combination of these data was used to construct the final list of

DRG enriched genes [22].

A large cDNA library from the Mammalian Genome Collection

[23] was queried for the presence of 1,381 genes in the final gene

list. 889 of the genes were found in the library. This set of

nonredundant genes was subjected to further analysis using the

Allen Brain Atlas [24], to confirm their low cerebellar expression

compared with other brain tissue (Figure S2). Because of the

existence of both human and mouse clones (and occasional variant

isoforms), we picked 1,300 clones representing these genes from

the MGC collection to generate a ‘‘DRG library’’ (Source Data

File).

Inhibitory Growth Assay
We hypothesized that DRG neurons selectively express

regeneration-associated genes, which if overexpressed in CNS

neurons could promote axon regeneration. We therefore tested

the neurite growth promoting ability of each PNS gene in

cerebellar granule neurons (CGNs). CGNs are widely used in the

study of neurite growth inhibition [25,26,27], and to this end we

developed an inhibitory growth assay. We challenged postnatal

mouse CGNs to grow on an inhibitory substrate, comparing their

neurite extension with control neurons grown on permissive

substrates. We initially developed a neurite outgrowth assay using

CNS myelin as an inhibitory substrate, which was used in a small

preliminary screen (Table S1). Because this proved difficult to

scale up for a full screen we used a mixture of chondroitin sulfate

proteoglycans and laminin (referred to as simply CSPGs) as the

inhibitory substrate and laminin alone as the permissive substrate

[28]. Postnatal CGNs exhibited a normal bipolar morphology on

laminin (Fig. 1B) and were strongly inhibited by CSPGs (Fig. 1A).

Principle component analysis and strictly standardized mean

difference (SSMD) analysis indicated that total neurite count and

length were the most reliable feature relating to neurite growth of

the dozen features reported by the Cellomics Neuronal Profiling

Bio-application. The total neurite length for each neuron was

reduced fivefold on CSPGs (p,10229, Mann-Whitney U test

[MWU]). The number of primary neurites and the percent of

neurons that initiated neurite growth were each reduced about

threefold on CSPGs compared to laminin (Fig. 1E). Growth

inhibition by CSPGs was present at all basal levels of neurite

outgrowth on laminin, which varied among experiments (Figure

S3). Intensity of tubulin staining and the area of the soma were

slightly but significantly increased on CSPGs (5% and 9%

respectively, Fig. 1E). Dead neurons were easily distinguished by

positive Hoechst signal with no accompanying tubulin positive

soma. This parameter (the ratio of neurons per nucleus) is

a rough measure of neuronal viability, and was increased slightly

in CSPGs compared to laminin (Fig. 1E). Thus, CSPGs robustly

inhibited neurite growth, reduced adhesion, and didn’t have

a strong effect on viability.

The negative control for neurite outgrowth was transfection of

mCherry [29] in the pSport CMV vector. The negative control

and experimental genes were all in the same vector (pSport 6.0)

with identical CMV promoters. For positive control, the pro-

regenerative PKC inhibitor Gö6976 [2] was added in addition to

the transfection of mCherry. For neurons growing on CSPGs

(Fig. 1F, white bars), Gö6976 was able to increase the total length

of the neurites by 70% and the percent of neurons initiating

neurite growth by 40% (p,1028 MWU), but had no effect on the

number of neurons counted (p = 0.79 MWU), or the neuron/

nucleus ratio (not shown, p = 0.18 MWU). Gö6976, as in [2],

relieved the inhibition of the neurite growth on CSPGs by about

20%, but did not restore neurons to their full laminin growth

potential. For laminin, neurite growth was also potentiated by

Gö6976 (Fig. 1F, black bars). Therefore, we have developed an

assay system in which postnatal mouse CGNs can be transfected

and examined for neurite growth on CSPGs. Robust inhibition of

neurite growth was observed on CSPGs and could be overcome by

Gö6976.

PNS Genes Induce Growth on Inhibitory Substrates
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Functional Evaluation of 1000 PNS Genes in Cerebellar
Neurons
From the list of differentially expressed genes (results of

subtractive hybridization and microarray), we found many

candidates for further study based on the literature. Details of

those genes are discussed by [22]. However, of the 927 non-

redundant genes, 9% had not been previously reported in

PubMed (except in mammalian genome papers), 50% were the

subject of twenty or fewer articles, and only 10% were mentioned

in a hundred or more papers (as of May 2009). Instead of pursuing

individual genes of interest based on the literature, we performed

an unbiased phenotypic screen, overexpressing each gene from the

DRG library in primary CGNs. We utilized High Content

Screening (HCS) to carefully analyze the phenotypes of every

accessible neuron in a treatment condition [30]. After quality

control, we obtained data from a total of 1,132 cDNA clones in

neurons from 348 different 96-well plates (,13,000 total wells).

4,626,954 individual neurons were automatically traced and

analyzed for over twenty different morphological parameters

(nuclear, cell body, neurite, population parameters). All treatments

were represented in three internal replicates, with an average of 899

individual neurons per gene (treatment) on CSPGs and 1,197

neurons per treatment on laminin across the three internal

replicate wells. Two experimental replicates for each gene were

performed with neurons from different mice on different days.

Although our goal was to identify genes that increase the neurite

growth of neurons on inhibitory substrates, the screen also allowed

for identification of a variety of other functional classes. Our assay

was able to detect both increases and decreases in neurite growth,

thus identifying activators and inhibitors. The use of two substrates

enabled the detection of environmental-specific effects and cell

health-related effects. Neurite initiation, a measure of the percent

of neurons in a treatment condition that grew neurites, was a good

measure of inhibition, since many neurons did not initiate growth

on the inhibitory substrate. In contrast to highly polarized

hippocampal neurons [30], which do not exhibit a strong

correlation between number of primary neurites and overall

neurite length, neurite parameters for CGNs in this study were

highly correlated and grouped together, suggesting that CGN

neurons and hippocampal neurons use different mechanisms to

regulate neurite growth (Figure S5).

As an overview, 154 of the 832 non-redundant genes that had

a significant effect on neurite initiation were arranged in a grid

with vectors indicating the magnitude and direction of effects on

CSPGs and laminin (Fig. 2A). The grid was constructed so that

genes were ordered according to the strength of their phenotype

(CSPG effects along the y-axis and laminin on the x-axis). The

positive control Gö6976 was near the upper right corner

(activating neurite initiation on both CSPG and laminin). 31

genes increased neurite initiation on CSPGs but not on laminin,

23 increased on laminin alone, 25 decreased on laminin and 45

decreased on CSPGs. A few genes perturbed growth on both

substrates, including 15 activators and 14 inhibitors. One gene,

WDR33, potentiated neurites on CSPGs and inhibited on

laminin. Images of neurite growth on CSPGs are shown for

neurons expressing WD repeat containing gene (WDR33, Fig 2B);

dihydrouridine synthase 3-like gene (DUS3L, Fig 2C), which

strongly inhibited neurite growth on both substrates; Septin 8

(SEPT8, Fig 2D), which increased growth on both substrates; and

Dynactin 2 (DCTN2, Fig 2E), which potentiated neurite initiation

on laminin while having little or no effect on CSPGs.

Other phenotypic changes in, for example, neurite length or the

number of neurite branches were also observed. Behaviors

Figure 1. Cerebellar granule neurons are robustly inhibited by CSPGs and partially rescued by Gö6976. Dissociated postnatal cerebellar
granule neurons (CGNs) were challenged in an inhibitory assay. A, B, representative images of CGNs transfected with control plasmid pSport mCherry
growing on CSPGs (A), and a permissive substrate, laminin (B). C,D, the addition of the PKC inhibitor Gö6976 partially relieved CSPG inhibition (C),
and potentiated laminin growth (D). E, Bar chart depicting ratios of seven parameters on CSPGs divided by laminin (with 95% confidence intervals).
Growth on CSPGs led to large decreases in neurite length, the number of primary neurites, and the percentage of cells with neurites. Tubulin intensity
and soma area were slightly increased. The neuron count was decreased on CSPGs, implying a deficiency in cell adhesion or survival. F, Percent
increase by Gö6976 was plotted with 95% confidence intervals on CSPGs (open bars), and on laminin (solid bars). Gö6976 had a strong positive effect
on neurons growing on CSPGs, especially for neurite length and the percentage of neurons growing neurites. Neuron count and viability was
unchanged. Statistics with un-normalized treatment averages, Mann-Whitney Test, *p,= 0.05, **p,= 0.01, ***p,= 0.0001. Scale bar 100 mm.
doi:10.1371/journal.pone.0038101.g001

PNS Genes Induce Growth on Inhibitory Substrates
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observed for some previously identified regeneration-associated-

genes are listed in Table S2. Several of these genes, including

BDNF, FGFR, and c-SRC, were able to overcome inhibition after

transfection. A few of the neural growth regulators displayed

inhibitory phenotypes; p21, MKP3, and Jun were the strongest

inhibitors.

We selected a set of 79 genes from the primary screen to study

in a secondary assay. Gene selection was based on ability to

perturb the following parameters: neurite initiation, neurite length,

neurite branching, neuron count, viability, and transfection rates,

in either a positive or negative direction (including some of the

genes listed in Figure 2A). The secondary screen challenged CGNs

transfected with one of the genes on CSPGs and laminin in four

experimental replicates. Sixteen of these genes had significant

effects for a specific neurite outgrowth parameter (Table S3),

a selection of which is depicted in Figure 3 compared to mCherry

control in neurons plated on CSPGs (Fig. 3A), or laminin (Fig. 3B).

The RNA binding motif protein, RBMX, was confirmed to

increase neurite initiation on laminin (Fig. 3D) but not on CSPGs

(Fig. 3C). On CSPGs, the extracellular peroxidase GPX3 allowed

neurons to overcome inhibition, with little effect on laminin

(Fig. 3E,F) both in transfected and non-transfected neurons. Since

non-transfected neurons were affected, it is possible that GPX3’s

action is extracellular. Interestingly, a translation factor implicated

in neural development, EIF2B5 (translation initiation factor 2B5),

also potentiated neurite growth on CSPGs. The genes SMAR-

CAL1 (SWI/SNF related, matrix associated, actin-dependent

regulator of chromatin), SDPR (serum deprivation response),

DUS3L (dihydrouridine synthase, see table), and to a lesser extent

ANXA2 (Annexin A2) and IGH-6 (LOC636126) inhibited growth

on laminin and/or CSPGs. Interestingly, two of the inhibitors,

EIF2B5 and DUS3L were highly expressed in the cerebellar

granular layer of adult mice (Fig. 3I, J). Cerebellar enriched genes

like these were expected to be present in the library at a rate of

about three percent (Figure S1), opposed to the others, which were

absent from the cerebellum and most of the CNS (Fig. 3G, H).

The confirmed observation of their inhibitory nature suggests they

may be targets to antagonize in order to enhance regeneration.

Overexpression of GPX3 Allows Hippocampal Neurons to
Overcome Inhibition by CSPGs
To extend the results of the screen to another CNS

population, primary embryonic hippocampal neurons were

transfected with several genes of interest in a CSPG neurite

outgrowth assay. First, CSPGs strongly inhibited hippocampal

neurite growth (Fig. 4A, four fold decrease, p,0.0001 MWU).

The positive control used for cerebellar neurons, Gö6976, was

unable to relieve CSPG inhibition for hippocampal neurons (data

Figure 2. Significant morphological changes after peripheral gene expression in CGNs. A, Vector grid of 154 genes from the screen,
measuring neurite initiation on CSPG (vector points upward if growth was increased, downward if decreased) and laminin (vector points rightward if
increased, leftward if decreased). Scale is the same for all genes and is indicated at the bottom corners (H6PD, DCTN2) and at the top right for the
positive control Gö6976 (reported in Z-scores). White arrows: genes that significantly perturbed neurite initiation on both substrates, gray arrows
significantly changed only on laminin, and black on CSPGs. Black dashed line separates CSPG effects between increase and decrease while gray
dashed lines separates laminin effects. B–E, representative images of neurons growing on CSPG (upper panels) and laminin substrates (lower panels).
Neurons expressing the gene WD repeat domain 33 (WDR33) had increased neurite initiation when grown on CSPGs but decreased neurite initiation
when grown on laminin (B), while DUS3L ‘‘dihydrouridine synthase 3-like’’ acted as the strongest inhibitor of neurite initiation on both substrates (C).
SEPT8 ‘‘Septin 8’’ increased neurite initiation on both substrates (D), and dynactin 2 (DCTN2) potentiated neurite initiation on laminin but not on
CSPGs (E). Scale bar 200 mm.
doi:10.1371/journal.pone.0038101.g002

PNS Genes Induce Growth on Inhibitory Substrates
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not shown). Interestingly, GPX3 significantly increased growth of

transfected and non-transfected neurons both on CSPG (KW

p=0.019, Dunn’s post p,0.05, Fig. 4B) and on laminin (KW

p,0.022 Dunn’s post p,0.05, Fig. 4C). Neurite outgrowth was

also enhanced after transfection with OGFRL1, EEF2K,

IVNS1ABP, and 2810452K22RIK. GPX3 significantly increased

the number of neurites, length, and frequency of initiation when

overexpressed in hippocampal neurons (Fig. 4D).

In addition to CSPGs, we showed that CGNs cultured on CHO

cells expressing the myelin protein Myelin Associated Glycopro-

tein (MAG), had shorter neurite lengths (Fig. 5B) than CGNs

growing on CHO cells expressing a control protein R2 (Fig. 5A).

When GPX3 (Fig. 5C), GPX7 or OGFLR1 were transfected into

the CGNs, they were able to overcome the growth inhibition of

MAG (Fig. 5D), to a similar level as a positive control, the ROCK

inhibitor Y-27632 (One-way ANOVA, Dunnett’s post hoc, n = 8).

Thus, although the plasmids for GPX3 and OGFRL1 were

identified in a screen using inhibitory CSPGs, they effectively

enhanced neurite growth on another CNS inhibitory substrate,

MAG.

Bioinformatics
Our primary screen resulted in quantitative functional data for

a wide range of parameters. We next asked the question ‘‘Do

groups of related genes, when considered together, produce

significant changes in neuronal morphology?’’ We assume that

further meaning emerges when these genes are studied as they are

in reality–in a system. To artificially reconstitute the ‘‘system’’, we

sought to interrogate clusters using the existing functional results

from the primary screen. This method [30] is the reverse of

a common practice that determines representation of ontologies in

a gene list compared to background [31]. We used the ‘‘molecular

function’’ ontology information to generate a hierarchical cluster

of genes. This analysis revealed that genes within some ontological

clusters had directionally consistent effects on neurite outgrowth

(e.g., RPS/RPL genes tended to promote axon growth; Fig. S4).

Figure 6 demonstrates the results with neurite average length for

neurons growing on CSPGs (Fig. 6A). A region of the ontology

space (Fig. 6B), which contains transcription factors, zinc and

DNA binding proteins, ion channels, and ubiquitin ligases is

shown in greater detail (Fig. 6C, D). This cluster heatmap shows

individual genes affecting neurite length (top tier) by color. Further

down the tier, genes grouped by molecular function (i.e.

transcription factor) can be seen to affect or not affect neurite

Figure 3. Active growth genes in cerebellar neurons and their expression pattern. A, B, Phenotypic results of overexpression in cerebellar
granule neurons (CGNs) confirmed by four replicates following the primary screen. Bars represent normalized values, centered on the neutral control,
mCherry. Three parameters: number of branches (gray), neurite total length (white) and primary neurite count (black), are reported for transfected
neurons (GFP positive). Significant results are indicated with asterisks (ANOVA). Genes had effects on CSPG (A), laminin (B), or both substrates.
mCherry transfection with Gö6976, the positive control, is plotted on the far right. C–F, Representative images of CGNs transfected with the gene
RBMX grown on CSPG (C) or laminin (D) substrates, or the peroxidase GPX3 grown on CSPGs (E) or laminin (F). G–J, Adult brain expression of four
clones with significant phenotypic changes. Data were analyzed from the Allen Brain Atlas (www.brain-map.org) to determine the expression
patterns and intensities of the active genes. In-situ hybridization demonstrated little mRNA expression for GPX3 (G), and RMBX (H), each of which
promotes neurite growth. EIF2B5 (I), which also promoted growth had some expression throughout the brain, especially in CA1 and the dentate
gyrus. Two of the inhibitory genes, SMARCAL1 (not shown) and DUS3L (J) had strong expression in the granule layer of the cerebellum. Expression
intensity legend on the far right. Scale bar in C–E 200 mm. Scale bar in G–J 1 mm.
doi:10.1371/journal.pone.0038101.g003
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length on CSPGs. Neurite length was effectively inhibited by

a small group of potassium gated channels, as well as two ubiquitin

ligases (Fig. 6D). It is important to note that the estimated false

discovery rate for the overall screen, based on # of primary

neurites, was 24% (Methods S1) and therefore this particular

analysis is likely to contain some artifacts. Most of the noise was

due to variations in experimental sets from different mice and

different days. Higher numbers of controls on each plate would

likely reduce FDR [32].

We compiled the significant results from various parameters

(Fig. 6E) on CSPGs and laminin. Proteases (PRSS8, PRSS12),

protease inhibitors (SERPINF1, PEBP1), and ubiquitin ligases had

inhibitory effects on neurons growing on CSPGs. Two dynein

genes (DNAL1, DNALC4) inhibited laminin neurite outgrowth,

Figure 4. Hippocampal neurons are inhibited by CSPGs, and rescued by GPX3 overexpression. Hippocampal neurons transfected with
active genes were plated on CSPG or laminin substrates. A, CSPGs (white) strongly inhibited hippocampal growth compared to laminin (black)
(p,0.0001, Mann Whitney U Test) in three independent experiments (triangle, square, and circle markers). Horizontal bar indicates the average
neurite total length on CSPGs and laminin, 15.5 mm and 60.9 mm respectively. B,C Mean Z-Scores of transfected neurons with standard deviations,
centered on the negative control, mCherry. Asterisks indicate significant effects (*, **, ***, p,0.05, 0.01, 0.001 Tukey-Kramer) compared to the
mCherry control when analyzed with ANOVA (p,0.001). D, E, Representative images of hippocampal neurons growing on CSPGs transfected with
GPX3 (D) or control mCherry (E). Scale bar 100 mm.
doi:10.1371/journal.pone.0038101.g004

PNS Genes Induce Growth on Inhibitory Substrates
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while the chloride channels TTYH1 and CLC7N potentiated

neurite growth on both substrates.

Discussion

Adult mammalian CNS neurons have a poor axon regeneration

response after injury, while peripheral neurons in the proper

context effectively elongate axons and make functional connec-

tions [33]. To determine whether specific PNS genes could

improve the regenerative ability of CNS neurons, we took

advantage of a sensitive technique known as subtractive hybrid-

ization to generate a cDNA library enriched in PNS genes. By

combining this library with publically available microarray data,

we generated a list of approximately 1300 DRG enriched genes.

Many of these genes have already been identified as regeneration

associated genes, including BCL2, BDNF, Cofilin, FGFR1,

Galanin, Integrin alpha 3, Jak1, LIFR, LIMK, MMP9, SPP1,

p21, p35, retinoic acid receptor, Socs6, Stat3 and TNFR. Rather

than focus our experiments on those putative regeneration targets,

however, we took an unbiased approach. Using high content

screening techniques, we assayed neuronal phenotypes after a gain-

of-function screen of over 1100 genes in CNS neurons on both

permissive (laminin) and inhibitory (CSPG) substrates.

Many genes were observed to perturb neurite initiation,

elongation, or branching, or parameters of nuclear or cell body

morphology. Few of the genes with significant effects were active

on both laminin and CSPG substrates. Several known growth-

associated-genes were tested, and only a few were able to

overcome CSPG inhibition after transfection (BDNF, FGFR, c-

SRC), while other genes (p21, MKP3, Jun) displayed inhibitory

phenotypes. The genes that had the strongest neurite promoting

effects from the primary screen were not known as regeneration-

associated genes. For example, GPX3, EIF2B5, and RBMX

reliably promoted neurite growth on CSPGs (GPX3 and EIF2B5)

or on laminin (RBMX). Finally, a bioinformatics analysis using

hierarchical clustering of gene ontologies for the PNS enriched

genes revealed potential targets for future study, including

proteases/protease inhibitors, chloride channels, and ubiquitin

Figure 5. GPX3 and GPX7 significantly increase neurite length of postnatal CGNs plated on the inhibitory MAG substrate. Postnatal
day 8 rat CGNs were co-transfected with the pmaxGFP plasmid (green) and the pCMVSPORT6 plasmid expressing either GPX3, GPX7, OGFLR1 or the
control gene mCherry and plated onto a feeder layer of CHO cells expressing a non-inhibitory construct (R2), or the CNS myelin component, MAG. A.
CGNs growing on CHO-R2 transfected with GFP and mCherry. B. CHO-MAG strongly inhibited the neurite outgrowth of CGNs transfected with GFP
and mCherry. C. CGN neurite outgrowth is partially rescued when transfected with GPX3. D. Data are plotted as mean +/2 SEM of 8 experiments,
(One-way ANOVA, Dunnett’s post hoc, *p,0.05, ***p,0.001). Red channel marks b-tubulin positive neurons, green channel represents GFP
expression, transfected neurons therefore appear yellow.
doi:10.1371/journal.pone.0038101.g005
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ligases. Below we will briefly discuss some of the important points

and issues raised by this study.

Gene Identification
Many techniques can determine gene expression in specific

populations of cells, including microarray, differential PCR

display, 2D protein gels, serial analysis of gene expression (SAGE),

subtractive hybridization of cDNA libraries, and now next

generation sequencing. Microarrays can be done quickly and are

reliable for clones that are expressed in high copy number.

Subtractive hybridization of cDNA libraries is more laborious but

allows the identification of novel genes and genes expressed at low

copy number (intermediate and complex classes) [34].

High Content Screening
High content screening (HCS) attempts to address the problems

in normal high throughput drug screens in which ‘‘hits’’ fail after

significant effort due to lack of knowledge that could have been

acquired early on [35]. To obtain reliable results using HCS, large

numbers of cells (typically .300) need to be analyzed for each

condition. With phenotypes involving neurite lengths, branching,

etc; imaging large numbers of cells presents a problem. Higher

plating densities of neurons result in higher failure rates for the

automated tracing algorithm, since the software (or human

observer) is unable to tell which neurite emanated from which

cell body. This consideration forced us to reduce plating density so

that the tracing was of high quality, but the analysis occasionally

suffered in power.

Data Analysis
We asked the following question of the data, ‘‘did gene J have

an effect on parameter K in some direction L, for population of

neurons M, and in context N.’’ This relatively simple statement

results in a system with 5 dimensions. Since there are over 1000

Figure 6. Identifying Gene Ontology Clusters that Regulate Axon Outgrowth. Tiled cluster analysis from Fig 6 run for Gene Ontology
‘‘Molecular Function’’ annotations on 675 genes. A, Cluster heat map for the parameter neurite average length on CSPGs. 7 Tiers shown, with clusters
per tier from 42 (bottom, largest clusters with most divergent genes) to 479 clusters per tier (top, smallest clusters with most closely related genes). B,
Region of magnification. C, Dendrogram of 96 genes for region from (B). Four ontologies define the large classes of genes in this region (although
hundreds of ontologies are present). D, Cluster heat map magnified from (B). Individual gene clusters are defined by tiles where extent of change is
color coded (white = control, red = reduction, green = positive). Legend in lower left corner. Single black square p,0.05, double p,0.01,
(uncorrected bootstrap). E, Summary table of significant gene clusters from analysis of neurite average length, branching, primary neurite count, and
an absolute analysis of neurite average length (see methods). Outlines around tiles indicate higher significance.
doi:10.1371/journal.pone.0038101.g006
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genes, 12 parameters (in data for figures and figure S1 of [30]), 2

directions, at least four populations (transfected +/2, growing

neurites +/), and at least 2 contexts (CSPG/laminin), the

complexity of this analysis is high. Ideally, we would have liked

to separate each of these parameters, so that effects could be read

out with high specificity. However, as the data were further

subdivided, fewer individual cells were available for analysis. A

tradeoff can be made between the dimensional depth of the

analysis and the reliability gained by noise reduction when pooling

by including/excluding transfected+/2 or neurite+/2.

Two problems that had to be solved for data analysis were (1)

transforming cell level data into treatment level data and (2) data

comparison across experiments. Within one experimental replicate

of a treatment, three replicate wells and ,900 cells were present.

The distribution of the values varied depending on the parameter.

For example, soma area was the most normal, nuclear intensity

was bimodal, neurite count was discrete exponential, and neurite

length was the most complicated (similar to exponential distribu-

tion). When the cell numbers were high, the mean of the pooled

values for all the cells in three wells was repeatable. Other

approaches, such as Kolmogorov Smirnov tests [36] were

attempted, but were somewhat noisier than the mean. The second

issue, comparison of data from one experiment to the next, was

addressed using normalization. Z-scores are centered (z = 0) on the

control population’s mean and its units are that of the control

population’s standard deviation. The control population could in

principle either be a negative control treatment, or some subset of

the entire population. Because we could not establish, a priori,

a treatment that was neutral with respect to multiple parameters,

we pooled all of the experimental genes on a plate as the control

population for normalization. This resulted in a symmetric Z-score

distribution with a mode near 0.

Gain vs. Loss of Function
In this study, we used overexpression to characterize the effects

of specific gene products on neurite outgrowth. However, it is

equally likely that neurite outgrowth could be enhanced by the

reduction of specific mRNA populations. RNA interference

(RNAi) is a common strategy often used to knock down particular

genes. The main advantage of the RNAi technique is that a gene

loss is likely to access the endogenous function of that gene.

However, this also has several disadvantages: knockdown is

variable at the protein level, genes often function in redundant

groups, essential genes are difficult to knockdown, and RNAi has

substantial off-target effects [37].

Gain of function, on the other hand, has several advantages. It is

unlikely to kill cells since it is limited by endogenous regulatory

mechanisms. Redundancies leading to a silent knock-down

phenotype are overcome by overexpression. One potential

disadvantage is that unnatural phenotypes might result. For

example, overexpression of enzymes (such as kinases) could

increase binding of improper substrates, or certain isoforms might

act as dominant negatives when overexpressed. As with loss of

function, gain of function is sensitive to negative feedback

triggered by expression changes and pathway crosstalk.

Known Neuronal Growth Regulators
Regeneration associated genes have been identified by many

groups. We compiled a list of genes from the literature pertaining

to neurite growth. Thirty-seven of the known regulators of neurite

growth were identified by us as DRG-enriched genes and assayed

for neurite growth on laminin and CSPGs (Table S2). A few of

these genes are worth noting. p21, the CDK regulatory gene

(CDKN2A) has been previously reported to be downstream of

NGF in PC12 cell differentiation [38]. In our study, over-

expression of p21 in neurons strongly inhibited their outgrowth on

both laminin and CSPGs. BDNF, when overexpressed in

cerebellar neurons, enhanced growth, branching and primary

neurites for neurons growing on CSPGs. BDNF is classically an

extracellular signaling molecule, although its expression in de-

veloping neurons has led to speculation about intracellular

mechanisms of action [39]. The dual specificity phosphatase

MKP3 (DUSP6) has been implicated in neuritogenesis in PC12

cells [40], and was inhibitory on both substrates when over-

expressed in neurons. It is not clear why DUSP6 (and others) were

strong inhibitors in our assay, but it may be due to the lack of

activators or other signaling pathway members in the cerebellar

neurons.

The transcription factor c-Jun also mediated inhibition on both

substrates, and has been indicated in both cell death and

regeneration [41,42]. Although the PDGF receptor beta subunit

(PDGFRB) was observed to potentiate neurite growth on CSPGs

in the primary screen, that effect was not significant on CSPG in

the secondary screen. RelA and c-Src [43,44] were both observed

to potentiate growth in our screen.

Novel Neuronal Growth Regulators
After extensive primary and secondary screens, several novel

genes were identified based on their abilities to modify neurite

outgrowth on inhibitory and/or permissive substrates. Examples

are discussed below.

GPX3. Glutathione Peroxidase 3 (GPX3) is part of a family of

selenium containing antioxidant enzymes that work to maintain

the oxidative homeostasis and protect the cell from oxidative

stress. The GPX family can convert hydrogen peroxide to water

and neutralize lipid peroxides, thereby preventing them from

forming aggressive free radicals. Consistent with this, cellular

glutathione peroxidase, GPX1 has been implicated as having

a critical neuroprotective role in many brain disease and injury

models, including Parkinson’s disease, dementia [45] and ischemia

[46].

GPX3 is known as plasma glutathione peroxidase and has not

been investigated in the context of brain disease and injury. One

hypothesis for GPX3’s action is a neuroprotective effect, consistent

with its effect on both transfected and un-transfected neurons.

Considering GPX3’s similar effects in both cerebellar and

hippocampal neurons on CPSGs, it is likely that its effects are

linked with overcoming inhibition. It is plausible that GPX3 is

sequestering sources of free radicals in the extracellular space,

leading to a global increase in cell viability in the entire culture

well. This effect would also be desirable in a spinal cord injury

model: by decreasing the oxidative stress of the neurons in

a combination paradigm, neurons may be more responsive to

regenerative therapeutics. It is becoming clear that the oxidation

state of proteins may be involved in signaling, and not just cellular

stress [47]. The mechanism of GPX3 action still needs to be

elucidated.

RBMX. RBMX is an RNA binding motif protein on the X-

chromosome. It is involved in pre mRNA splicing, transcriptional

regulation [48], and in particular plays a role in xenopus and

zebrafish neural development. A screen in Xenopus identified many

important RNA binding proteins, and after knocking down

RBMX, the authors determined that it is necessary for anterior

neural plate patterning, neurogenesis, and neural crest develop-

ment [49]. Knockdown of RBMX in zebrafish led to small heads,

defective eyes, and loss of specific markers for the fore- and

hindbrain [50]. RBMX may regulate expression of growth
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associated proteins specific to peripheral gene development (neural

crest), which are normally not well expressed in CNS neurons.

EIF2B5. EIF2B5 is one of 5 subunits of EIF2B, a guanine

nucleotide exchange factor (GEF) that activates eukaryotic trans-

lation initiation factor 2 (EIF2). In PC12 cells, induction of neural

differentiation with NGF or EGF activates protein synthesis and

leads to phosphorylation of EIF2B by GSK3B and casein kinase II

[51]. Thus, EIF2B could be a new downstream target of GSK3B

that is important for process outgrowth. In our screen, EIF2B5

overexpression increased neurite length and branching, especially

on CSPGs. Upregulation of protein translation is likely to be

critical for effective axonal regeneration [52].

DUS3L. This gene encodes a relative of the dihydrouridine

synthases, which catalyze the formation of dihydrouridine,

a modified base found in the D-loops of many tRNAs. DUS3L

contains two zinc finger domains [53], but its function is currently

unknown. It was one of the strongest neurite growth inhibitors in

our screen. Interestingly, it has very high expression in the brain,

and specifically in the granule cell layer of the cerebellum (Fig. 3J).

This gene was then probably mistakenly picked as differentially

expressed. Further experiments are required to understand its

mechanism of action.

Gene Families
We used novel techniques in bioinformatics to determine if

families of particular genes had significant effects based on the

activities of the family members. This technique was designed to

identify particular genes and gene classes as targets of future

investigation. Gene ontology classes were used to link related

genes, since little pathway information was available for them.

Two serine proteases (PRSS8, 12) as well as two serine protease

inhibitors (SERPINF1, PEBP1) were found to further inhibit

growth on CSPG substrates. The protease inhibitor PEDF

(SERPINF1), has been identified as a neurotrophic factor, and

seems to be involved in apoptosis inhibition of mouse cerebellar

neurons. Interestingly, it protects young, but not old cerebellar

neurons [54]. It is yet to be explored whether peripheral and

central neurons might also be differentially protected. One of the

proteases, PRSS12, known as neurotrypsin, is preferentially

expressed in motor neurons, upregulated during recovery from

facial nerve axotomy [55], and is involved in synaptic plasticity

and dendritic remodeling [56,57]. Its close relative PRSS8 was

also inhibitory in our assay.

As mentioned above, the initiation factor EIF2B5 was

confirmed to overcome inhibition when overexpressed in cerebel-

lar neurons. The elongation factor EEF2K and several of the

ribosomal subunits (RPS15, RPS19, RPL41, and RPL10) also

potentiated growth on CSPGs. Evidence from Christine Holt’s

group supports local axonal translation [58] As axons traverse

tissue to find their ultimate target, various cues change the

direction and the expression of surface receptors on the growth

cone, requiring instantaneous changes in translation [59]. Specif-

ically, we now know that guidance machinery like the netrin

receptor (DCC) is part of a protein translation complex that can be

controlled through receptor ligation [60]. Others have shown the

importance of translation in terms of mTOR [52]. EIF5A (not

screened), has been shown to be involved in neuronal growth and

survival in brain cultures [61], and yet another, EIF4E, was

identified as being phosphorylated downstream of Ras during

PC12 cell differentiation [62]. The required regulation of trans-

lation could be deficient in injured central neurons.

Protein degradation is a critical way in which neurons regulate

the behaviors of their axons and dendrites. The ubiquitin protease

system uses a set of enzymes to identify, tag and degrade specific

proteins through the proteasome. E2 ubiquitin conjugating

enzymes, including UBE2G2, UBE2D2, UBE2R2, UBE2S were

identified as a group for allowing CGNs to increase the number of

primary neurites and average length when grown on CSPGs

(Figure 6E). These enzymes carry ubiquitin, but aren’t considered

to be target specific. This finding implicates the ubiquitin

proteasome system or autophagy in the sensitivity of neurons to

CSPGs. E3 ubiquitin ligases are of particular interest, since they

confer substrate specificity by bringing the substrate and the E2

within range. In this screen WWP2, SMURF1, and UBR5 all had

negative impact on neurite parameters on CSPGs. WWP2 is

a Nedd4-like E3 ligase and is particularly interesting considering

the recent findings that Nedd4 regulates PTEN, which in turn

directly regulates PI3K and axon branching [63]. Nedd4 has also

been shown to target neuronal elongation through Rap2a [64].

WWP2 may function similar to Nedd4 in CGNs. SMURF1

(SMAD specific E3 ubiquitin protein ligase 1) was previously

identified to have a direct role in neurite elongation through its

degradation of RhoA [65]. A third PNS E3 ligase in the group,

UBR5 (ubiquitin protein ligase E3 component n-recognin 5), has

yet to be studied in neurons.

In other families we identified just two members as having

a significant effect. These included two chloride channels

(TTYH1, CLCN7), which increased growth on CSPG and on

laminin, and two subunits of dynein (DNALI1, DNALC4), which

decreased growth on CSPG. Dynein mutations have been shown

to result in severe degeneration of motor neurons [66], and the

effect seen here may be due to a similar cargo/transport deficit

caused by overexpression of just one of the subunits at a time.

Conclusion
The regenerative ability of CNS neurons may be improved by

forcing expression of genes normally expressed by PNS neurons.

Ours is the initial study to combine the powerful techniques of

subtractive hybridization and high content screening in primary

neurons to test this idea. CNS neurons were directly manipulated

with exogenous PNS gene expression, and assayed for their ability

to send out processes on CSPGs – the most potent known

inhibitory substrate associated with CNS injury. Known re-

generation associated genes (BDNF, p21, Jun, RelA, c-Src)

modified the neurite growth of CNS neurons after their over-

expression. Novel genes GPX3, and EIF2B5 were confirmed to

relieve the inhibition of neurite growth on CSPGs for cerebellar

neurons. Importantly, GPX family members also relieved in-

hibition on a well-established myelin inhibitor (MAG), as well as

CSPG inhibition in hippocampal neurons. By clustering genes

using GO terms we found that several gene families, such as

regulators of transcription and ubiquitin pathways, may underlie

key intrinsic differences between PNS and CNS neurons that

account for their different regenerative potentials.

Methods

All procedures using animals were approved by the University

of Miami Animal Care and Use Committee.

Molecular Biology
cDNA library construction. The cDNA library construction

and preparation was detailed elsewhere (Smith et al., 2011).

Briefly, C57/Bl6j postnatal mice were anesthetized and de-

capitated. DRG neurons were dissociated (see below), and whole

cerebella were gathered. DRG were collected from culture after 48

hours, and then homogenized in Trizol reagent (Invitrogen,

Carlsbad, California, 15596). Cerebella were placed directly in
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Trizol and homogenized. Total RNA was extracted, and pro-

teinase K (Roche, Mannheim Germany, 03-115) was added to

remove all RNase. Poly-(A)+ mRNA was purified from the total

RNA by Oligotex mRNA kit (Qiagen) with two rounds of

selection. Invitrogen’s SuperScript Choice System for cDNA

synthesis was followed by poly-T primers, and clones were blunt-

end ligated into a phage vector. DRG cDNA was separated into

three size fractions prior to vector ligation by gel and AgarACE

digestion (Promega). Lambda vector was Lambda Zap-CMV XR

(Stratagene). Packaging was done with Gigapack III Gold

Packaging extracts (Stratagene), then titered, in vivo amplified,

and stored. Mass excision of the resident phagemid resulted in

a pCMV-Script EX mammalian-expression plasmid library.

Subtraction library. Details of the subtraction and sequenc-

ing are described in [22], and are based on [34]. Purified DRG

library plasmid was converted to single stranded plasmid by Gene

II enzyme (Invitrogen 10356-020) and Exo III. Cerebellum

(driver) library was amplified by PCR using T3 and T7 primers.

100 ng of DRG tester single stranded circles were hybridized with

2.5 mg PCR product at 30uC for 88 hours. Blocking oligos were

used to keep common sequences from hybridizing. The mixture

was then run through a Hydroxyapetite (HAP) column which

bound to partially double stranded, but not the un-hybridized

single stranded DNA. Recovered single stranded plasmids were

desalted and concentrated. PCR was used to extend the T3

primer, generating partially double stranded plasmid, which was

transfected into DH10B electro-competent bacteria. To reduce the

redundancy of the subtraction library, the first ,800 sequenced

clones were used to generate a new driver pool, and were serially

subtracted from the starting subtraction library, allowing the less

abundant clones (the complex class) to be sequenced.

Sequencing. Glycerol stocks in 1.5 tubes from the subtraction

library were stabbed and spread across 100 mm Petri dishes with

LB agar containing 50 mg/ml kanamycin, then grown overnight at

37uC. Individual clones were picked and inoculated into one well

of a 96-well deep well block (Qiagen), which was prefilled with

1.4 ml 2xyT. Plates were grown in 37uC, shaking at 310 RPM for

14–20 hours. Glycerol stocks were derived from 50 ml of the

bacterial culture, combined with 50 ml of 2xYT media and 20%

glycerol. Glycerol stock plates were grown in a 37uC incubator for

1 hour, and then stored in a 280uC freezer. Plasmid DNA was

prepared from the bacterial cultures using a Qiagen BioRobot (see

cDNA Plasmid Purification) and resuspended in warm elution

buffer. Four of the 96 clones were quantified with a cuvette

spectrophotometer (Eppendorf), which showed an average

300 ng/ml concentration. Applied Biosystem’s BigDye Terminator

(v3.1, 4337455) kit was used for sequencing, according to the

manufacturer’s instructions. Briefly, sequencing master mix was

made, for each reaction, consisting of: 8 ml of 12.5% glycerol, 4 ml
5x sequencing buffer, 1.5 ml of 1 mM T3 Primer (59 end vector),

and 1 ml of Big Dye component. 150 ng of template was added in

5.5 ml water. Reactions were made up in semi skirt 96-well PCR

plates (GeneMate), sealed and placed in an MJ Research PTC-200

thermo-cycler with the program: 1 = 96uC 5 m 2=96uC 15s

3= 53uC 5s 4= 60uC 4 m 5= Goto 2, 34 times 6 = Hold at 4–

10u. After the sequencing reactions were completed, we pre-

cipitated them with a buffer consisting of 35 ml absolute ethanol,

15 ml molecular quality water, and 10 ml of 1 M MgSO4. 75 ml of
the precipitation buffer was added to each well of the sequencing

reaction in the PCR plate. We placed the plates in the dark at

room temperature for 15 minutes, followed by thorough vortexing

and centrifugation at 2600 x g for 15 minutes at 4uC. Next we

carefully folded paper towels, 2 cm thick, and placed them on top

of the un-sealed, un-covered PCR plate. Plates were inverted onto

the paper towels to pour out all of the liquid, and placed upside

down in the centrifuge. The plates were then spun at 200 x g for 1

minute at 4uC. The PCR plates were then sealed and shipped to

the W.M. Keck Center at the University of Illinois for sequencing.

Raw sequence data and Phred scores were uploaded from the

facility, and analyzed by EST Express (Smith et al., 2011), which

returned UniGene and Entrez Gene identifiers for each genes on

the plate. The sequencing of 2,016 clones had a failure rate of 6%

bad sequence reads, and 10% vector only clones.

Microarray. Microarray technique and analysis is described

in detail elsewhere [22]. Briefly, data from laser capture micro-

dissected DRG neurons was provided by Peeters [67]. Cerebellar

DNA was obtained from three P11 mice. Affymetrix Murine

Genome U74AV2 chips were used and samples were normalized

using the Robust Multi-Array average by RMA Express (http://

rmaexpress.bmbolstad.com, [68]). Normalized intensities were

pooled in Spotfire DecisionSite (TIBCO Software Inc., Palo Alto

CA) and mean DRG/Cerebellum ratios were calculated.

Q-PCR validation. To validate the reduction of cerebellar

genes by the subtraction, quantitative PCR (Q-PCR, reverse

transcription followed by real-time PCR) was used. The test

population was 6 genes sequenced more than once, 12 random

genes picked from the subtraction library that were called absent

in both samples by microarray, and 8 genes of interest. DRG

neurons were prepared as below (DRG Preparation), images were

taken to confirm viability of the neurons. Whole cerebella were

extracted from P8 mice and homogenized. Trizol reagent was

used to isolate total RNA from the DRG neurons and whole

cerebella. 100 ml of 60 ng/ml RNA was purified with 260/

280=2.1 and 260/230= 0.89 (by Nanodrop spectrophotometer,

Thermo Fisher) after RNeasy (with superasin) kit. Reverse

transcription was done with Invitrogen Superscript kit (18064-

022) using random primers. PCR primers were designed using

primer-3 (http://frodo.wi.mit.edu/), and several were ordered for

each test gene. Primers were tested in a gradient cycle, and the

optimal annealing temperature was determined. 38 cycles of Q-

PCR were run on an Eppendorf Mastercycler ep realplex

(Hamburg, Germany), using Epicentre master mix (TAQurate

GREEN Real-Time PCR MasterMix, TM046400).

Allen brain atlas validation. Allen brain atlas [24,69] has

catalogued the expression of genes, genome-wide for the entire

adult mouse brain. In addition, they have established a ‘‘neuroin-

formatics’’ pipeline [70] to carefully analyze and store the data.

Their in-situ hybridization was cross-validated to both BGEM

(http://www.stjudebgem.org/web/mainPage/mainPage.php) and

other data [71]. The images shown in Figure 3 are ‘‘expression-

mask’’ images from sagittal sections of the antisense ribo-probe,

taken ,2.5 mm lateral of the midline. For the supplemental

figure, average density readings extracted for each brain region

were compared from cerebellum to the other brain regions to

produce a ratio. For the genes in the screened library, expression

ratio comparing most other brain tissue to the cerebellum showed

a cerebellar reduction (consistent with the design of the library).

To ensure that the expression map wasn’t biased in this direction

to begin with, a random set of 1000 genes was used as background

and ANOVA with Dunn post-tests were performed.

Full length plasmid cDNA library. A cDNA library in

glycerol stock from the NIH Mammalian Genome Collection [23]

in 96-well format was purchased from Open Biosystems (Thermo-

Fisher. Huntsville, Alabama) with .16,000 clones from human

(IRAT) and mouse (IRAV). The library was replicated and both

the original and daughter plates were stored in 280 degree

freezers, as previously described in (Buchser et al., 2010). A custom

program written in Excel VBA took gene lists and generated
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a protocol for the Qiagen BioRobot-3000 (Germantown, Mary-

land). This instrument then picked clones from the glycerol stock

plates into the ‘‘screened library’’, which totaled 16 x 96-well

plates. During the cherry-picking process, a set of 10–12 plates

were thawed, wiped, un-capped, and the foil cover carefully

removed. Disposable tips were used to automatically inoculate

cultures in 96-well blocks. During the process, glycerol stocks for

mCherry [72] were also picked and inoculated into specified

control wells on the plate. Other wells were left empty, to facilitate

non-transfected controls and to allow other clones to be tested. In

addition, the empty wells provided a visual confirmation that no

cross-contamination occurred during the process.

Plasmid preparation. QIAprep 96 Turbo BioRobot Kit

(Qiagen 962141) was used to produce transfection quality plasmid.

Briefly, two deep well blocks from the kit were filled with 1.4 ml

Terrific Broth (Invitrogen 22711) and 150 mg/ml ampicillin

(Invitrogen 11593) in each well. Thawed glycerol stock plates

were inoculated into fresh media with a 96-pin replicator tool

(Nalge Nunc 250520. Rochester, NY). Plates were incubated for

20–24 hours 37uC, shaking at 300 RPM. The plates were spun

down serially such that the pellets were overlaid and concentrated.

The pellets were resuspended in P1, and the manufacturer’s

instructions were followed. Elution was performed at room

temperature, with 110 ml of endotoxin free water.

Plasmid was generally purified at ,300 ng/ml with an average

260/280 ratio of 1.8. Plasmid concentration was analyzed with

NanoDrop spectrophotometer (Thermo Fisher. Wilmington,

Delaware). Agarose gels were run on several complete plates,

revealing expected bands and little degradation (data not shown).

Before transfection, the concentration was standardized across

a plasmid plate by adding endotoxin free water to bring all clones

with high concentrations down to 300 ng/ml. Clones with

concentrations below 225 ng/ml were not included in the analysis.

Cell Culture
Cerebellar culture. Homogenous postnatal day 8–10 C57/

Bl6j mouse cerebellar granule cell cultures were prepared as

previously described [22]. Briefly, cerebella were harvested and

minced with a new razor blade. The dissociation buffer used in all

steps was room temperature Hibernate media (BrainBits, HE-Ca

500. Springfield, Illinois). The cerebellar pieces were incubated in

0.05% Trypsin-EDTA (Invitrogen 25300) for 15 minutes in a 37uC
water bath, without swirling. The trypsin was inactivated by

adding horse serum to 10% and diluted with Hibernate. The cells

were triturated sequentially with large and small-bore flame-

polished glass pipettes in the presence of 0.5 mg/ml DNase I

(Sigma D5025). The cells were spun and resuspended in Hibernate

for counting. Centrifugation steps were room temperature 80 x g

for 7 minutes. Solutions and cells were kept at room temperature

throughout the procedure. Preparations yield .90% cerebellar

granule neurons.

DRG preparation. Postnatal C57/Bl6j mice were eutha-

nized, decapitated, and placed on ice. The cerebellum and/or

brain was dissected and placed in cold hibernate for other cultures.

Vertebral columns were removed and cleaned in L15 media

(Invitrogen, 11415) in a dish resting on ice. The vertebral column

was bisected medially with a fresh razor blade, and the halves were

stored in fresh Hibernate. The hemi-spinal cord was removed, and

individual DRGs were pulled from the intervertebral foramen

using forceps and placed into a small dish with 2.4 U/ml Dispase,

1,000 U/ml Collagenase, and 0.05% Trypsin-EDTA (Invitrogen

25300). DRGs were incubated at 37uC for 45 minutes, and lightly

swirled every 15 minutes until enzyme inhibition by fetal bovine

serum (FBS Invitrogen 16000). DRGs were triturated in the

presence of 0.5 mg/ml DNase I (Sigma D5025), rinsed with L15

or hibernate media, resuspended in a small volume of L15 media,

and counted.

Hippocampal culture. Embryonic hippocampal cultures

were prepared as described previously [30]. Briefly, adult mothers,

pregnant with E18 Sprague-Daley rats, were euthanized and the

embryos were dissected in fresh Hibernate media supplemented

with B27 (Invitrogen 11602). Isolated Hippocampii were trans-

ferred to Hibernate media without B27 and incubated for 15 min

at 37uC with 0.05% Trypsin (Invitrogen 25300), in the presence of

DNase I at final concentration of 0.5 mg/ml (Sigma D5025). The

tissue was then washed 5 times with the Hibernate media

supplemented with B27 and triturated until no clumps were

visible (about 5–10 times). Dissociated neurons were counted and

used for transfection during the next 2 hours.

CHO-MAG. The CHO cell lines were established by stable

transfection of CHO cells with the pSHL plasmid containing the

large (L)-MAG isoform DNA in either the 59–39 (CHO-MAG) or

the 39–59 (CHO-R2) orientation followed by gene amplification

using the dihydrofolate reductase/methotrexate strategy. The

CHO-MAG cells therefore express the L-MAG isoform on their

cell surface, while the CHO-R2 cells are the control cells and

express the reverse peptide sequence of L-MAG on their surface.

The CHO cells were a gift from Marie Filbin [73].

Transfections
High throughput transfection. Clones of the screened

library were purified from bacterial cultures in 96-well format

(see above). Transfection of plasmid was performed with an

average concentration of 272 ng/ml, and 260/280 ratio ,1.8.

Cerebellar transfection technique was described previously [74]. A

Harvard apparatus/BTX electroporation plate (2 mm gap) was

sprayed with alcohol and left to dry in a laminar flow hood. 15 ml
INB was added to each well, then 15 ml with 4.5 mg of DNA was

mixed in for each electroporation well. 300,000 to 315,000

dissociated cerebellar neurons (on ice for up to four hours post

preparation) were resuspended in 35 ml INB per well, and

distributed on top of the INB/DNA for a total of 65 ml per well.
GFP reporter (Lonza Amaxa, pMax GFP) was added at 0.9 mg per
well (to all wells except the transfection control wells). The

electroporation plate was sealed with 3 M tape pads, and tapped

several times on each side to ensure mixing. Plates were

electroporated with 1 pulse at 350 Volts, 850 ms. After trans-

fection, 80 ml of room temperature Hibernate was immediately

added to each well as recovery solution. These steps were

performed very quickly, averaging ,4 minutes total for 1 96-

well plate. One electroporation plate contained 12 controls and 84

test clones. Transfection efficiencies averaged 10.4% (95CI 10.2–

10.7%) for neurons plated on laminin, and 14.3% (95CI 14.0–

14.7%) for neurons on CSPGs across treatments.

Hippocampal transfection. Transfection of embryonic

hippocampal neurons was accomplished by Amaxa 96-well

Shuttle nucleoporation system (Lonza, Walkserville, Maryland)

following the manufacturer’s instructions [30]. Briefly, the Amaxa

96-well nucleoporation plate was loaded with the mixture of

75,000 neurons in 20 mL of Amaxa transfection solution, and

600 ng of experimental DNA (including 150 ng GFP reporter

with) in a volume of 2.1 ml. The rat neuron transfection, ‘‘high

efficiency’’ program was used, and the neurons were recovered

with 80 ml of ENB + HEPES (20 mM Invitrogen 15630). In the

CHO-MAG experiments, the CGNs (dissociated from P7-9 Long

Evans rat pups) were suspended in INB and transfected with 4 mg
of the pCMV-SPORT6 plasmid and 1 mg pmaxGFP plasmid.
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The pulse parameters were a single pulse at 300 V, 1 ms in length

using the Harvard Apparatus/BTX (as above).

Plating. Neurons were grown in 96-well plates (Perkin Elmer,

6005182. Waltham, Massachusetts) coated with a base substrate of

10 mg/ml Poly-D lysine (Sigma P7886) overnight, and rinsed 5

times with water. Laminin plates were produced with 10 mg/ml

laminin (Sigma L2020) diluted in HBSS (Invitrogen 14175)

overnight, rinsed 5x with HBSS. CSPG plates were a mixture of

10 mg/ml laminin and 1 mM mixture of CSPG [75] in HBSS

overnight, rinsed 5x using slow pipetting speed (Rainin). Where

indicated, Gö6976 (Calbiochem, EMD Biosciences, Darmstadt,

Germany, 365250) was added at 0.5 mM, diluted directly in the

media. 36,000 CGN cells were added to each well. Plating media

was made in DMEM (Invitrogen, 11965), 10% FBS (Invitrogen

16000), 25 mM HEPES (Invitrogen 15630), 12.5 mM KCl

glutamate, penicillin/streptomycin, and sodium pyruvate. The

same lot of FBS (307932) was used throughout the screen. The

number of neurons was decreased on CSPGs, suggesting poor

adhesion to the substrate. For hippocampal neurons, 7,500 cells

(live) were added to each well. Enriched neurobasal (ENB),

modified from [76] included Neurobasal (Invitrogen 12348),

penicillin/streptomycin, insulin (Sigma I6634 5 mg/ml), sodium

pyruvate (1 mM), transferrin (Sigma T1147 100 mg/ml), BSA

(Sigma A4161 100 mg/ml), progesterone (Sigma P8783 60 ng/

ml), putrescine (Sigma P7505 16 mg/ml), sodium selenite (Sigma

S5261 40 ng/ml), triiodo-thyronine (Sigma T6397, 1x), L-

glutamine (1 mM), N-acetyl cysteine (Sigma A8199NAC, 5 mg/

ml), and B27 (Invitrogen 11602).

Fix/Stain. Neurons were incubated in 37uC, 5% CO2

incubators for 48 hours. Plates were removed and immediately

fixed with room temperature fixative (4% paraformaldehyde, 4%

sucrose in PBS) by removing 80 ml and overlaying 120 ml of

fixative at the slowest speed. Plates were incubated 4 hours in 4uC,
then rinsed with PBS and stained for E7 beta-tubulin (produced

in-house) and Hoechst dye (Invitrogen 33342). Rinsing was

performed with a Biotek platewasher (BioTek, Winooski, VT.

ELx405).

Imaging/Tracing. Cellomics Arrayscan VTI (Thermo Fish-

er Cellomics; Pittsburgh, Pa) was used to automatically image 9

fields in 48 wells of the assay plates at 5x magnification and

1024x1024 resolution in three different channels: nuclear staining

(Hoechst), neurite staining (tubulin), and the reporter gene (GFP).

Images were traced automatically using the Neuronal Profiling

Bio-application version 3.5. Many parameters were reported by

the tracing algorithm, including nucleus (Hoechst intensity,

nuclear area), cell body (tubulin intensity, cell body area, cell

body shape), neuronal parameters (number of primary neurites,

length of all the neurites ‘‘total neurite length’’, length of the

longest neurite, number of branches), and population parameters

(percent of neurons which initiate neurite growth ‘‘neurite

initiation’’, percent of transfected neurons, ratio of tubulin positive

neurons per Hoechst positive nucleus).

Data Analysis
Data aggregation/Storage. Raw data was managed by the

Cellomics Store, which consists of an SQL database and a network-

attached fileserver (HP). Raw data consisted of metadata

associated with scanning and tracing (exposures, focus offsets,

thresholds), raw images and the results of the tracing. Additionally,

cell and well level results were exported in tab delimited text and

Spotfire formats and stored on a separate network-attached

fileserver, organized by experiment with accompanying Excel

tables listing how each well was treated.

Spotfire was used to associate the treatment variables (the

mapping of plasmid transfection to each well) and perform basic

quality control, including checks for tracing errors, low and high-

density wells, cell clumps, and plating errors.

Over 3,600 transfections were performed, as part of 38

experiments. The results were validated, and whole experiments

were rejected that didn’t meet quality control standards (usually

due to poor growth on laminin-coated plates). Images were hand

curated to ensure tracing accuracy. First, wells that contained

outliers in any parameter were examined for tracing errors. Next,

,10% of all the wells, randomly chosen, were examined. Most of

the wells identified with poor tracing suffered from bad

segmentation, which was easily corrected by re-analysis with

new thresholds. In all, about 2% of the wells were excluded

because of tracing errors that were not easily corrected (high cell

density, too low signal, artifacts in the well).

Transfection. Transfection was monitored by the co-expres-

sion of a reporter gene, GFP, added to all wells except the

transfection control well, at a ratio of ,1:5 with the gene of

interest. In this condition, an estimated 75% of neurons that were

expressing GFP were also expressing the gene of interest. We

verified that the transfection effectively produced protein for

several control genes, including fluorescent genes GFP in pMax

vector, Venus in pcDNA3, and mCherry in pcDNA3 and

pSport6. L1CAM in pCDNA3 was also tested, as well as GFAP,

NCAM, MBP, and Vimentin in pSport (data not shown).

Each electroporation plate had a set of controls including

a transfected well with no cDNA added to establish background

green intensity and transfection thresholds. The green intensity of

no-cDNA wells was fit to the tubulin intensity, which usually bled

through from the red channel. The fit was used to adjust the green

intensity, effectively removing any red contribution, and then

a threshold was set at 2 standard deviations above the log of the

adjusted green intensity in the control.

iga~ig
�
(azbir) or iga~ig

�
(aebir )

iga = intensity for green channel, adjusted; ig = intensity for green

channel; ir = intensity for red channel; a and b are the coefficients

of the curve fit (for linear or exponential fits).
Analysis. Data was structured in terms of an ‘‘experiment’’

which we defined as a unit distinct from other experiments due to

unique animals, transfection, and date. An experiment was done

on one 96-well electroporation plate, with ,80 experimental

cDNAs and controls. This plate was split into twelve assay plates, 6

for laminin and 6 for CSPG substrates. Only wells B3 through

G10 were utilized for the cells, (but media was added to all the

wells) to reduce edge effects. An individual electroporation well

was split into three replicate wells on each substrate. At least two

experimental replicates were performed, but some of the genes lost

the second replicate (or even both) due to quality control.
Normalization. Cells were pooled across replicate wells, and

the average of the pool was determined. The average and standard

deviation of the population of treatments for all of the transfections

within one experiment (excluding no cDNA and other controls)

was used as the normalization control, in the equation below.

Normalization was performed separately for laminin and CSPG

substrates.

Z~
xt{xc

sc

xt is a treatment’s mean, xc is the control mean (in this case the

control is the entire set of experimental neurons within one
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experiment). sc is the standard deviation of that same control

population. Normalization transformed the treatment level data

into z-scores. In experiments using hippocampal neurons, the Z

scores for each treatment were subtracted from the Z score of

mCherry, re-centering the data on the negative control (rather

than the population mean). This procedure was used because the

genes tested on hippocampal neurons were all predicted to alter

neurite growth, based on the primary screen. Figure S5 shows that

the normalized variables (relative) performed better than the raw

(absolute) ones.

Many different parameters were measured; these are listed in

the ‘‘data for figures’’. Using strictly standardized mean difference

(SSMD), we determined the optimal parameters to report (Figure

S5, Table S4), including neurite total length and %neurons with

neurites. SSMD allowed us to determine which variables produced

the strongest differences between the negative and positive

controls. Principal component analysis (PCA) was also run to

determine which parameters were related and which formed

distinct measurements. The PCA confirmed that most of the

neurite parameters are highly related and did not produce a new

component with better SSMD in comparing the data.

Statistics. Experiments were done to determine which type

of statistical analysis was most applicable. On a cell-by-cell basis

within one experiment, many treatments were significant (for

example, in t-tests of each treatment compared to pSport

mCherry, allowing for all cells to be considered, 84% of the

treatments had p,0.001). The high positive rate and the non-

normal distribution of the data, the high cell number, and the high

variability of neuronal morphology from neuron to neuron made

this method unacceptable. Instead, the much more conservative

Mann Whitney U Test was applied to normalized treatment level

data. Three genes with several parameters on both substrates were

chosen that had low variability and normalized values near 0:

UBE2V1, SLC25A3, CDS2. Mann Whitney was used against

these ‘‘center’’ genes to determine significance of each of the

clones. For other analyses, as indicated, Mann Whitney was

compared to pSport mCherry control. Statistics were carried out

in Spotfire DecisionSite.

Bioinformatics
Vector grid. The vector grid is a scatter plot that uses arrows

(vectors) as markers, as in Figure 2. The markers are placed into

the grid based on a pixelization technique, whose concept is from

[77]. Any two continuous or discrete parameters can be used for

the two axes. A custom algorithm (Visual Studio 2008, C#),

matched the standard Cartesian plot of the two axes to a grid, to

minimized the ‘‘distance’’ from the original position to the new

grid-mapped position. If there are 9 data points, a grid of 363 is

constructed, and those bins are filled with the 9 data points such

that their ordering is similar to the original x/y plot.

Performance of known regeneration associated

genes. Regeneration associated genes were listed in Table S2.

Each gene was compared (per substrate) to the ‘‘center genes’’

(UBE2V1, SLC25A3, CDS2) by Mann Whitney U test. Any gene

that was significant (and Z had the same sign) for either all cells,

only GFP+ cells, or only Neurite+ cells, was labeled. ++ is p,0.05

(MWU compared to centers), + is p,0.1. The weaker alpha of 0.1

was used to indicate the direction of the effect, even if not

significant.

Gene ontology cluster analysis. Gene ontology (GO) terms

http://amigo.geneontology.org/were acquired in Feb 2009

through Entrez gene. Each GO term was mapped into a hierarchy

based on its ‘‘is_a’’ definition. For example, the GO term ‘‘Protein

Tyrosine Kinase Activity’’ is a child of ‘‘Protein Kinase Activity’’

which is a child of ‘‘Kinase Activity’’. A table was constructed

which listed genes in each row and each unique GO term in

columns. Then if the gene possessed a GO term, or possessed

a child of the GO term listed in the column, it was given a 1. An

example of this table is shown in Fig. 6. The table was imported

into Spotfire and hierarchical clustering (using correlation and

UPGMA) was performed. A custom C# program was developed

that sliced through the hierarchy at various distances (termed

tiers). The program operates on one unit at a time – a ‘‘node set’’.

For a particular tier in the hierarchy, there might be x node sets.

Each node set would have some number of genes and the total

number of genes would be represented by the total node sets across

the tier. For each node set, the average of the functional data for

the member genes were averaged and compared with a bootstrap

sample from the entire dataset. The data was represented

graphically as a cluster heatmap, where each tier was a row in

the graph, and a node set was a rectangle, colored by its average

value. The purple colored tiles in Fig. 6E represent the absolute

magnitude of the gene’s effects, regardless of direction. In this type

of analysis, one might uncover groups of related genes that work

together, both positively and negatively, to regulate cellular

processes.

The uncorrected bootstrap statistics were indicated by ‘‘.’’ and

‘‘:’’ (0.05 and 0.01 respectively). Since a small family could be

easily skewed by the presence of an outlier, the sample mean was

also compared to a bootstrap spiked with the outlier value (first

inverse jackknife, [78]), which was more stringent and eliminated

families that were only skewed by one outlier. The bootstraps were

also corrected, per tier by Benjamini/Hochberg [79] (alpha 0.05).

The analyses were run separately for each parameter tested, and

significant values were summarized. In Fig. 6E, tiles were shown

with the same heatmap color as in the cluster heatmap, and were

outlined if they had uncorrected p,0.01 or better (or either of the

corrected p,0.05).

Supporting Information

Figure S1 DRG Enrichment in Subtraction Library
Genes. 27 Genes from the subtraction library were tested using

Q-PCR. Samples of DRG and cerebellum mRNA were probed

for the presence of the genes on the x-axis. Nine genes showed

greater than two fold increases in DRGs, and seven of these were

expressed well over 3 fold more in DRGs than cerebellum. Only

one gene had over 2 fold expression in cerebellum, and the others

were not differentially expressed.

(TIF)

Figure S2 Genes in Screened Library Deficient in
Cerebellar Expression. Of the 1,100 genes in the screened

library, over 800 are annotated in the Allen Brain Atlas (www.

brain-map.org). Data about the in-situ expression pattern in adult

C57/Bl6 mouse brains were extracted and compared. Ratios of

each brain region’s expression density, compared to cerebellar

expression density, was plotted for the screened library (filled bars)

and a random sampling of genes from the Atlas (white bars). Error

bars indicate 95% confidence intervals for the ratio. In the

screened library, cerebellar expression was significantly reduced

from the density in other brain regions, when compared with the

random set, except for the olfactory bulb. Asterisk above bars

indicate significance (*p,0.05, **p,0.01, ***p,0.001) from

ANOVA. The label reading ‘‘hippocampus’’ is denoted ‘‘hippo-

campal formation’’ in the Allen Brain Atlas.

(TIF)
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Figure S3 CSPG Inhibition Robust Across Entire
Screen, Independent of Basal Laminin Growth. Individual
experiments from the screen tested ,80 genes each. Each was

done on different days with different mice. Basal outgrowth on

laminin varied from experiment to experiment, and had a wide

range. Cells from individual gene transfections were plated onto

both laminin and CSPG substrates. Keeping markers for laminin

(black) and CSPG (white) as a vertical pair, the results were sorted

on the x axis for laminin growth rank (longest neurites on the left

= 0, with the shortest = 100). From this graph it is clear that

growth was highly variable across experiments and conditions, and

that normalization is necessary to extract meaningful data. It is

also apparent that CSPG inhibition is robust across the full range

of basal laminin growth and that some treatments were able to

alter the CSPG growth towards or away from the basal CSPG

level.

(TIF)

Figure S4 Analysis of functional effects in gene families.
An example of the concept and construction of a tile cluster

analysis using molecular function gene ontology (GO, http://

amigo.geneontology.org/) annotations. A, Table with 19 genes

from the screened library and accompanying GO terms (gene has

ontology annotation if cell is blue). B, Genes are clustered using

just their ontology annotations by hierarchical clustering, resulting

in a dendrogram. Moving from the root of the dendrogram (left)

towards the leaves (right) leads to more groups with fewer, more

closely related genes in each group. C, Bar chart depicting the

functional data from the screen centered on the population mean.

Bars have heatmap coloring, with genes decreasing growth in red,

increasing growth in green, or having no effect compared to

control in white (increasing effects coded by increasing color

intensities). D, Tile cluster analysis results – a multi-tiered heat

map. The number of clusters per tier is listed and significance is

calculated non-parametrically with bootstrap analysis, and is

shown symbolically over the tile with an asterisk.

(TIF)

Figure S5 Analyzed variables SSMD and PCA. SSMD of

the mCherry (negative control) vs. mCherry Gö6976 (positive

control) for neurons growing on CSPGs (A), or Laminin (B).
SSMD was calculated with the absolute/raw values (red bars), or

the relative/normalized values (blue bars). Distinct groups are

apparent, with neurite count and fraction of neurons with neurites

parameters dominating the CSPG parameters. Principal compo-

nent analysis (PCA) was performed and returned four components.

Panel C plots the first two components with experimental plasmids

(red markers) and control plasmids (blue markers), where the non-

transfected controls are on the top left while positive controls are

located on the bottom left. The PCA weights indicated clustering

of the measured parameters such that like variables were

combined (D).

(PNG)

Table S1 Myelin purified from P25-30 day old C57/Bl6j was

dried down on poly-lysine 96-well plates. This inhibitory substrate

was used to challenge transfected cerebellar neurons. Over 250

clones were screened due to their full-length status in the original

library. The table shows aggregate results from approximately 12

experiments, where overlapping subsets of the clones were tested.

The genes listed were observed to increase growth on myelin.

*Anxa2 had the strongest effect in conjunction with forskolin

(increase cAMP). More symbols indicate that the effect was

observed in multiple experiments.

(DOC)

Table S2 Regeneration associated genes identified in the

literature over the past 15 years and screened in our assay. The

first six columns indicate effect on the parameters: 1,4, branches,

2,5 neurite average length, 3,6 number of primary neurites.

Columns 1–3 indicate effects on CSPG substrate, and 4–6 indicate

effects on laminin substrate. A ‘‘+’’ or ‘‘2’’ is listed if either: all the

cells, the GFP+ cells, or the Neurite + cells were significantly above

(‘‘++’’ p,0.05 Mann Whitney U) or below (‘‘–’’ p,0.05 Mann

Whitney U) the control genes (see methods). Non-significant

results are also listed, indicating the trend and direction of

response (+, 2 p,0.1, Mann Whitney U). Blank cells indicate

p.=0.1. The official Entrez gene symbol is listed.

(DOC)

Table S3 Confirmed Results after Secondary Screen.
Sixteen genes had significant effects compared to pSport mCherry

control. The listed genes were significant for a particular

parameter by Mann Whitney U compared to the control in up

to four experimental replicates (++, 22 p,0.05, +++, 222

p,0.01). N+ is percent of neurite initiation, BPTC is total

branches, G+ indicates using only GFP+ cells. NTC is the number

of primary neurites, and NTL is the neurite total length.

(DOC)

Table S4 SSMD for various measurements. SSMDs for

the normalized forms of several parameters recorded as part of the

screen, listed both for CSPGs and Laminin, using pSmCherry as

the negative and pSmCherry Gö6976 as the positive control.

Column headers are a concatenation between the subset (first

abbreviation; Ap = complete, Np = neurite+, Tp =

transfected+) and variation (Second abbreviation; Av = average,

Ln = log, and Sq = square).

(DOC)

Methods S1 Supplementary Methods.

(DOCX)
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