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Matrix-assisted laser desorption/ionization time-of-flight mass (MALDI-TOF)
spectrometry fingerprinting has reduced turnaround times, costs, and labor as
conventional procedures in various laboratories. However, some species strains
with high genetic correlation have not been directly distinguished using conventional
standard procedures. Metabolomes can identify these strains by amplifying the minor
differences because they are directly related to the phenotype. The pseudotargeted
metabolomics method has the advantages of both non-targeted and targeted
metabolomics. It can provide a new semi-quantitative fingerprinting with high coverage.
We combined this pseudotargeted metabolomic fingerprinting with deep learning
technology for the identification and visualization of the pathogen. A variational
autoencoder framework was performed to identify and classify pathogenic bacteria
and achieve their visualization, with prediction accuracy exceeding 99%. Therefore, this
technology will be a powerful tool for rapidly and accurately identifying pathogens.

Keywords: pseudotargeted metabolomic, deep learning, LC–QQQ–MS, variational autoencoder (VAE),
convolutional neural network (CNN)

INTRODUCTION

Most foodborne diseases are related to foodborne pathogens such as Listeria monocytogenes,
Salmonella spp., Escherichia spp., Staphylococcus aureus, Enterococcus spp., Yersinia enterocolitica,
Bacillus cereus, and so forth (Marshall et al., 2020; Sarno et al., 2021). More than 250 foodborne
diseases have been identified, and it is estimated that 76 million people are affected by foodborne
diseases, causing 5,000 deaths each year in the United States (Dong et al., 2020; Saeed et al., 2021).
Methods based on genome sequencing are helpful for this, but their ability to predict traits is
limited. Analytical strategies that use the inherent information content of the phenotype to bypass
these limitations have been established, for example, the matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF-MS) method. However, conventional standard
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procedures cannot directly distinguish some species with
high genetic correlation or with closely related environmental
conditions (He et al., 2010; Martiny et al., 2012; Paauw et al., 2015;
Ferone et al., 2020), such as Shigella castellani and Escherichia coli
(Khot and Fisher, 2013), B. pseudomallei, and B. thailandensis
(Dingle et al., 2014; Watthanaworawit et al., 2021). It is urgent
to develop sensitive and accurate methods to monitor foodborne
pathogens stringently.

Metabolomic techniques are screened as a better alternative
method that measures compounds with low molecular weight
(MW <1,000) directly associated with microbial activity at a
given point in time and under specific environmental conditions
(Fiehn, 2002). It is proposed that metabolomics technology
can become a detection platform for foodborne pathogens
and spoilage microorganisms (Pinu, 2016). The pseudotargeted
metabolomics method has the advantages of both non-targeted
and targeted metabolomics. High-resolution MS is used to obtain
the ion pair information of metabolites. Meanwhile, the targeted
single-reaction monitoring (SRM) or multiple reaction detection
(MRM) method, based on triple quadrupole (QQQ) MS, is
used to measure the abundance of metabolites in actual sample
analysis. The method not only has high coverage, good linearity,
and reproducibility but also does not require standard samples
to limit the detected metabolites (Chen et al., 2013; Wang
et al., 2016). In addition, QQQ-MS analysis increases stability,
further reduces costs, and is conducive to high-throughput
sample analysis.

Machine learning (ML) that is the concept of “training”
computational methods can improve given more “experience”
or data. Convolutional neural network has demonstrated its
excellent learning ability in many applications. The design of the
convolutional layer for feature extraction is particularly critical
in various problems (Ho et al., 2019; Thrift et al., 2020; Sil
et al., 2021). Variational autoencoders (VAE) combine neural
network and Bayesian theory to learn suitable latent variables
from data to represent input data (Thrift et al., 2020). We have
established a recognition model based on VAE, which strengthens
the representation ability of VAE from network structure. The
feature extraction ability of the convolutional neural network is
also improved from the perspective of theoretical analysis.

In our work, we combined pseudotargeted metabolomic
fingerprinting with deep learning technology to realize the
identification of pathogens. We achieved a prediction accuracy
of the VAE model that exceeded 99%. This methodology is
based on the QQQ-MS detection platform, which has minimal
pre-processing steps and high identified accuracy at a lower
cost and will be a powerful tool for rapidly and accurately
identifying pathogens.

MATERIALS AND METHODS

The Culture Conditions of Bacterial
Strains and Sample Preparation
The total strains used in this study are presented in
Supplementary Table 1. Brain heart infusion broth was
used for bacteria cultivation at 37◦C with shaking at 200 rpm

until OD600 = 0.6 ± 0.05. In each experiment, a single fresh
colony was inoculated into a 10-ml medium, cultivated with
shaking at 37◦C and 200 rpm. After overnight growth, the OD600
value was adjusted to about 0.2, and then 50-ul culture was
inoculated into 10 ml of medium grown and until its OD600
∼0.6± 0.05.

To collect bacterial cells, 1 ml of culture was centrifuged at
−10◦C and 12,000 rpm for 15 min. After the collected bacteria
were washed twice with cold PBS solution, liquid nitrogen
was used to quench the metabolism. Then, 800 µl of cold
extract solution (acetonitrile/methanol/water = 2:2:1, containing
an isotopically labeled internal standard mixture) was added
into the samples for ultrasonic disintegration. After ultrasonic
decomposition, the samples were incubated at −20◦C for 1 h,
and the collected supernatant was centrifuged at 12,000 rpm and
4◦C for 15 min. Then, the collected supernatant samples were
dried in a vacuum. Finally, the dried samples were resuspended
in 200 ul acetonitrile solution (acetonitrile/water = 1:1) at
room temperature and sonicated for 15 min. The resulting
supernatant was transferred to a fresh glass vial for liquid
chromatography (LC)/MS analysis. The quality control (QC)
sample was prepared by mixing equal aliquots of the supernatants
from all of the samples.

Liquid Chromatography–Mass
Spectrometry/Mass Spectrometry
Analysis
The Untargeted Metabolomics Analysis of Quality
Control by Ultra Performance Liquid
Chromatography–Quadrupole–Orbitrap–Mass
Spectrometry
A Thermo Fisher Scientific UltiMate 3000 Rapid Separation LC
system with a ultra performance liquid chromatography (UPLC)
HSS T3 column (2.1 mm × 100 mm, 1.8 µm) coupled to
a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer
(Thermo Fisher Scientific) was used to perform the LC–MS/MS
analyses. The mobile phase A and the mobile phase B were
0.1% formic acid in water and acetonitrile for positive mode,
respectively. The elution gradient was set as follows: 0–1.0 min,
1% B; 1.0–8.0 min, 1–99% B; 8.0–10.0 min, 99% B; 10.0–10.1 min,
99–1% B; 10.1–12 min, 1% B. Its flow rate was 0.5 ml/min,
and the injected volume was 2 µl. The acquisition of MS/MS
spectra depended on the QE mass spectrometer’s information-
dependent acquisition mode. The electron spray ionization (ESI)
source conditions were set as follows: sheath gas flow rate as
45 Arb, aux gas flow rate as 15 Arb, capillary temperature of
400◦C, full MS resolution as 70,000, MS/MS resolution as 17,500,
collision energy as 20/40/60 in NCE mode, and spray voltage as
4.0 kV (positive).

Compound Discoverer (CD) from Thermo Fisher
ScientificTM was used for peak detection, extraction, alignment,
and integration. Then, in-house and open-source MS2 databases
were applied in metabolite annotation. The precursor ion
and its intensity as well as the MS2 product ion and its
intensity information corresponding to the parent ion under
each collision energy were extracted from the raw data by
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deconvolution. Hundreds of metabolites are available and then
removed without secondary MS. After the CD process, a list of
precursor, product ion, and each collision energy of metabolites
was derived. Then, the list was imported by TSQ method editing
template to generate a method with SRM channels used for
pseudotargeted metabolomics analysis.

Pseudo-Targeted Metabolomics Analysis by Ultra
Performance Liquid Chromatography–Electron Spray
Ionization–Quadrupole–Mass Spectrometry/Mass
Spectrometry
A method with SRM channels was used for pseudotargeted
metabolomics analysis. Before analyzing the actual samples,
the QC sample was used to calibrate retention times and
optimize collision energy and delete ion pairs that MRM analysis
cannot gather. Finally, a scheduled SRM method that includes
252 metabolite transitions was constructed using Tracefinder
(Thermo Fisher Scientific, United States) and used for actual
sample analysis to obtain fingerprints. The chromatographic
column, mobile phase, and elution gradient were the same as
the above-mentioned UPLC-Q-Orbitrap–MS method. Thermo
Fisher Scientific UHPLC coupled with TSQ Quantiva Triple
Quadrupole Mass Spectrometer (UPLC-QQQ-MS) equipped
with a turbo ion spray source was used with the following
mass spectrometer settings in positive ion mode: ion spray
voltage = 4,500 V, temperature = 400◦C, ion source gas 1 = 30 psi,
ion source gas 2 = 70 psi, curtain gas = 20 psi, collision gas = 5
psi, ion spray probe vertical position = 3, and ion spray probe
horizontal position = 5.

The Architecture of Variational Autoencoder
Deep neural network models were performed in Keras, and its
optimizer was Adam (Zhang et al., 2019). The VAE encodes high-
dimensional data (LC–MS profiles) into a low-dimensional latent
space to select primary representations of the data. It is composed
of an encoder network and a decoder network. The encoder
network encodes spectra as a Gaussian probability distribution
in the n-dimensional latent space, schematically depicted as µ

and 6. The decoder network decodes sample points from the
latent space back into the original spectra. The construction of
our VAE using deep convolutional neural networks, architecture,
and training parameters are as follows:

(1) The first part is used for feature extraction and
representation of data, including two convolutional layers. The
function of the first-layer convolutional network was feature
extraction and data representation, which can be expressed as:

F1(Y) = max
(
0,W?

1Y + B1
)

(1)

where W1 was the convolution kernel, B1 was the deviation
of n1 dimension, ∗ represented the convolution operation, W1
expression was c1 × f1 × 1, which represented c1 convolution
kernel of f1 × 1, and c1 was the number of filters (the number
of filters in the first layer in this study is set to 256, so c = 256).
Input sample Y was convolved through a filter (Conv1D) to
obtain the eigenvector of Y, and the eigenvector produced by this
layer was processed. Output by the ReLU activation functions
to obtain F1(Y).

The second layer was expressed as:

F2(Y) = max
(
0,W∗2F1(Y)+ B2

)
(2)

(2) The second part is mainly to learn the mean and variance
features. F2(Y) is sequentially flattened through the Flatten
operation, and the fully connected network was used to learn
the features µ and σ, respectively. Then, weighted summation of
the two network layers was performed to obtain z, which can be
expressed as:

µ =W∗3Flatten(F2(Y))+ B3 (3)

σ =W∗4Flatten(F2(Y))+ B4 (4)

z = µ+ σ · ε, ε ∼ N (0, 1) (5)

(3) The third part is data reconstruction, which mainly contains
4 convolutional layers, which were represented, in turn, as:

F3(Y) = max
(
0,W∗5 z + B5

)
(6)

F4(Y) = max
(
0,W∗6F3(Y)+ B6

)
(7)

F5(Y) = max
(
0,W∗7F4(Y)+ B7

)
(8)

F6(Y) = max
(
0,W∗8F5(Y)+ B8

)
(9)

where the convolution kernel was W1, the deviation was Bi,
the number of filters was 1, 32, 64, and 1, respectively, and the
activation functions were all Relu functions. The loss function of
the VAE network was usually defined as the sum loss of L2 and
KL divergence. The L2 loss is mainly responsible for calculating
the reconstruction error, and the KL divergence loss is mainly
responsible for the distribution error. Since the distribution of
the sample curve had a low impact on the classification results,
we had used the L2 loss alone as the loss function of the network.
After the training of the VAE network was completed, a fully
connected layer with 256 neurons is added separately to the back
end of the z layer, which can be expressed as follows:

F7(Y) =W∗9F6(Y)+ B9 (10)

Since this study deals with 6 classification problems, the
number of neurons in the second fully connected layer was
set to 6. F7(Y) and get F8(Y) were entered after processing
the Softmax activation function. F8(Y) was the classification
result of the sample.

(4) Accuracy was used as the loss function of the network
algorithm in this study to learn the parameters of the network.
The essence of the training was to optimize these parameters.
Accuracy can be defined as follows:

Accuracy =
Tn
N

(11)
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FIGURE 1 | Principal component analysis of common pathogens from Bacillus cereus, Escherichia coli, Enterobacter sakazakii, Listeria innocua, Listeria
monocytohenes, and Staphylococcus aureus.

In this formula, N denoted the number of training
samples, and Tn denoted the number of training samples with
correct prediction.

The size of the convolution kernel, the number of convolution
kernels, the step size during convolution, and the size of zero-
fill were all parameters set for each layer. Supplementary Table 2
displays the detailed data records.

RESULTS AND DISCUSSION

Pseudotargeted Profiles Obtained by
Liquid Chromatography–Mass
Spectrometry Analysis
The pseudotargeted metabolomic was analyzed using a
UHPLC/QQQ–MS system operated in the MRM mode.
The MRM ion pairs were selected from the Q Exactive Hybrid
Quadrupole-Orbitrap mass spectrometer system through
untargeted tandem MS of the real QC samples. As a proof
of concept, 253 metabolites were qualified, as can be seen in
Supplementary Table 3. Finally, these ion pairs were detected
using the UHPLC/QQQ MRM MS-based pseudotargeted
metabolomics method, as shown in Figure 2A. We acquired the
LC–MS pseudo-targeted profile of the samples within 12 min
as a training dataset, as shown in Figure 2B. It is ensured that
each individual spectrum was taken from a single strain culture,
and the preparation conditions were consistent between samples
(detailed in section “Materials and Methods”). We constructed
reference datasets of over 828 spectra from 22 bacterial strains for
two batches. Each batch and parallel samples were independent
of each other in over 10 parallel samples. The total samples were

divided into two parts: the training set and the validation set.
One was used to the model trained, and another was used to
confirm the recognition ability of the method and the prediction
of unknown strains. The distribution of strains in the training
set used principal component analysis, as shown in Figure 1. It
can be seen that the strains cannot be separated when used in its
dimensionality reduction analysis.

Deep Neural Network Models for
Common Foodborne Pathogen
Classification
The equations should be inserted in editable format from
the equation editor. The dataset including the pseudotargeted
metabolomic fingerprints of cell lysate from B. cereus, E. coli,
E. sakazakii, L. innocua, L. monocytogenes, and S. aureus
was used to train a VAE framework, as can be seen in
Supplementary Table 4. Variational autoencoder architecture
(VAE) was implemented to derive compact data representations
and analyze valuable predictors, respectively. Figure 2 depicts
the scheme using a VAE for common foodborne pathogen
classification. The VAE works by capturing the necessary
representation of data by encoding high-dimensional data points
into a low-dimensional latent space. The VAE is composed of an
encoder network and a decoder network. The encoder network
encodes spectra into a Gaussian probability distribution in the
n-dimensional latent space, and the decoder network decodes
sample points from the latent space back into the original spectra.
Our constructed VAE using deep convolutional neural networks,
architecture, and training parameters is further described in
section “Materials and Methods.” There are three advantageous
features in our VAE that have been provided by encoding spectra
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FIGURE 2 | A variational autoencoder (VAE) for common foodborne pathogen classification. (A) The selected pseudo-targeted LC–MS profiles. We selected 253 ion
pairs from the untargeted strategy and detected them in actual pathogen samples using the UHPLC/QQQ MRM MS-based pseudotargeted metabolomics method.
(B) The schematic of the VAE model. The VAE is composed of an encoder network and a decoder network. The encoder network encodes spectra into a Gaussian
probability distribution in the n-dimensional latent space, and the decoder network decodes sample points from the latent space back into the original spectra. The
encoder and decoder networks used deep convolutional neural network. (C) Visualization of prediction results.

FIGURE 3 | Variational autoencoder space of common pathogens from Bacillus cereus, Escherichia coli, Enterobacter sakazakii, Listeria innocua, Listeria
monocytohenes, and Staphylococcus aureus. (A) The trained dataset was used to train the model. (B) The validation dataset was used to test the model.

as probability distributions in a lower-dimensional latent space:
(1) improve the prediction capabilities of classification. Due to
a well-structured latent space in VAE, simple models can also
make predictions from the encoded data. VAE encodes each
spectrum as a distribution, and these distributions could overlap.
If the overlapping distributions were not from a similar spectrum,
the model was severely penalized during the training process;
(2) predictions made from models trained on encoded data
were improved by de-noising, especially for small amounts of
labeled data; and (3) VAE was able to visualize variations in the
latent space and decode the spectrum due to the continuously
represented coded distributions of latent space.

Prior to training the VAE, bacterial cultures were prepared,
and their LC–MS profiles were collected as described in section
“Materials and Methods.” It is ensured that each individual
spectrum was taken from a single strain culture, and the
preparation conditions were consistent between samples. Then,
a training dataset of about 669 samples and a validation
dataset of about 160 samples were used to realize the

classification and identification of common pathogens by VAE.
The model was trained on a training dataset and tested on
an independent validation dataset gathered from separately
cultured samples. Common pathogens included B. cereus, E. coli,
C. sakazakii, L. innocua, L. monocytohenes, and S. aureus.
The encoded pseudotargeted metabolomic profiles from cellular
lysate are plotted in Figure 3. The LC–MS profile spectra
were quantitatively analyzed to obtain trained and validation
datasets, respectively. After normalization and standardization,
the trained dataset was encoded using VAE, which trained with
the spectral dataset from bacterial lysate under experimental
conditions. Although the Figure 3 plots were arbitrarily rotated
around VAE axes, the differences in the relative location of
data in the VAE latent space represent corresponding changes
in the characteristics of features. Thus, it is notable that
the difference in VAE values concerning different species
of common pathogens demonstrates that this approach can
successfully distinguish common pathogens at the species
level. The pathogen LC–MS profiles used the VAE method
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FIGURE 4 | The confusion matrix chart of the validated dataset predicted the results. Its predicted accuracy of identification exceeded 99%.

TABLE 1 | Prediction accuracy of each type of pathogens.

Pathogens Predicted accuracy

Bacillus cereus 100%

Escherichia coli 100%

Enterobacter sakazakii 100%

Listeria innocua 100%

Listeria monocytohenes 100%

Staphylococcus aureus 95%

Total 99.38%

to analyze the results of the trained dataset as shown in
Figure 3A, and the results of the validated dataset are shown in
Figure 3B.

We also evaluated the use of support vector machines
and simple CNN architectures, but the VAE showed the best
performance. Compared with the support vector machine and
simple CNN models, the VAE model significantly improved
the classification and prediction ability of the training set and
could visualize variations in the entire latent space as well.
The prediction accuracy of the validation dataset exceeded 99%,
as shown in Figure 4 and Table 1. The prediction accuracy
rates of the support vector machine and CNN models for
the validation dataset were 93.13 and 98.75%, respectively (see
Supplementary Figure 1).

DISCUSSION

In LC–MS/MS-based investigation, metabolite fingerprints are
described by retention time, m/z values, and corresponding
intensities of detected ions. In normal fingerprinting, the
chemical structure of the detected metabolites typically remains

unknown, and the quantitative information is not contained.
Pseudotargeted metabolomics realizes quantitative analysis with
both high coverage and high performance of quantitative
analysis (Zheng et al., 2020). In this study, a new deep semi-
quantitative metabolic fingerprinting that was obtained using the
pseudotargeted metabolomics method was applied to identify
and classify common pathogens. We used the VAE–CNN
model that combined pseudotargeted metabolomics technology
and deep learning technology to realize the identification of
foodborne pathogens and the visualization of classification. As
illustrated in Figure 3, the deep learning model successfully
differentiated the common foodborne samples. However, to
verify this method under a broader range of samples and
conditions, we plan to collect more strains at different
concentrations and optimize the model to shorten the fingerprint
time further. In addition, we will study the effectiveness
of metabolomics technology in identifying and distinguishing
pathogenic and non-pathogenic foodborne pathogens in food.
Furthermore, whether the emergence of multiple microbial
species under these conditions affects their fingerprint expression
will also be investigated. This technology, based on the QQQ-
MS detection platform, has the merit of higher typing and
identification accuracy at a lower cost, which is expected to
replace the MALDI-TOF method based on TOF high-resolution
MS. The application of this methodology may significantly reduce
the analysis time required to detect and confirm these important
foodborne pathogens.

CONCLUSION

We combined pseudotargeted metabolomic fingerprinting with
the VAE framework to successfully realize the identification and
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visualization of pathogens. The prediction accuracy of the
VAE model that we achieved was over 99%. This technology
is based on the QQQ-MS detection platform, which has
minimal pre-processing steps, showing high accuracy at a
lower cost. It is a powerful tool that will be used to
replace the MALDI-TOF method for the rapid and accurate
identification of pathogens.
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