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Abstract: Background—The visual inspection of aircraft parts such as engine blades is crucial to
ensure safe aircraft operation. There is a need to understand the reliability of such inspections
and the factors that affect the results. In this study, the factor ‘cleanliness’ was analysed among
other factors. Method—Fifty industry practitioners of three expertise levels inspected 24 images
of parts with a variety of defects in clean and dirty conditions, resulting in a total of N = 1200
observations. The data were analysed statistically to evaluate the relationships between cleanliness
and inspection performance. Eye tracking was applied to understand the search strategies of different
levels of expertise for various part conditions. Results—The results show an inspection accuracy
of 86.8% and 66.8% for clean and dirty blades, respectively. The statistical analysis showed that
cleanliness and defect type influenced the inspection accuracy, while expertise was surprisingly not
a significant factor. In contrast, inspection time was affected by expertise along with other factors,
including cleanliness, defect type and visual acuity. Eye tracking revealed that inspectors (experts)
apply a more structured and systematic search with less fixations and revisits compared to other
groups. Conclusions—Cleaning prior to inspection leads to better results. Eye tracking revealed that
inspectors used an underlying search strategy characterised by edge detection and differentiation
between surface deposits and other types of damage, which contributed to better performance.

Keywords: eye tracking; inspection; visual search strategy; decision making; MRO; aircraft engine
maintenance; blade inspection; visual perception; attentional trajectory

1. Introduction
1.1. Industrial Context

In the aviation industry, engine maintenance, repair and overhaul (MRO) is essential
to ensure the continued airworthiness of aircrafts and safe flight operations. Engines
are inspected on a frequent basis, either after a certain amount of flight hours or cycles
(planned shop visit), or after an unexpected event such as a bird strike or flying through
volcanic ash (unplanned shop visit) [1]. The inspection is predominately performed by
human operators and thus there is an inherent risk of human error [2–5]. According to
the International Air Transport Association (IATA), one of the top three causes for aircraft
accidents are maintenance and inspection errors, and every third accident chain started
with an event caused by incorrect maintenance [6,7]. A Federal Aviation Authority (FAA)
report on aircraft maintenance risks concluded that maintenance errors contributed to
27.4% of fatalities and 6.8% of incidents [6]. The most common component failures occur
on the engine. Compressor and turbine blades are the most rejected parts during engine
maintenance [8], since they are exposed to extreme operating conditions, including high
centrifugal forces, high pressures, high temperatures (turbine section), foreign object dam-
age (FOD in the compressor section) and vibrations [9–12]. Hence, the frequent inspection
of those parts is of high importance in order to find any damage before it propagates.
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1.2. Engine Blade Inspection

Visual inspection is the most common non-destructive testing (NDT) technique used
and accounts for approximately 90% of inspections of aircraft parts, including engine
blades [2,13,14]. Several areas of the blade (identified in Figure 1) have to be inspected for
different types of defects. There are two possible inspection errors that can occur, i.e., when
a non-defective blade is incorrectly identified as defective (false positive), and when a
defective blade is incorrectly classified as serviceable (false negative). While false positives
have no negative impact on flight safety, they directly increase the maintenance cost. A
non-defective blade that is classified as defective is subsequently repaired or scrapped,
which introduces additional costs for unnecessary labour and material [15]. In contrast,
missing a blade defect can cause severe damage to the engine and fuselage of the aircraft,
with the potential to harm passengers and even lead to fatalities [16]. This may be caused
by improper maintenance and inspection, which is prone to human error tendencies as
well as lack of accuracy, reliability, subjectivity, consistency and repeatability [3,17,18].

Figure 1. High-pressure compressor (HPC) blade with highlighted blade regions: (1) blade root; (2)
platform; (3) trailing edge; (4) blade tip; (5) leading edge; (6) airfoil; (7) platform radius.

One factor that may affect the detectability of defects is the cleanliness. There are
two conditions of part cleanliness. When the engine is first inspected, the blades are dirty
and often covered with deposits. After disassembly and repair, the blades are in a clean
condition (high-pressure water sprayed and alkaline bathed) and have to be re-inspected
before installation back on the engine.

There is a need to determine the effect of part cleanliness on the inspection results.
This is important for the industry in regard to future improvement, e.g., to determine
what cleaning processes prior to inspection could improve the inspection performance.
Counterintuitively, it is also possible that cleaning might make detection poorer, e.g., there
is some anecdotal evidence that deposits might highlight defects. This paper applies
eye tracking and statistical testing to evaluate the relationships between cleanliness and
detectability, for the specific case of engine blades. The results show that clean parts are
better than dirty ones in relation to inspection performance.

2. Literature Review
2.1. Research on Visual Inspection

During engine maintenance, blades are checked at several stages in the process, in
different conditions and for different types of damages [19]. The first inspection is by
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borescopic means, whereby an inspector looks for any operational damage. If a defect
is found that validates a tear down, subsequent module and piece-part inspections are
performed. The parts are generally in dirty conditions, although a compressor wash may
precede. Damaged parts are either scrapped or repaired depending on the severity, location
and type of defect. After repair, the parts are visually inspected as part of the quality
assurance processes to ensure that the damage was successfully repaired and no repair
limits are exceeded. During reassembly of the engine, the blades are inspected again for
any transportation or handling damages that might have occurred between the repair shop
and the assembly line.

2.1.1. Parameters Affecting Visual Inspection

The FAA published a list of factors affecting visual inspection, namely inspection
personnel qualifications and training, inspection area access, lighting, pre-cleaning and the
working environment [20]. In [15], additional factors impacting the inspection performance
were gathered, which were grouped into task-related, individual, environmental, organisa-
tional and social factors. More recently, Aust and Pons [21,22] applied 6 M categorisation to
group impact factors that affect borescope inspection. While the importance of those factors
is generally accepted, it remains difficult to quantify them. Few studies quantitatively
assessed the effect of some factors on dent and crack detection in composite panels [23–26].
The assessed factors included part-related and work-environmental parameters, including
surface colour and finish, part cleanliness, inspection distance and angle, and lighting.
Furthermore, the effect of personal factors such as professional qualification, training,
experience, education, visual capability, age and gender was evaluated. The cleanliness
factor, however, was only analysed based on artificially created dirt using soot and coffee
powder [24].

While those factors were analysed for the inspection of composites, the effect on blade
inspection might be changed due to several significant differences, including the operating
environment, complex part geometry, materials, surface finishes and defect types [19].

When it comes to metal parts, a study by See [27] analysed similar factors for the
inspection of precision manufactured parts. However, the defect types analysed were
mostly welding defects such as creases, cuts or puffiness, and the parts were in new and
clean condition.

2.1.2. Inspection Performance

The assessment of different inspection tasks, such as the inspection of subsea structures
and pipelines [28], piston rings [29], highway bridges [30], acoustical tiles [31] and precision
manufactured parts for nuclear weapons [27], showed detection accuracies of 53%, 67%,
52%, 76%, and 75%, respectively. Studies on inspection accuracies within the aviation
domain presented detection rates of 68% for the visual inspection of aircraft fuselage [32],
42% in cargo bay inspection [33], and 57–98% for the magnetic particle inspection of landing
gear components [34]. The main focus in this industry is on crack and dent detection,
predominantly in composite materials, and thus inspection results are commonly reported
as probability of detection (PoD) curves, i.e., the chance of defect detection depending on
the defect size [23–26,35].

2.2. Eye Tracking

Eye tracking is a non-invasive method using near-infrared light and cameras to
record the position and movement of the eye in the form of gaze points (x/y-coordinates),
fixations (dwell times), fixation sequence (gaze paths, also referred to as the attentional
trajectory), number of fixations and saccades [36]. Monitoring may be monocular or
binocular, screen-based or through wearable glasses [37,38]. The technology has improved
in accuracy and usefulness [39–41], enabling widespread application. Examples of areas
of application are health and safety [36], retail [42,43], medical [44–46], education [47–49],
neuroscience and psychology [50,51], marketing and advertisement [52], conservation and
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animal welfare [53], construction [54], automotive [55], aerospace [54,56], maritime [54],
consumer electronics [57,58], tourism [59] and security [60]. Eye tracking helps illuminate
the visual processes of perception [36,61], task-specific human behaviour [62] and cognitive
processing during complex tasks [62,63]. It is also useful for training purposes [64,65] to
assess proficiency [51] and compare levels of expertise [36].

A closer look at the aviation industry revealed that eye tracking was predominantly
used in flight simulators to access and monitor pilot performance in different situa-
tions [56,66], such as flying in challenging conditions [67,68], landing [69,70], navigat-
ing [71] and the failure of cockpit instruments [72]. Most of these studies compared the
performance of expert pilots with learners. Other research tested the usability and effects
of new cockpit instruments [73,74] and changed cockpit layouts [75]. An interesting work
in that area is the attempt to use eye tracking as an input to control the aircraft [76]. Pilot
training is another well-studied area in eye tracking research [77–79]. Only a few studies
applied eye tracking to scanning and decision-making tasks outside the cockpit, including
air-traffic control [80,81] and airport luggage screening [82–84].

The two main areas in which eye tracking has been used to explore visual search
and diagnostics tasks are the medical [85] and manufacturing industries [86]. While in
healthcare, the ‘inspection’ is related to the condition assessment of living beings, in the
production industry, it refers to the inspection of parts. The assessment of the human body
can be considered as being more complex than the quality assessment of manufactured
parts, since no human or medical condition is identical. Nonetheless, they involve a similar
procedure, including task initiation and access of the area to be assessed, followed by a
systematic search for any anomalies or alarming conditions, and a detailed examination [87].
Subsequently, a decision as to whether this condition is critical and how it must be treated
has to be made. Due to the similar procedure, the findings of one research area might be
interesting for the other.

Sometimes, the inspection and decision can be made on the actual (body) part, while
other times, it must be made based on images or videos due to restricted accessibility,
e.g., borescope inspection in an industrial context, or X-ray, mammography or CT scan
in healthcare [88–91]. When it comes to inspections as part of the quality management
system in manufacturing, eye tracking was applied to evaluate the defect detection of sheet
metal [92,93], porcelain plates [86], empty bottles [94], woven fabrics [86], integrated circuit
chips [95], tapered roller bearings [86], tin cans [86] and electrical edge connectors [86].

Only one research project was found that applied eye tracking to inspection within the
aviation maintenance domain. Those researchers published several papers on the develop-
ment and evaluation of advanced eye tracking technology, using a virtual reality (VR) eye
tracker for inspection training in a three-dimensional aircraft inspection simulator [96–99].
The inspection task involved the search for damaged conduits, cracks and corrosion in an
aircraft cargo space. The effect of cognitive feedback from the eye tracker on inspection
training improvements was assessed [96]. A decrease in fixations and search time was
presumed to indicate an improved visual search strategy. While the authors of the earlier
publications stated that the detection accuracy (number of detected and missed defects)
was another metric used to measure the effect of training, the results were not reported [96].
Only a later publication reported on the performance of novices before and after training,
with inspection accuracies of 13.77% and 42.27%, respectively [33].

2.3. Gaps in the Body of Knowledge

The inspection performance for operational defects such as foreign object damage
(FOD) on engine components has yet not been quantified. The inspection of such com-
ponents is challenging due to the dirty part condition. Previous attempts were made to
assess the cleanliness effect in composite panel inspection [24,25]. However, the material
shows different types of defects that were introduced post hoc and manually by the re-
searcher [24]. Furthermore, the cleanliness factor was only analysed based on artificially
created dirt using soot and coffee powder. None of the previous studies applied eye track-
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ing to analyse the underlying cognitive and attentional processes. Only one research group
used eye tracking for inspection training for aircraft cargo bays in a virtual maintenance
environment [33,96]. However, no personal, environmental or stimuli-related factors were
addressed. Moreover, no work was found that assessed the visual inspection task of metal
parts with complex geometries such as engine blades and the impact factors affecting the
inspection task, e.g., cleanliness.

3. Materials and Methods
3.1. Research Objective and Methodology

The objective of this study was to examine the relationship between cleanliness and
the detectability of defects. We were particularly interested in how this is moderated by
operator demographics (e.g., expertise), and whether this changed for various types of
defects. The area under examination was compressor blades from the V2500 jet engine.

Photographs were taken of clean and dirty blades from a variety of engines with differ-
ent defects (including non-defective blades). Images were shown to industry practitioners
under eye tracking observation. The results were analysed statistically and qualitatively.

3.2. Research Sample (Stimuli)

The parts under examination were N = 12 high-pressure compressor (HPC) blades
of various engines from different airlines. HPC blades were chosen as they are close to
the engine intake and thus exposed to air containments and FOD. The different operating
environments lead to different blade conditions ranging from lightly to heavily dirty and
various types of deposits. The sample size of this research comprised twelve blades. Of
those twelve blades, four were non-defective and eight were defective. The blades covered
the most common types of defects including nicks, dents, and tears. All blades were
removed from service and scrapped. The parts were mutilated to remove serial numbers.
This did not affect the airfoil area under inspection. Of each part, two photographs were
taken—one before cleaning the part, i.e., in dirty condition, and one after cleaning. This
led to 24 images that were presented to 50 participants, resulting in a total of N = 1200
observations. The large dataset lends itself to statistical analysis.

The image acquisition was a two-stage process. First, images of the blades in dirty
condition were taken before the parts underwent a cleaning procedure. Subsequently, a
second set of images was taken of the now cleaned blades with the same camera setup and
settings. For the image acquisition, we used the same set-up as in [100]. This comprised
a self-made light tent and three LED ring-lights (LSY 6W manufactured by Superlux,
Auckland, New Zealand) placed on the left and right side and on the top of the light tent
for optimal illumination. A Nikon D5200 DSLR camera with Nikkor Macro lenses with a
focal length of 105 mm (both manufactured by Nikon Corporation, Tokyo, Japan) captured
the images with a resolution of 24.1 mega pixels in JPEG format.

After images of the blades in dirty condition were acquired, the blades went through a
cleaning process. First, high-pressure water spraying was used to remove loose or powdery
soil. Subsequently, the parts were soaked in an alkaline rust remover solution and dried. A
sample blade before and after cleaning is presented in Figure 2 below.
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Figure 2. (a) Dirty blade before cleaning; (b) blade after cleaning.

3.3. Research Population

We recruited N = 54 participants, 3 female and 51 male (MeanAge = 44.5; Standard
DeviationAge = 10.33 years) from our industry partner, a maintenance repair and overhaul
(MRO) shop for the V2500 aircraft engine. To compensate the technical limitations of the eye
tracking device [101] and avoid loss of data, exclusion criteria included any neurological
disorder, impaired vision, eye surgery, photochromic glasses or varifocals, eye movement
or alignment abnormalities, long and thick eyelashes, and excessive makeup.

From the staff meeting those criteria, the research population was purposely selected
in a way that meant different levels of expertise and experience were covered. This was
determined based on their job assignment and the number of years spent working in the
aviation industry, in particular in the field of blade inspection. The participants were
divided into three groups of 18 participants: (a) on-bench and borescope inspectors, here-
inafter referred to as inspectors, (b) power plant and production engineers referred to
as engineers and (c) aircraft tradespersons, from now on referred to as assembly opera-
tors. Participants had worked between 18 months and 35 years in the aviation industry(

MExperience = 17.7; SDExperience = 9.4 years
)
.

Four participants (two engineers and two assembly operators) were excluded from
the studies, as the eye tracker was unable to record sufficient gaze data of the participants
to meet the minimum data quality standard (eye recognition rate > 85%). This could
have been caused by, e.g., extensive blinking, some issues with their glasses, or facemasks
covering their eyes. Thus, when referring to the research population in the following
sections, it only refers to the 50 participants that met the requirements and where the eye
tracking data could be used for further analysis.

Before the actual eye tracking task began, some obligatory tasks had to be completed,
including filling out a questionnaire, providing informed consent, task introduction, partic-
ipant positioning and calibration of the eye tracker. The questionnaire was used to obtain
information about the participants’ demographics, pre-existing knowledge on visual in-
spection, in particular of blade, as well as previous work experience in the aviation industry.
An overview of the participants’ demographics can be found in Table 1. This information
was used to group the participants into three skill levels. We also asked for any medical
condition, such as eye surgery, to ensure that the person could participate without any risks.
The participants were introduced to the task and informed about their right to withdraw
from the study at any time. Consent was obtained, which allowed for the collection of their
individual data. The participants volunteered and received no compensation for their time.
All experimental procedures and materials were approved by the by the Human Ethics
Committee of the University of Canterbury (HEC 2020/08/LR-PS).
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Table 1. Demographics of participating research population (N = 50).

Inspectors (N = 18) Engineers (N = 16) Assembly Operator
(N = 16)

Gender

Male 17 15 15
Female 1 1 1

Corrected vision 10 10 5

Currently assigned
to inspection 17 0 0

Previously been assigned to inspection (how many years ago)

Never - 9 12
1 to 4 Currently 0 1
5 to 10 Currently 1 2
10 to 20 Currently 6 0
20 and more Currently 0 1

Work experience in the field in years

1 to 4 2 0 3
5 to 9 2 0 3
10 to 19 6 3 8
20 and more 8 13 2

Highest qualification

Trade certificate 10 3 13
Diploma 3 6 1
University degree 5 7 2

3.4. Eye Tracking Approach
3.4.1. Technology Setup

For this study, a Tobii Pro Spectrum (manufactured by Tobii AB, Danderyd, Sweden)
eye tracker was used to capture the participants’ eye movement. The device has a sampling
rate of 300 Hz, an accuracy of 0.3◦ and a precision of 0.06◦ at optimal conditions, i.e., at a
distance of 65 cm [102]. Two cameras (one per eye) captured stereo images of both eyes of
the participants (binocular). The average gaze sampling rate was 93.3% (SD 6.1%).

In addition to the Tobii Pro Spectrum, the eye tracking setup consisted of a desktop
computer (HP Elitedesk with Intel i7 3.4 GHz processor and 16 GB RAM) with Windows
10 Enterprise operating system, a standard cable keyboard and a laser mouse (Figure 3).
For the presentation of the images, we used the 24.8-inch built-in LED screen (EIZO
FlexScan EV2451) of the eye tracker with a resolution of 1920 × 1080 pixels. The monitor
was mounted on top of the eye tracker that was attached to a stand (desktop mount).
Equipment of the University of Canterbury was used.

A dual screen setup was chosen for several reasons. First, it was easier for the
facilitator launching Tobii Pro Lab, opening the PowerPoint presentation, starting the
calibration and storing the collected data. Additionally, it allowed one to monitor the
participants’ eye movements in real time and take notes during the study. Most important
was the compliance with the COVID-19 pandemic health and safety measures such as
social distancing. The study complied with all health and safety regulations of our industry
partner and followed the manufacturer’s ‘health and safety recommendations for data
collection during the COVID-19 pandemic’, which is in accordance with the U.S. Center for
Disease Control and Prevention (CDC) and Occupational Safety and Health Administration
(OSHA) [103]. Facemasks did not affect the eye tracking results as long as the masks did
not cover the line of sight between the participants’ eyes and the eye tracker [104].
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Figure 3. Eye tracking setup with dual monitor for real-time assessment.

3.4.2. Stimuli Presentation

The images were presented in a PowerPoint presentation, whereby the participants
could navigate through the presentation at their own speed. For this research, the time each
participant had to perform the inspection was not limited, since in practice, the accuracy of
the safety critical inspection task is more important than the speed. However, participants
could not go back to review an image. The presentation was created with PowerPoint 2016
version 16.0.4266.1001 (developed by Microsoft, Redmond, WA, USA). The main benefit
of PowerPoint is the ‘pen tool’ [105]. This function allowed the participants to mark any
defects they found, which represents the real situation with the exception that the marking
is not physically on the blade but digitally saved on the image. This enabled the collection
of additional information about the detections and location of the findings.

A fundamental rule of eye tracking is that the stimuli should be represented as close
as possible to the real-world situation which is trying to be assessed. This will make the
findings more applicable and allows for generalisation and valid conclusions [106]. For
piece-part inspection, the engine manual permits the use of threefold to tenfold magnifica-
tion as an aid to examine any condition found. For this reason and due to the relatively
large distance between the participants’ eyes and the computer screen that should be
preserved at all times, we decided to present the parts with a threefold magnification. The
resulting image sizes on the screen measured 975 by 645 pixels, or 24 by 15.9 cm. This
corresponds to 39.8◦ by 26.4◦ visual angle. All images were presented in the centre of
the screen.

The images were presented in random order in terms of stage numbers, defect types,
non-defective and defective, and dirty and cleaned parts. The dataset presented in this
paper comprises 24 images and is a subset of a bigger study comprising 120 images. Due
to the size and variety of the dataset, it was assumed that memory effects did not occur, i.e.,
participants were not able to recognise the same blade in dirty and clean condition. This
was proven in another sub-study, results not reported here, whereby the exact same images
of the same parts and under same conditions was shown to the participants twice. A high
variation in the participants’ detection performance indicated that they did not remember
seeing the picture before, nor their previous inspection decision for that blade.

3.5. Data Collection

First, the eye tracking device was positioned 65 cm in front of the participants and
adjusted to their height. This was followed by a calibration of the eye tracker. After a
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successful calibration, the main inspection task began. The images were shown to the
participants in random order, and they were asked to search for and locate any defects that
could warrant an engine tear down and scrapping or repairing of the blade. When such
a defect was found, the participants were instructed to draw a circle around it. Once the
participants were confident that they found all defects on a blade, they could advance to
the next image. The participants had as much time as they needed, but could not go back
and revisit an image. An exit survey was conducted which asked what the participants
found difficult, whether they had any particular search approach, and how confident they
were with their performance.

3.6. Determination of Ground Truth

The acquired piece-part images were presented to two bench-inspection experts who
routinely inspect blades. The first one was asked to identify and mark all safety critical
defects. The second inspection expert was then asked to confirm this determination. In
case of a deviation between the two, the actual part and the engine manual was consulted,
and the defects were measured before a final decision was made. This formed the ground
truth against which the individual inspection results of the participants were compared
later on. After determining the ground truth, the two inspection experts were excluded
from the subsequent tasks.

3.7. Data Analysis

The data were analysed to test Hypotheses H1 and H2 (Table 2). The independent
variables were the cleanliness of the blade, defect type, participants’ level of expertise, work
experience, previous experience in inspection, education, visual acuity, and confidence
rating. The dependent variables included inspection accuracy, inspection time, and search
pattern. All variables were statistically analysed using TIBCO Statistica, version 13.3.0
(developed by TIBCO, Palo Alto, CA, USA).

Table 2. Research hypotheses.

Hypothesis

H1 Inspectors perform better in terms of (a) inspection accuracy and (b) inspection time
than non-inspecting staff.

H2 Cleaned blades lead to improved inspection performance measured in (a) inspection
accuracy and (b) inspection time, compared to blades in dirty condition.

The inspection results (decision) of each participant were extracted from the eye
tracking data and PowerPoint presentations and compared to the ground truth to determine
whether their decision was correct or incorrect. The four possible inspection outcomes
are true positive (TP), false positive (FP), true negative (TN) and false negative (FN). An
overview of all metrics used in this study can be found in Table 3. The primary output
metrics selected for reporting in this paper were Inspection Accuracy and Inspection Time.

The Tobii Pro Spectrum collected a variety of data on eye movement, including
gaze points, fixations (dwell times), the number of fixations and saccades. Additionally,
participant actions such as mouse clicks and key presses were recorded. Tobii Pro Lab
software version 1.145 [107] was used for the subsequent analysis of the collected data and
the creation of additional metrics, such as times of interest (TOIs).

To visualise the gaze movements of the participants, we used the fixations in defined
TOIs to generate heat maps and gaze plots. The latter enabled us to analyse the search
patterns and to understand whether there was a correlation between the search strategy
and the performance of the participants.
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Table 3. Metrics to evaluate the inspection performance.

Metrics Description

Decision
Determination whether a part is defective or non-defective. Takes the
value of one (1) when a correct decision was made and zero (0) when
an incorrect decision was made.

True Positive (TP) Blade was correctly identified as defective (hit).

False Negative (FN) Blade was incorrectly identified as non-defective and thus the defect
was missed (miss).

False Positive (FP) A non-defective blade was incorrectly classified as defective (false
alarm).

True Negative (TN) A non-defective blade was correctly classified as non-defective
(correct acceptance).

Inspection Accuracy (IA)
Measure for the inspection performance taking into account the
correct decisions (TP and TN), and the total population; also referred
to as Decision Accuracy.

Improvement Rate (IR) Inspection accuracy improvement between dirty and clean condition.

Inspection Time (IT) Time needed to inspect a blade.

Confidence Rating (CR) Self-rate confidence level of participant on a scale from one to five.

Areas of interest (AOIs) were not used in this study due to the small size of the defect
and in consideration of the accuracy and precision of the eye tracking hardware, which
would have resulted in high selectivity with the risk of not collecting meaningful data. The
manufacturer proposed the ‘1 degree’ guideline, i.e., the AOI shall not be smaller than one
degree visual angle, which translates to 50 × 50 pixel on the computer screen [108,109].
Others reported that AOIs smaller than 10% of the stimuli height and width or smaller
than 200 × 200 pixels should be avoided [110,111]. Rather than use AOIs, the researchers
instead examined the gaze plots and heat maps around each defect to determine how much
attention it was given. The time aspect was determined by the heat maps (intensity of
colour), and quantitatively measured as the average time per image.

4. Statistical Results

There are two dependent variables of interest for inspection performance, namely
Inspection Accuracy and Inspection Time. These are each analysed in turn.

4.1. Inspection Accuracy

The inspection accuracy describes the ratio of correct decisions (true positives and
true negatives) divided by the number of blades and is presented as a percentage. The
inspection accuracies of the different expertise groups are presented in Table 4 for dirty
and clean blades. The average improvement describes the percentage change from dirty
to clean blades to demonstrate the direction and size of the effect. This was calculated for
each participant first, and then the mean and standard deviation for each expertise group
were formed.

Table 4. Inspection accuracies by expertise group and cleanliness (in percentages).

Expertise Dirty Blades
M (SD)

Clean Blades
M (SD)

Improvement
M (SD)

Inspectors (N = 18) 68.1 (13.8) 87.0 (10.4) 33.6 (33.1)
Engineers (N = 16) 63.0 (10.5) 87.0 (8.03) 42.5 (32.8)

Assembly Ops. (N = 16) 69.3 (10.4) 86.5 (11.3) 29.0 (32.8)
All participants (N = 50) 66.8 (11.8) 86.8 (9.83) 35.0 (32.7)



Sensors 2021, 21, 6135 11 of 40

The results indicate that on average, the performance improved for all three groups of
expertise, with engineers improving the most and assembly operators the least.

4.1.1. Hypothesis Testing

Hypothesis H1a. Inspectors perform better in terms of inspection accuracy than non-inspecting
staff.

This hypothesis was tested by generalised linear/non-linear Logit testing with Ex-
pertise as the categorical variable, and Decision as the dependent variable. The statistical
analysis (Table 5) shows that Expertise is not a significant variable for Inspection Accuracy
(Decision) with photographed defects and unlimited inspection time. However, it shoud
be noted that Expertise was found to have a significant correlation with Inspection Time, as
shown later in Section 4.2.

Table 5. Statistical analysis of the effect of expertise on the inspection accuracy (parameter estimates and odds ratios). The
probability value (p) is of the odds ratio.

Effect Reference Level Level of
Effect Estimate Wald. Stat Odds

Ratio
Lower CL

95%
Upper CL

95% p

Expertise Assembly Operator Engineer −0.104208 1.1711 0.853871 0.612345 1.190663 0.279170
Expertise Assembly Operator Inspector 0.050441 0.2794 0.996679 0.716831 1.385778 0.597094

Parameter estimates and odds ratios. Distribution: BINOMIAL. Link function: LOGIT. Modelled probability that Decision = 1.

The finding that trained inspectors do not perform significantly better than assembly
operators or engineer is surprising. This might be due to the somewhat new task and
environment: while inspectors perform visual checks on a daily basis, they would normally
hold the part in their hands as opposed to making a serviceability decision based on an
image. The latter only applies to borescope inspectors (N = 2). Engineers and assembly
operators in turn are not assigned to inspection tasks, and thus the situation was new for
them, especially for assembly operators. Another explanation for the non-significance of
the level of expertise on the decision might be that inspectors become complacent, while
non-inspecting staff are not familiar and thus perform the task slower, but potentially in a
more detailed and rather cautious manner (see Section 4.1.2). It might also show the best
achievable inspection performance of humans in general, using solely their vision.

Hypothesis H2a. Cleaned blades lead to improved inspection performance measured as inspection
accuracy compared to blades in dirty condition.

This hypothesis was also analysed by generalised linear/non-linear Logit testing, with
Cleanliness and Decision being the categorical and dependent variable, respectively. The
results shown in Table 6 highlight a significant correlation between the part cleanliness and
decision of the part serviceability. The odds ratio shows that detecting a defect on cleaned
blades is over three times more likely than detecting the same defect on dirty blades. The
comparable one-way ANOVA result is F(1, 1198) = 68.455, p < 0.001.

Table 6. Statistical analysis of the effect of cleanliness on the inspection accuracy (parameter estimates and odds ratios). The
probability value (p) is of the odds ratio.

Effect Reference
Level

Level of
Effect Estimate Wald. Stat Odds

Ratio
Lower CL

95%
Upper CL

95% p

Cleanliness Dirty Clean 0.578399 61.4089 3.179736 2.380880 4.246631 0.000000

Parameter estimates and odds ratios. Distribution: BINOMIAL. Link function: LOGIT. Modelled probability that Decision = 1.
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Although this might be self-explanatory, it should be noted that for ‘clean’ blades,
all the pre-existing deposits were removed in the cleaning process. The results support a
conclusion that clean blades provided fewer distracting features, and no deposits obscured
the defect, thereby leading to higher inspection accuracy. The assumption that deposits
highlight the defect and thus improve the detectability was not supported by this study.

4.1.2. Statistical Model for Inspection Accuracy

The situation is more complex than the simple hypothesis test implies, because there
are other factors that may affect the inspection performance. Thus, a statistical model was
constructed around the Inspection Accuracy. The variable Decision takes values of 1 (correct
decision) or 0 (incorrect decision). Hence, an appropriate statistical analysis is Logit Odds
Ratio. A statistical model was built with Inspection Accuracy (Decision) as the dependent
variable. The categorical factors were Expertise, Visual Acuity, Education, Previous Inspection
Experience, Cleanliness, Defect Type, and Confidence Rating. The continuous predictors were
Work Experience and Inspection Time. Due to the uneven distribution of male (N = 47) and
female (N = 3) participants, a statistical analysis of gender was not performed. It should
be noted that the following variables are demographic parameters of the participants and
not recorded at the level of individual blades: Work Experience; Confidence Rating; Expertise;
Visual Acuity; Education; and Previous Inspection Experience. Additionally, a test of all effects
was performed. The results are shown in Table 7.

Table 7. Statistical model around the inspection accuracy (Wald test and odds ratios). The probability value (p) is of the
odds ratio. Significant factors are indicated by an asterisk *.

Effect Reference Level Level of
Effect Wald. Stat Odds

Ratio
Lower CL

95%
Upper CL

95% p

Work Experience 0.23356 0.994938 0.974668 1.015629 0.628900
Inspection Time 0.10953 0.997451 0.982491 1.012640 0.740683

Confidence
Rating 0.62841 1.087622 0.883665 1.338654 0.427940

Expertise Assembly Operator Engineer
0.53783

1.167187 0.758731 1.795531 0.477357
Expertise Assembly Operator Inspector 1.036288 0.667100 1.609792 0.832337

Visual Acuity No glasses Glasses 1.40159 0.821929 0.594074 1.137178 0.236457
Education Trade Cert. Diploma

1.22683
1.214756 0.802685 1.838372 0.615918

Education Trade Cert. Bachelor 1.210193 0.804527 1.820406 0.631881
Prev. Inspection

Experience No Yes 0.23881 0.901183 0.593719 1.367870 0.625066

Cleanliness * Dirty Clean 62.72209 0.305089 0.227422 0.409279 0.000000
Defect Type * No damage Tear

20.75906
0.451933 0.245067 0.833419 0.041402

Defect Type * No damage Nick 0.533789 0.375063 0.759687 0.028675
Defect Type * No damage Dent 1.068135 0.755904 1.509335 0.001932

Test of all effects and odds ratios. Distribution: BINOMIAL. Link function: LOGIT. Modelled probability that Decision = 1.

Apart from Cleanliness (see Section 4.1.1), the only other factor that was significant for
the Inspection Accuracy was the Defect Type, F(3, 1196) = 7.0352, p < 0.001 (ANOVA results in
Figure 4, please note that this ignores cleanliness as a factor). However, not all defect types
were equally detectable. Nicks and tears showed a higher chance of detection compared to
dents, independent of the blade cleanliness. Furthermore, participants generally showed a
lower performance on non-defective blades, with no significant difference between clean
and dirty blade condition.
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Figure 4. Effect of defect type on inspection accuracy.

The unforeseen finding is that all demographic variables that are somewhat related to
the skill level of the participants, including Expertise, Work Experience, Previous Inspection
Experience and Education, had no significant effect on the inspection outcome. In addition
to the before-mentioned reasons, this could stem from the nature of the industry, whereby
all employees are aware of the negative consequence that a missed defect might have.

Other non-significant factors were Inspection Time, Confidence Rating and Visual Acuity.
The most surprising one is Inspection Time. The statistical analysis revealed that a longer
inspection time did not automatically lead to a higher accuracy. This might have been
caused by a poor search strategy (see Section 5.7), insecurity, task novelty or excessive de-
mand. It is also interesting that participants could not make a reliable estimate of their own
ability, i.e., their confidence is not a dependable self-judgement of their performance. The
results show that self-confidence is an unreliable indicator of both inspection accuracy and
inspection time. The implications of this, from the perspective of an industrial employer,
are that human performance on this task needs to be measured rather than determined
by self-report. Furthermore, from a training and continuous-improvement perspective, it
would seem necessary to de-bias operators about their ability.

4.2. Inspection Time

The inspection time was measured for each participant and each blade. It represents
the time from the first appearance of the image on the screen to the moment the participant
advanced to the next blade. The results for each expertise group and cleanliness type are
shown in Table 8. Note that lower inspection times are preferable from an operational
perspective.

Table 8. Inspection times by expertise group and cleanliness type (in seconds).

Expertise Dirty Blades
M (SD)

Clean Blades
M (SD)

Time Savings
M (SD)

Inspectors (N = 18) 11.914 (4.302) 10.390 (3.827) 1.524 (2.263)
Engineers (N = 16) 17.773 (7.315) 16.757 (6.124) 1.016 (3.632)

Assembly Ops (N = 16) 17.400 (8.341) 15.001 (7.944) 2.399 (2.723)
All participants (N = 50) 15.545 (7.189) 13.903 (6.593) 1.641 (2.899)
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The results show that the inspection time was reduced on average by 10.4%, 3.1%, and
12.9% for inspectors, engineers, and assembly operators, respectively. On average, across
all participants, clean blades led to 8.9% time savings.

4.2.1. Hypothesis Testing

Hypothesis H1b. Inspectors perform faster than non-inspecting staff.

The hypothesis for time was analysed using ANOVA, with Inspection Time as the
dependent variable and Expertise as the categorical variable. There was statistical support
for this sub part of the hypothesis, F(2, 1197) = 47.238, p < 0.001 (Figure 5). Inspectors were
on average 1.54 times faster than engineers and 1.45 times faster than assembly operators.
There was no significant difference between engineers and assembly operators.

Figure 5. Effect of expertise on inspection time.

As expected, inspectors performed the task faster than non-inspecting staff. This could
either be caused by a better search strategy (see Section 5.7) allowing them to find the defect
faster, or the fact that they were able to make a quick decision based on their experience,
while non-inspecting staff required additional time to make the final determination.

Hypothesis H2b. Cleaned blades lead to improved inspection performance measured in inspection
accuracy compared to blades in dirty condition.

An ANOVA was performed for this hypothesis, this time with Cleanliness as the
categorical factor and Inspection Time as the dependent variable. All participants performed
faster on clean blades compared to dirty ones, F(1, 1198) = 8.0772, p < 0.005 (Figure 6).
While the average time saving of approximately 1.5 s per blade does not seem much, the
time adds up considering there are several hundred blades in a single engine.
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Figure 6. Effect of cleanliness on inspection time.

Deposits are often confused with edge damage or can hide critical defects. Thus, dirty
blades in particular necessitate a detailed assessment. With deposits being washed off on
clean blades, the inspection was faster, as such detailed inspection is no longer required.

4.2.2. Statistical Model for Inspection Time

A generalised linear/non-linear normal log model was constructed around Inspection
Time as the dependent variable, and the following independent variables: the categorical
variables were Expertise; Cleanliness; Defect Type; Visual Acuity; Education; Previous Inspection
Experience; and Decision. The continuous variables were Work Experience and Confidence
Rating. The results are presented in Table 9.

Table 9. Statistical model around the inspection time (Wald test and parameter estimates). The probability value (p) is of the
odds ratio. Significant factors are indicated by an asterisk *.

Effect Reference Level Level of
Effect Wald. Stat Estimate Lower CL

95%
Upper CL

95% p

Work Experience 0.2720 −0.001457 −0.006932 0.004018 0.601996
Confidence

Rating 0.0786 −0.007156 −0.057186 0.042874 0.779215

Expertise * Assembly Operator Engineer 11.1835 0.104217 0.043137 0.165298 0.000825
Expertise * Assembly Operator Inspector 69.1614 −0.286814 −0.354409 −0.219218 0.000000

Visual Acuity * No glasses Glasses 56.4609 0.154085 0.113893 0.194276 0.000000
Education Trade Cert. Diploma 2.3705 0.051595 −0.014086 0.117275 0.123651
Education Trade Cert. Bachelor 0.0172 0.004301 −0.059895 0.068497 0.895535

Prev. Inspection
Experience No Yes 0.0072 −0.002031 −0.049062 0.045001 0.932561

Cleanliness * Dirty Clean 11.5048 −0.061458 −0.096971 −0.025945 0.000694
Defect Type * No damage Tear 13.0585 0.148160 0.067801 0.228518 0.000302
Defect Type * No damage Nick 4.2438 0.056915 0.002765 0.111064 0.039393
Defect Type No damage Dent 3.3302 −0.058704 −0.121753 0.004345 0.068017

Decision 0 1 1.1045 0.023340 −0.020188 0.066868 0.293284

Test of all effects and parameter estimates. Distribution: NORMAL, Link function: LOG.
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Results show that Work Experience, Confidence Rating, Education, Previous Inspection
Experience, and Decision were not significant. Instead, the significant variables were Expertise,
Visual Acuity, Cleanliness and Defect Type. Expertise and Cleanliness were discussed earlier
and are not repeated here.

In the case of Defect Type, the significant effect was only for tears and nicks, while the
time required for dented blades was not significantly different to the one of non-defective
blades, F(3, 1196) = 8.3188, p < 0.001 (ANOVA results in Figure 7; please note that this
ignores cleanliness as a factor). Surprisingly, the inspection times for nicks and tears were
longer than for dents, although the former are more salient defect types. A look at the
inspection accuracy for the different defect types (as presented in Section 4.1.2) revealed
that dents had a high false negative rate (often missed), which could be the reason for a
shorter inspection time. However, there was no significant correlation between Inspection
Accuracy and Inspection Time.

Figure 7. Effect of defect type on the inspection time.

It came as a surprise that visual acuity had an effect on the inspection time, F(1, 1198)
= 38.478, p < 0.001. Participants without glasses were on average 3.5 s faster than the ones
with corrected visual acuity. This might be attributed to the study being screen-based and
wearing glasses might have caused issues such as glare or reflections either on the screen
or from the ceiling lights.

It is worth briefly commenting on the observation that Inspection Accuracy was not
correlated with Inspection Time, F(2,1194) = 0.05997, p = 0.94. While the average inspection
time does vary greatly with expertise (inspectors are much quicker than the other roles),
within any one group, the time taken for correct vs. incorrect decisions is about the same.
This implies that people looked at the images for the same length of time.

5. Evaluation of the Eye Tracking Data
5.1. Observations about the Experimental Arrangements

Given that there was no time limit and participants could inspect images at their
own pace, there were no complaints about time pressure. This coincides with the findings
of [27]. However, a frequently made comment was that the task was highly repetitive, and
thus tedious and tiring. This emphasises the challenges in visual inspection tasks and the
importance of human factors such as fatigue or complacency, which implies a high risk
that can cause incorrect detections and decisions. It confirms the need to investigate those
factors further and the impact they have on the inspection performance.
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It was observed that during the inspection task, some participants moved and tilted
their head when trying to get a better perspective of the blade. While doing so, they
expressed the need to see the blade from a different perspective to get a better depth
perception and to make a final decision. However, since they were presented with a static
image, the head movement did not improve their view or performance. Another frequently
made comment was that the participants would like to rub off the deposits with their
fingers to be able to see whether the dirt was hiding any damage.

The exit survey revealed that engineers and assembly operators in particular found
it challenging to detect unfamiliar defects. Moreover, they stated that it was difficult to
make a decision on whether a discovery was acceptable when they were unfamiliar with
the allowed defect limits. For the dirty blades, participants commonly mentioned that it
was difficult to differentiate between deposits and defects, in particular those built up on
the leading and trailing edge.

Several inspectors made a comment on the challenge to judge the condition of a
blade based on an image, while in practice they would hold that part in their hands.
Handling enables them to view the blade from different angles, and also feel it. This
finding implies that—although it is called a visual inspection task—it is not purely visual,
but also encompasses a tactile component, whereby the inspectors would feel along the
edges for any deviations in shape and for rough or uneven surfaces. This would be an
interesting area for future research and could be performed under eye tracking conditions,
perhaps using wearable eye tracking glasses. Optimal viewing perspectives could be
extracted from such a study.

5.2. Visual Search Strategies

There was a tendency across all participants, irrespective of the blades in question,
to focus on inspecting the edges of the blade as opposed to the centre of the airfoil. This
could be an intentional or intuitive behaviour when inspecting blades, with all recruited
participants working at an engine MRO organisation and knowing that the most critical
defects are defects on the edges.

Participants tended to inspect (scan) the blade more than once to ensure that they
had not missed a defect. Generally, engineers and assembly operators performed more
scans than experienced inspectors, and thus needed more time for their inspection (further
discussed in Section 5.7). When doing so, they may or may not have an explicit search
strategy. It was found that there are common ‘paths’ they follow—mostly lines. These
could be the leading or trailing edge, along the platform, the contour of the root or any
striking features, such as diagonal lines formed by deposits on the airfoil (Figure 8).

Figure 8. Blade with deposits forming a diagonal line that attracts the participants’ attention.
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5.3. Example of a Structured Search

An example of a structured search is shown in Figure 9. The participant started with
the inspection at the corner of the platform in the centre of the image, and then moved down
to the root and back up to the platform, which was inspected from left to right (Figure 9a).
The left to right movement is a natural preference of most participants, possibly since it
aligns to their usual reading direction [112]. In a second step (Figure 9b), the participant
inspected the trailing edge and the tip of the blade until they stopped and dwelled at
the location of the first defect (gaze plot number 9). The longer dwell time is visualised
by the size of the gaze plot. After identifying this defect, the participant continued the
search, and their eyes went back to the trailing edge and dwelled at the second defect
(gaze plot 15 in Figure 9c). Gaze plots 12, 13, and 14 indicate that the neighbouring regions
were inspected first before a decision was made on whether the finding is a defect or an
acceptable condition. The final eye movement went down the leading edge (Figure 9d)
where nothing significant was found (small gaze plots). Interestingly, the leading edge was
not inspected any further (area between gaze plot 5 and 9).

Figure 9. Example of a structured search shown in two-second intervals: (a) shows the first 2 s, (b) shows the first 4 s,
(c) shows the first 6 s, and (d) shows the full 8 s.

This example is noteworthy, since the participant did not move their eyes straight to
the obvious defect, but rather followed a structured search strategy to ensure no defect
was missed.

5.4. Types of Inspection Errors Leading to Missed Defects

In inspection, there are three different types of errors that can occur and cause a
critical defect to be missed, namely search error, recognition error and decision error. It is
important to understand which type of error occurred in order to address it by appropriate
means [113]. A search error, or scanning error, happens when a participant fails to look at
the defective region of the blade [114,115]. This can be easily seen in the eye tracking data
when there are no fixations on the defective area. If the participant failed to fixate on the
defective area, then a recognition of the defect will not happen and consequently a decision
cannot be made.

A recognition error in contrast arises when the participant fixates on the defective
region, but the defect is not recognised as relevant enough for further consideration in the
decision-making processes. One method to differentiate between successful and failed
recognition of a defect is to look at the fixation durations and apply a quantitative threshold.
If the fixation duration is below the threshold, it is considered as failed recognition, whereas
a fixation duration above the threshold indicates a successful recognition. Common fixation
thresholds range from 600 ms [116] to 1000 ms [117]. A recognition error might be caused
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by low prevalence and low salience [118], i.e., the defect might be rare and might not be
visually prominent in terms of shape, contrast or location on the blade.

One drawback of the fixation duration method is that a longer fixation time can also
be associated with difficulties in the interpretation of the finding. Thus, Brunyé et al. [114]
suggested that additional evidence (e.g., think-aloud protocols) is necessary to be truly
certain that a feature was successfully recognised. In this work, we introduced a stimuli
presentation using Microsoft PowerPoint and the pen function thereof. This enabled us
to gather the evidence needed (defect markings) to determine whether a condition was
detected and classified as a defect correctly or whether it was solely looked at. Based on
the eye tracking data and inspection results recorded in PowerPoint, the type of error can
be determined using the flowchart in Figure 10.

Figure 10. Flowchart for defining the type of error in the inspection task.

A poor inspection would show a long inspection time with many gaze plots being
below the threshold fixation duration. This would indicate a wandering of the eye without
knowing where to look at and not perceiving any important information. The likelihood
of a defect being missed in this situation is relatively high. Thus, a longer inspection time
does not necessarily mean a more comprehensive inspection.

5.5. Improved Inspection Accuracy for Clean Blades

The statistical analysis in Section 4 revealed that there is a correlation between in-
spection accuracy and cleanliness, and between inspection time and cleanliness. Next, we
analysed the eye tracking data in the form of heat maps and gaze plots (Figure 11) for the
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same blade in dirty and clean condition to compare them and understand any variations
that might explain the measured differences in inspection accuracy and inspection time.

Figure 11. A blade with two defects (indicated by red circles) was presented to participants in
(a) dirty and (b) clean condition. The heat maps (c,d) and gaze plots (e,f) were created.

The heat maps show a clear difference between the dirty and clean blade. The dirty
blade received geometrically dispersed attention, and the heat map shows that almost the
entire blade was comprehensively inspected, with exception of the root. Nonetheless, two
areas stood out—one at the bottom left of the airfoil close to the platform radius and one on
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at the centre-left of the airfoil close to the leading edge. None of them coincided with the
actual defects. In contrast, in the heat map of the cleaned blade two heat spots in warmer
colour (red and orange) clearly stand out, which both align with the defective locations.

For the sample blade shown in Figure 11, the inspection time for the dirty blade was
18.094 s for 63 fixations, while the time for the cleaned blade was 11.453 s for 35 fixations.
Hence, the gaze plots revealed that there were almost double the number of fixations
on a dirty blade in comparison to a cleaned one, and nearly double the time. Thus, the
inspection of the blade in dirty condition was 58% longer than in clean condition. The
disorganised eye movement, increased fixations and longer fixation durations indicate a
higher workload and decision uncertainty, and thus may imply a higher risk of missing a
critical defect or making an incorrect decision. Those findings align with other research
results, whereby an increase in the fixation parameters implied a higher level of complexity
and cognitive load [63,114,119–124]. Hence, it can be concluded that dirty blades are more
challenging to inspect.

The visualisations of the eye tracking data shown in Figure 11 are of the same par-
ticipant inspecting the same blade in dirty and in clean condition. It can be seen that the
crisscross search pattern did not significantly change. This indicates that the underlying
search strategy is less affected by the cleanliness but rather depends on the participant. A
comparison of the different search strategies is discussed in Section 5.7.

While the presented example shows the results of an assembly operator, the effect of
reduced fixations and inspection time is consistent across the different levels of expertise
and is further discussed in Section 5.7.

5.6. Decreased Inspection Accuracy for Clean Blades

Despite a general significant improvement in inspection accuracy from dirty to clean
blades, in a few cases and for one blade in particular, the detection rate decreased. While
eight participants (16%) performed better on the clean blade, the detectability of eleven
others (22%) decreased, and the remaining 31 participants (62%) performed equally well in
both conditions. Thus, participants tended to fall into two categories: the ones that were
equally accurate on clean and dirty blades (N = 31), and the others that had a more exclusive
preference for either clean or dirty blades (N = 19). To test this effect, the correlation between
the improvement in the detectability of this particular blade and the overall improvement
in detectability for all blades was analysed for each of the 19 participants. The results show
that the effect of a personal preference is significant, F(1,17) = 25.702, p < 0.001.

When looking at the images of the blade in dirty and clean condition (Figure 12a,b,
respectively), it becomes apparent that the airfoil defect (indicated by red circle) stands
out more on the dirty blade. The higher contrast between damage and airfoil in the dirty
condition might make this defect more visible and thus more likely to be detected [125].
The heat maps and gaze plots were created, and one example of an assembly operator,
who detected the defect in dirty condition but missed it when the blade was cleaned, is
shown in Figure 12c–f. The results revealed that the participant focused on the defect
in dirty condition for quite some time, while in clean condition their eyes briefly moved
over the defective location (indicated by small gaze plots). The short dwell time on the
defective location could be either caused by (a) the participant making a quick decision
with the outcome that the condition was not a defect, or (b) the participant not visually
recognising any relevant condition that needed further investigation. The extreme short
dwell times of less than 200 ms suggest that the latter might be the reason for missing
the defect (recognition error). Furthermore, it seems like something on the opposite edge
caught the participant’s attention. However, it remains unclear what might have caused
this, since there is no salient feature visible.
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Figure 12. A blade with an airfoil defect (indicated by red circle) was shown to the participants in
dirty (a) and clean (b) condition. The heat maps (c,d) and gaze plots (e,f) were created for an assembly
operator, who detected the defect in dirty condition but missed it when the blade was cleaned.

5.7. Comparison of Search Strategies between Expertise Groups

In the following example, we analysed the search patterns of the different expertise
levels. For a fair comparison, three representative participants (one of each expertise
group) were selected that had the same inspection results, i.e., each of them missed the
two defects on the dirty blade (Figure 13) but found both on the clean blade (Figure 14).
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The participants’ eye gaze was analysed qualitatively and quantitatively to assess any
deviations. The gaze plots show the trajectory of eye fixation and include both the sequence
(order of observation) and a qualitative measure of the time duration (diameter of circle).

Figure 13. Eye tracking results for dirty blade by expertise group.

From the eye tracking data, the inspection times were extracted and compared. The
comparison was made between the different expertise groups and the blade condition (dirty
vs. clean). All three participants—inspector, engineer and assembly operator—performed
a faster inspection on clean blades than on dirty ones, with a 41%, 24%, and 37% shorter
inspection time, respectively. Furthermore, the inspection time of the inspector, engineer
and assembly operator differed. The inspection of the dirty blade took the engineer 67%
longer than the inspector, and the assembly operator needed two and a half times longer
than the engineer and over four times longer than the inspector. The same effect was
observed with the cleaned blade, whereby the assembly operator required double the
amount of time than the engineer, who in turn needed twice as long as the inspector.
Consequently, the assembly operator was four times slower than the inspector. Thus,
although the inspection results were the same for all three participants, the study showed
that there was a significant difference in inspection times. A closer look at the respective
heat maps and gaze plots revealed that the participants applied different search approaches
and that different inspection errors occurred.

In the dirty condition, all three participants missed the defects—but for different rea-
sons. The heat map and gaze plot of the inspector (Figure 13) revealed that the participant
did not look at the defective area on the leading edge at all (search error). The defect on
the trailing edge, however (gaze plot 11), was looked at for quite some time, but it was
not determined as defective and thus a decision error occurred. Both the engineer’s and
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assembly operator’s eyes moved over both defective areas (gaze plots 4, 10, 11, and 3, 26,
55, respectively), but failed to recognise them as defective (recognition error).

Figure 14. Eye tracking results of the different levels of expertise group for the same blade shown in Figure 14 but in now
cleaned condition.

The heat maps of the clean blade (Figure 14) show that all participants found the
defects and that their eyes dwelled at the defective location for quite some time. The
successful detection was confirmed by their marking results. More interesting are the gaze
plots, which show the participants’ search paths. The inspection expert’s eyes quickly
focused on the defective area within a few fixations, even before the search process started.
This phenomenon was already observed in previous studies, such as in diagnostics of med-
ical images [126]. The researchers concluded that for experts, an initial holistic recognition
of a feature preceded the detailed search and diagnosis. Novices, in contrast, were more
attracted to salient features such as higher contrast, brightness or strongly pronounced
geometries. However, with increasing complexity (dirty blades), inspectors tended to
fall back into the same search pattern as non-inspectors and conduct a (more) structured
search first.

It stood out that in both conditions, dirty and clean, the inspector’s and engineer’s
search was much more structured and systematic, whereas the assembly operator scanned
almost the entire blade in an unorganised and random crisscross pattern. Furthermore, the
former focused predominantly on inspecting the edges, as opposed to the airfoil. While
theories of visual attention [127] suggest that inspecting those areas is more likely than
plain surfaces such as the airfoil, our results show that this is only true for inspectors
and engineers, not for assembly operators. Thus, we would expect to see the opposite,
i.e., if inspecting edges and corners is a natural behaviour, it would be more likely to be
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seen in the novice category as opposed to the experts. This suggests that the reason is
rather related to the pre-existing knowledge and experience of the participants than to the
visual regions [128], i.e., inspectors knew to look at edges, whereas novices did not. The
importance of edges is explicitly developed as part of their training. The ability of experts
to differentiate relevant from less relevant features, while novices consider both equally, is
already discussed in educational theory [129].

Inspectors gain experience with every day and every part they inspect, covering a vari-
ety of different conditions, defect types, locations and severities. Engineers typically review
the images taken by the inspectors in cases of uncertainty to confirm whether a condition is
a defect. Thus, it can be concluded that both groups have a better understanding of blade
defects in general. It should be noted that almost half (44%) of the engineers had previous
experience in the visual inspection of blades, which might have further contributed to their
pre-existing knowledge. Assembly operators, in turn, only see clean blades as part of their
daily job with no deposits or defects on them (unless the part has some transportation
damage, which is considerably rare). Hence, this group was considered as having the
least experience.

This is also evident in the eye tracking data, whereby the heat map and gaze plot
of the assembly operator stood out from the other two participants. It is apparent that
the assembly operator’s search took significantly longer and required more gazes than
the other two. The majority of gaze plots are found on the airfoil (centre of the blade),
which indicates a poor search strategy due to missing training and previous experience [15].
Moreover, it is apparent that less experienced participants tended to revisit suspect areas
(defective and non-defective) multiple times. An explanation for this behaviour might
be their confidence level. When inspectors found and classified a defect, they marked it
straight away and move on. This implies that they were confident with their decision made.
Assembly operators in contrast returned multiple times to re-confirm that the finding was
a defect, which indicates a low level of confidence in their search findings. This finding
that less-experienced staff are less confident also emerges from the self-ratings of their
confidence level (requested in the exit survey). The random search behaviour seems typical
for novices, as they lack experience and thus confidence [36,130]. It should be noted that
gaze plots, which represent the observational trajectories, may be person specific, i.e.,
inspection accuracy may be achieved by different trajectories.

5.8. Towards a Mental Model of Visual Inspection

Differently than anticipated, inspectors did not always perform best and there was no
significant difference between them and the engineers and assembly operators in terms
of inspection accuracy. In fact, they even performed worse in some cases. The following
example of a blade with two defects is a case in point. The marking results and gaze plots
of an inspector (Figure 15a) and an engineer (Figure 15b) show that both found the bigger
defect (gaze plot 9 and 7, respectively). While the inspector moved on to the next blade
straight away after finding the defect, the engineer in contrast continued the search on the
same blade and found the second defect as well (gaze plot 8 in Figure 15b).

There are two conclusions that can be drawn from this observation. First, it comes as
no surprise that a defect that is more salient in size, shape or contrast is likely to be detected
first. The second finding, however, is more interesting, i.e., it was the inspector who found
the bigger defect but missed the smaller one, and not the engineer. This implies that there
is an underlying mental model whereby inspectors intuitively apply lean principles and
do not waste time on further inspecting a blade that has already been confirmed as being
defective with the finding of the first defect. This behaviour is quite common in industries
where working under time pressure is the norm. The inspector does not deem additional
time justifiable if the first detected defect requires the blade to be scrapped or repaired. The
general literature calls this phenomenon ‘satisfaction of search’ [131].
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Figure 15. Eye tracking results of (a) inspector and (b) engineer for a compressor blade with two
defects on the trailing edge.

While from a business point of view, this approach is highly efficient, it also entails
the risk that the detection of highly visually salient damage can lead to the premature
termination of the search and consequently cause other defects that are less salient but
potentially more critical to be missed. The detection of the latter is important for the
subsequent repair task. Similar observations were made in the medical industry, whereby a
diagnostician prematurely made an incorrect diagnosis based on the first finding [130,131].

Another interesting finding is that none of the participants focused on the salient
marking on the centre of the airfoil. This further supports the idea of an underlying mental
model, whereby the knowledge that those types of markings are non-critical is stored in
their subconscious mind.

6. Discussion
6.1. Summary of Work and Comparison with Other Studies

This study evaluated the effect of cleanliness and expertise on the inspection per-
formance (accuracy and time), among other demographic parameters. First, a statistical
analysis was performed, followed by a semi-qualitative evaluation of the eye tracking data.

The results show that on average, an inspection accuracy of 67% for dirty blades and
87% for clean blades was achieved. This is comparable with previous studies: in manu-
facturing, where parts are typically in clean condition and inspected for manufacturing
defects, inspection accuracies ranged from 45% to 76% [27,29,31,95,132]. Inspections as
part of maintenance procedures are typically performed on dirty parts that have already
been in use, and thus intend to detect operational defects. Previous research in this area
reports accuracies of 53% to 68% [4,28]. Thus, the results of this study are consistent with
other findings in the general literature but are still considerably off the targeted 100% mark.

The statistical analysis of inspection accuracy revealed that the part cleanliness has a
significant impact for all three groups (Figure 16). Clean blades are 3.25 times more likely
to be detected than dirty ones. This aligns to the findings of Baaran [24] and might be due
to a reduction in salient features, such as deposits that are often confused with defects.
Thus, from a safety perspective, the cleaning of blades prior to inspection is desirable. The
assumption that deposit might highlight defects was generally not supported by this study.
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Figure 16. Effect of cleanliness on the inspection accuracy for each group of expertise.

An unanticipated finding was that there was no correlation between inspection ac-
curacy and level of expertise, i.e., inspectors had similar accuracy performance to non-
inspecting staff. The general literature is ambiguous on this. While some studies support
our finding that there is no dependency [25,95,130], others found a strong correlation
between expertise and accuracy [24,119]. The opposite findings could be due to different
task complexities, and whether pre-existing knowledge is essential. It is possible that the
contextual factors are important.

It came as no surprise that more salient defect types such as nicks and tears led to
higher detection rates, while dents were often missed. Cleanliness further improved the
inspection accuracies, with the largest effect on nicks and tears, while dents showed a lower
but still substantial performance improvement on clean blades. In the case of non-defective
blades, however, the cleanliness made no difference (see Figure 17).

Figure 17. Effect of cleanliness on the inspection accuracy for clean and dirty blades.
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In passing, it may be worth noting that although dents are more difficult to detect
compared to tears and nicks, they are also less critical from a safety standpoint, since it is
unlikely that they would propagate and cause an engine failure. It is not impossible that
participants applied this tacit knowledge to the task.

In accordance with previous research [27], the gaze plots showed that most partici-
pants looked at salient features first as opposed to starting the inspection at a particular
location. If there was more than one defect present on a single blade, the less salient one
was quite often missed. Eye tracking revealed that the search was terminated straight after
the most obvious defect was found. This behaviour was found previously, but not further
explained [25]. This finding emphasises the idea of an underlying mental model based on
previous work experience. In practice, once a defect is found that validates the removal
of the part from service, the inspector stops the inspection and continues with the next
blade. This behaviour is further imposed by the inherent time pressure of the operations.
Searching for additional defects would add time non-valuably, and therefore, be wasteful
according to lean principles.

The comparison of findings to those of other studies [24,25,27] confirms that most
demographic variables were not correlated with inspection accuracy. In this work, the
non-significant parameters include work experience, previous inspection experience, ed-
ucation, and visual acuity. The effect of gender and age was not analysed in this study.
Spencer [25] found that previous experience in inspection had no effect on the inspection
performance; however, the overall work experience in the industry had indeed. This could
be indirectly seen in our results and interpretation as well, in the way that all participants
were industry practitioners with several years of experience and had a clear understanding
of the importance of finding critical defects (underlying mental model). As the results
show, there was no difference between their job roles or whether participants had previous
experience in inspection.

There was statistical evidence that on average, less time was spent on clean blades
compared to dirty ones. The gaze plots revealed that dirty blades had notably more
fixations compared to the same blade in clean condition. The reason might be that dirty
blades have more salient features that require careful consideration and more detailed
inspection to make a decision on whether the feature is a defect or an acceptable condition
such as a deposit. The increase in fixations explains the longer inspection times on dirty
blades compared to clean ones. The exit survey showed that most participants found the
inspection of dirty blades more challenging. This is backed up by the general literature
that agrees that an increase in fixation parameters implies a higher task complexity and
cognitive load [64,114,119–124].

Consistent with the literature [95,130] was the finding that inspection times varied
significantly between the different groups of expertise. As expected, inspectors were faster
than engineers and assembly operators. No significant difference between the latter two
groups was found. The gaze plots of inspectors (experts) showed the most structured search
with fewer fixations and revisits thereof, leading to shorter inspection times. Engineers and
assembly operators, in contrast, did not search systematically. The evaluation of their gaze
paths revealed that their eyes wandered across the stimuli in a crisscross pattern between
far off gaze points, causing greater distances between those. Ultimately, engineers’ and
assembly operators’ eyes had to ‘travel’ more, and thus those two groups needed more
time for the inspection. This was consistent for both clean and dirty blades, as shown
in Section 5.7 and Figure 18 below. The findings are consistent with earlier observations,
which showed that experts had a clear search pattern with fewer eye fixations and shorter
viewing times than novices [25,95,130].
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Figure 18. Effect of cleanliness on the inspection time for each group of expertise.

Surprisingly, the visual acuity of participants had an effect on their inspection time,
whereby participants without glasses inspected faster than spectacle wearers. No previous
work was found that has measured this effect. Most literature analysed the effect of visual
acuity on the inspection accuracy as opposed to inspection time, and found that they can
be positive, negative or not related, depending on the task [24,25,27].

Another interesting finding was that inspection accuracy and inspection time were
not correlated. While this is supported by the research of Spencer [25], in contrast, See [27]
found that longer inspection times led to higher detection rates, and Schoonard’s [95]
results showed that the fastest participants performed most accurately. The contradicting
findings indicate that the task and complexity might define the dependency and direction
of the effect. When reviewing the eye tracking data, we found that a long inspection time
can either represent a detailed search, which leads to a higher accuracy, or contrarily an
unstructured, almost chaotic search, with long distances between gaze plots and many
revisits thereof, but without any improvement in accuracy. Thus, the present results
support both the research of See and Schoonard. However, since the measured effect in our
study was in some cases positive and in some other negative, the odds ratio straddled 1,
and hence was not significant.

The results also show that participants were not able to make a reliable self-assessment,
as there is no correlation between their self-judgement and inspection performance (accu-
racy and time). These findings are somewhat surprising given the fact that other research
shows that higher confidence ratings indicate increased accuracies, and that lower con-
fidence ratings are associated with longer inspection times [27]. Given that an overall
confidence rating was acquired after the task was completed, confidence ratings for indi-
vidual blades could not be extracted. Measuring individual confidence ratings after each
inspection might provide statistical support to the findings of See [27].

With the help of eye gaze data, it was possible to identify the type of inspection
error that occurred when an incorrect inspection was made, i.e., whether it was a search,
recognition or decision error. This could not be extracted from the performance data [86].

6.2. Implications for Practitioners

This study shows that cleaning blades prior to inspection has the potential to signif-
icantly improve the inspection accuracy. The inspection time was also shorter for clean
blades than for dirty ones for all representative participants of this study (inspector, en-
gineer and assembly operator). Thus, it is recommended that MRO providers and blade
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overhaul shops consider the implementation of cleaning procedures prior to inspection
where feasible. Future research on reduced inspection times for clean blades could provide
further justification for the cleaning procedure.

The results and insights gained from this study could serve as informative guidelines
for any organisation performing inspection as part of their quality assurance system. It
could change the expectations of the achievable inspection performance of staff. Knowing
the limitations of visual inspection might lead to the consideration of improved visual
inspection techniques including inspection aids, or the application of other NDT techniques
for critical detect types where a higher detection accuracy is required to ensure a defect-
free state.

Eye tracking may provide a method for competency assessment and inspection per-
formance gaging between different inspectors within organisations and networks [127].
Another opportunity is to use eye tracking for enhanced training in the future [51,133]. Our
results and other research suggest that a systematic search strategy can improve inspection
performance [50,134–136]. Playing the eye tracking video of an experienced inspector with
a desirable structured and systematic search strategy to novices or inspectors who inspect
unseen parts for the first time could have a positive effect on their learning process and
search strategy, leading to improved inspection performance [65,133,137].

Furthermore, eye tracking might be used to measure and record an inspection novice’s
initial competence and track their improvement as they learn. It could also be used as
part of a certification process, whereby a set standard for inspection accuracy and search
strategy needs to be met. Typical industry practice is for staff to undergo classroom training
and a theory test, followed by hands-on experience on the shop floor. However, it is
up to the supervisor to decide when the trainee inspectors are ‘qualified’ to perform the
task on their own, and therefore the process is highly subjective. While this qualification
process only examines the basic understanding of visual inspection, it does not consider
the inspection accuracy. A quantitative performance assessment using eye tracking and in-
spection performance measures could overcome this limitation and provide a standardised
certification process that can be applied at any MRO service provider.

Visualisations of the gaze data (e.g., gaze plots) can help practitioners to understand
which inspection error occurred and caused missing a critical defect. This allows one
to implement or adjust training accordingly and helps to prevent the reoccurrence of
those errors.

6.3. Limitations

There are several limitations in this study. First, participants were asked to inspect
images of defective and non-defective parts as opposed to the actual parts themselves. From
comments made by the subjects, they would normally hold the part and be able to study it
from different orientations and feel the blade (damage) with their hands, which was not
possible for photographs. Our reason for using photographs was to provide the consistence
of presentation to multiple subjects. That is, when giving a dirty blade to 50 participants,
the deposit on the blade would fade away after a few participants, especially when they
rubbed off the deposit with their fingers during the inspection. This would have made the
results incomparable. Thus, images provided the best repeatability and a fair comparison
of inspection results. Additionally, some inspection tasks such as borescope inspection
or detailed confirmation inspection are screen-based, which provides further justification
for the chosen research design. However, we acknowledge that if the objective was to
conduct individual studies, then it may be preferable to use eye tracking glasses and 3D
presentation of the attention trajectory instead.

Second, the proportion of defective and non-defective parts did not represent the
common operational situation, where defective blades are much rarer. One exception,
however, is the inspection of FOD engines, where the number of defective blades is
significantly higher. Thus, the study represents the FOD engine situation, which is less
common but can still occur multiple times a year. The over-proportional amount of
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defective blades might have affected the ‘defect occurrence expectation’ (complacency) and
inspection behaviour of the participants in yet unknown ways [138].

Third, the time to perform the inspection task was not limited, which allowed the
participants to process at their own pace. In MRO operations, staff are frequently exposed
to working under time pressure, which was not represented in this study. The effect of
limited time could be explored in future research.

The participants of this study were recruited from one MRO facility, and hence the re-
search population was somewhat limited. Future research could expand the population and
include participants from different companies and countries to analyse any organisational,
cultural or educational factors.

For organisational reasons and due to limited participant availability, the study was
carried out during day and nightshifts. While we recognise the possibility that this could
have influenced the inspection results, we note that in practice, inspections are also per-
formed during the day and night time, and thus our study represents the operational
environment. However, since not all three groups were working on both shifts, a statistical
analysis of the effect of the working time shift was not feasible. It should be noted that all
participants took the inspection task seriously and provided positive feedback throughout,
stating that they enjoyed participating.

6.4. Challenges in Eye Tracking Technology

Eye tracking technology significantly advanced in recent years [42,139,140]. Nonethe-
less, there are still challenges with eye tracking, mainly in the area of data extraction,
evaluation and interpretation. The data preparation and analysis were laborious and
time-consuming processes that involved several manual steps, including: (a) creating
and labelling custom events, (b) replaying the recording and manually setting the cus-
tom events, (c) selecting a frame from for each stimuli and linking it to a time of interest
(TOI) and (d) visualising the eye tracking data by creating and customising heat maps or
gaze plots.

This process had to be repeated for each stimuli and each participant—in this study,
there were N = 2515 events and just as many TOIs. Since we chose a screen recording,
which allowed us to use the pen function of PowerPoint for defect marking, only a few
system-generated events (N = 4) and TOIs (N = 2) were generated automatically, i.e., the
start and end time, as well as the duration of the recording and calibration. While the
participant events (mouse clicks and key presses) were shown on the timeline, they still
required manual labelling and logging. This is a fundamental limitation of the eye tracking
hardware and software.

When the stimulus size varied (Figure 19a), there was an unexpected side effect that
needed to be taken into account, i.e., the human eye had to re-adjust to the new stimulus
size. The gazes and time required to readjust should not be included in the analysis.
This side effect only became apparent when we created the heat maps and gaze plots.
Without manual adjustment (Figure 19b), the last gazes from the previous stimuli showed
up on the next one. This problem was solved by manually adjusting TOIs and creating
an offset (result shown in Figure 19c). Again, this was a time-consuming and onerous
task, showing that even automatically generated time marks required manual adjustment.
While it was relatively simple to exclude the relevant gaze plots in our study (due to the
plain background), it would have been more challenging in situations where the stimuli
showed complex environments, such as the ones shown in [64].
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Figure 19. (a) Overlaid previous and next stimulus to show the transition of gaze plots from one to another. Gaze plot
(b) without and (c) with manual adjustment of the TOI. Note that there was no fading between stimuli (as may appear in
(a)). The opacity was adjusted manually for this paper to show both blades in one image.

Not only was the eye tracking analysis a laborious task, but also it was challenging
to keep track of the many markers and time stamps. A clear labelling strategy and well-
organised structure was required to keep track of all the eye tracking data (markers, events,
TOIs, heat maps, gaze plots, etc.), which are stored for all participants in the same project
file. As previous researchers have already pointed out, there is no automated process
or algorithm for the stimuli processing and eye tracking data analysis or interpretation,
which is one of the largest drawbacks of eye tracking [141]. This offers great potential
for future development and could make eye tracking more attractive to researchers and
industry practitioners.

It was found that it was difficult to compare different heat maps and gaze plots
quantitatively with each other to make a statement as to whether two search patterns were
similar or not. Each gaze plot and heat map was unique and differed from one participant
to another. Currently, the only possible option is the use of areas of interest (AOI) [142].
Those are particularly helpful for stimuli with multiple objects or areas that are clearly
separated, such as different elements of a website or user interface. The different gaze
paths might be compared based on the order the participants viewed the AOIs. In the case
of, e.g., three AOIs, there are 15 possible viewing orders—providing that an AOI was not
visited multiple times, otherwise the number of combinations would be infinite. While
this might work for a small number of AOIs, it is difficult to apply to stimuli that have no
clearly separable areas or stimuli with a large number of AOIs. The possible combinations
increase exponentially with the increasing number of AOIs, which significantly reduces
the likelihood of multiple participants having the exact same gaze order. The problem of
comparing gaze plots and heat maps quantitatively has not yet been adequately solved.

Eye tracking technology is not yet able to collect every participant’s eye movement
effectively. In N = 4 cases (8%), the eye tracker was unable to record the participants eye
gaze and eye recognition rates of only 40% or less were achieved. In one case, the eye
tracker failed to detect the participant’s eyes entirely (during the calibration) and thus the
participant could not participate. This limitation has to be considered in the sampling
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phase and when recruiting participants. Pernice and Nielsen [106] suggested adding a
23% fallout rate to account for any data loss due to failed eye recognition or calibration.
However, this remains particularly challenging, when only a limited amount of people,
e.g., experts in the field are available.

It is not within the capability of eye tracking to tell the researcher with certainty
whether the participant looked at something consciously or without any awareness. This
is when someone is ‘staring into space’ and lets their gaze wander without focusing on
anything particular. While this eye movement is recorded by the eye tracker, the technology
cannot differentiate between actively looking and wandering. Furthermore, peripheral
vision is not captured by eye tracking [143].

Eye tracking cannot explain why a participant looked at something. This reasoning is
up to the researcher and requires a combination of contextual knowledge of the task, and
understanding of the human vision, eye anatomy, visual perception, cognitive processing
and eye physiology [144].

Although eye tracking technology advanced significantly in the past years, recent
studies [145] show that the recording of the eye gaze is still very sensitive to head movement
and orientation. Eye tracking manufacturers claim that the quality of the collected data is
not affected by the head position, movement and orientation as long as the eyes are within
a recommended recordable area (headbox) and that high accuracy, precision and tracking
robustness is maintained independently [146]. Further, the manufacturer states that chin
rests are only required for e.g., micro-saccade studies [147]. However, research suggests that
significant precision, accuracy and data loss occurs if the head is in a non-optimal position
or orientation [145]. In our study, participants claimed that it was challenging to hold their
heads in a fixed position for the duration of the study, even when they were allowed some
head movement (within the headbox). Neck pain was a common complaint made.

Furthermore, participants found it challenging and tiring to look at the screen for the
duration of the study—particularly participants that did not work in front of a monitor
in their daily job. While this problem is not specifically related to eye tracking but any
screen-based study, it should certainly be considered when designing the study, e.g., by
including frequent breaks. The disadvantage of frequent breaks during eye tracking studies
is the need for a recalibration after each break [106].

6.5. Future Work

Several avenues for future research have been identified in the text above and are not
repeated here. The present study provided a self-paced task, and it could be interesting to
repeat the study but limit the available inspection time per blade. A difference in detection
accuracy would be expected between the three groups. Lower accuracies may accompany
shorter inspection times [148]. Another line of research could be to examine saccades, blink
rates, and pupil diameter. Tactile vs. visual inspection tasks could also be valuable.

From an operational perspective, the detection accuracy itself is not a good measure if
the inspection takes exceptionally long, and would cause a bottleneck in the production.
Conversely, a fast inspection time might also be a poor measure for the inspector perfor-
mance, since a short inspection time could lead to poor accuracies. Future work could focus
on calculating productivity based on inspection time and accuracy. Potentially, the risk
component could also be considered, i.e., defects that impose a higher risk of propagating
before the next engine shop visit.

There are several concepts that could be applied to automate the visual inspection
process in several ways. This could include personalised training based on the initial eye
tracking results and inspection competency to accelerate the transition from novice to
expert [149–151], monitoring of the visual expertise development [130,152], utilising the
eye tracking data to train an artificial intelligence system for automated defect detection
adopting the human’s search strategy and decision making [153,154], and a pre-warning
system indicating when an inspection error emerges during the search, recognition, or
decision-making process [155–157].
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There is a need to support human decision making during inspection [100,158,159].
The challenge is integrating human operators and inspection software.

7. Conclusions

This work makes several novel contributions. First, the inspection performance of
metal parts with complex geometries, namely engine blades, was measured in the form
of inspection accuracy and inspection time. This included the assessment of operational
defects caused by foreign object damage (FOD), including dents, nicks, and tears, but also
non-defective blades. Findings were based on images of parts, rather than the physical parts
themselves, and hence the tactile dimension of inspection was excluded from this study.

Secondly, the correlation between the cleanliness factor and the inspection results was
statistically and qualitatively analysed. While the findings regarding cleanliness may seem
self-evident, this is less obvious for industrial practitioners. Within the industry, there are
two prevalent schools of thought: (a) that a compressor wash prior to inspection washes
away all the evidence of the defect; (b) that deposits hide the defects, and hence cleaning
is valuable. This is a complex problem because of the variety of defect types. This work
makes a novel contribution by identifying the importance of cleanliness at least for nicks,
dents, and tears.

Moreover, the effect of self-confidence rating and other demographic variables on
the inspection time and accuracy was analysed. Additionally, eye tracking was used to
extract the search strategies for different levels of expertise and part cleanliness using
heat maps and gaze plots. This provided insights into the underlying cognitive and
attentional processes. Overall, the present study adds to the understanding of inspection
accuracies and search strategies of complex manufactured parts, not only in aviation, but
the manufacturing and maintenance industry as a whole. Eye tracking methods have the
potential to assist in the training of human operators for inspection tasks, and support the
continuous improvement of the processes.
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