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Abstract

Background: Cyclic GMP-dependent protein kinases (PKGs) are central mediators of the NO-cGMP signaling pathway and
phosphorylate downstream substrates that are crucial for regulating smooth muscle tone, platelet activation, nociception
and memory formation. As one of the main receptors for cGMP, PKGs mediate most of the effects of cGMP elevating drugs,
such as nitric oxide-releasing agents and phosphodiesterase inhibitors which are used for the treatment of angina pectoris
and erectile dysfunction, respectively.

Methodology/Principal Findings: We have investigated the mechanism of cyclic nucleotide binding to PKG by determining
crystal structures of the amino-terminal cyclic nucleotide-binding domain (CNBD-A) of human PKG I bound to either cGMP
or cAMP. We also determined the structure of CNBD-A in the absence of bound nucleotide. The crystal structures of CNBD-A
with bound cAMP or cGMP reveal that cAMP binds in either syn or anti configurations whereas cGMP binds only in a syn
configuration, with a conserved threonine residue anchoring both cyclic phosphate and guanine moieties. The structure of
CNBD-A in the absence of bound cyclic nucleotide was similar to that of the cyclic nucleotide bound structures. Surprisingly,
isothermal titration calorimetry experiments demonstrated that CNBD-A binds both cGMP and cAMP with a relatively high
affinity, showing an approximately two-fold preference for cGMP.

Conclusions/Significance: Our findings suggest that CNBD-A binds cGMP in the syn conformation through its interaction
with Thr193 and an unusual cis-peptide forming residues Leu172 and Cys173. Although these studies provide the first
structural insights into cyclic nucleotide binding to PKG, our ITC results show only a two-fold preference for cGMP,
indicating that other domains are required for the previously reported cyclic nucleotide selectivity.
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Introduction

The cGMP-dependent protein kinases (PKG) belong to the

family of serine/threonine kinases and are one of the major

intracellular receptors for cGMP. Mammals have two genes for

PKG, prkg1 and prkg2, which express PKG I and PKG II [1,2,3].

All PKGs have the same domain structure (Fig. 1A). An N-

terminal leucine/isoleucine zipper is followed by an autoinhibitory

sequence, which mediate homodimer formation and inhibit kinase

activity, respectively. Next, two cyclic-nucleotide binding domains

(CNBD-A and CNBD-B) are followed by the catalytic domain. In

PKG I, the two CNBDs share approximately 37% amino acid

sequence similarity but differ in their cGMP binding kinetics and

cGMP analog specificities [4,5]. CNBD-A provides a high-affinity

(slow disassociation) site for cGMP whereas CNBD-B has a lower-

affinity (fast disassociation) site. Differential splicing of the first 100

amino acids of PKG I mRNA produces PKG Ia and PKG Ib
isoforms, which have unique leucine/isoleucine zipper and

autoinhibitory sequences but identical cGMP-binding and cata-

lytic domains [2]. Binding of cGMP to the CNBDs is thought to

induce a conformational change that activates the kinase by

removing the autoinhibitory domain from the catalytic cleft,
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Figure 1. Domain organization and structures of the PKG Ib (92–227). (A) Domain organization of PKG Ib and sequence alignment with PKA
RIa. 100% conserved residues are colored in yellow and PKG specific cGMP interacting residues are highlighted in red. (B) Overall structure of the PKG
Ib (92–227):cGMP complex showing the two molecules in the unit cell. The phosphate binding cassette (PBC) is shown in yellow, the aB helix in red,
bound cGMPs are shown in black, and the N- and C-termini are labeled. Non-crystallographically related dimer contacts mediated by cGMP are shown

Structures of PKGIb (92–227) with cGMP and cAMP
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leaving the catalytic domain free to phosphorylate downstream

substrates [6].

The overall architecture and molecular determinants for cAMP-

specific CNBDs have been extensively studied using high-

resolution crystal structures. These structures include the CNBDs

from the Escherichia coli catabolite gene activator protein (CAP),

cAMP-dependent protein kinase (PKA) and hyperpolarization-

activated, cyclic nucleotide-modulated (HCN) channels [7,8,9].

However, in the absence of crystal structures, we know very little

detail about cGMP-specific CNBDs and the molecular determi-

nants for cGMP binding. To understand the overall architecture

of the cGMP-binding domain and the molecular features required

for cGMP binding, we determined crystal structures of the CNBD-

A of human PKG I bound to cGMP, cAMP or in the absence of

bound nucleotide. Our structures reveal that cGMP binds only in

a syn configuration with a conserved threonine residue anchoring

both cyclic phosphate and guanine moieties whereas cAMP binds

in either syn or anti configuration with different sets of amino acid

contacts. Surprisingly, our extensive isothermal titration calorim-

etry measurements show that CNBD-A binds both cGMP and

cAMP with high affinity, showing only a two-fold preference for

cGMP suggesting that other domains are required for the

previously reported cyclic nucleotide selectivity.

Results

Structure determination and overall architecture
The structure of PKG Ib (92–227) in complex with cAMP was

solved at 2.49 Å using a truncated model of PKA RIa (91–379) as

a molecular replacement probe (PDB code: 1RGS)[8]. PKG

Ib:cGMP and partial-apo structures were subsequently solved at

2.9 Å and 2.75 Å respectively, using the fully refined structure of

the PKG Ib:cAMP complex as a molecular replacement model

(Fig. 1 and Table 1). Refinement of the PKG Ib:cGMP complex

was carried out in PHENIX (dev-403) [10] using reference

dihedral restraints derived from the higher resolution cAMP

complex resulting a final model with Rwork and Rfree of 20.4% and

26.0%, respectively. The PKG Ib:cAMP and PKG Ib:cGMP

complexes crystallized with two molecules per unit cell in a P6222

space group with over 75% solvent content. As predicted from its

sequence similarity with the CNBDs from cAMP-effector proteins

such as CAP, PKA and HCN [11], each molecule shows all of the

predicted secondary elements, including: the two N-terminal

helices, aX:N and aA helices; an 8-stranded anti-parallel b-barrel;

and the B-helix at the C-terminus (Fig. 2A). The structure also

contained a Phosphate Binding Cassette, (PBC), which is

comprised of a short helix (P-helix) and loop and is situated

between b6 and b7 strands (Fig. 2A). The crystallographic dimer is

formed mainly by the bound cGMP, the helical tip of the PBC,

and the aB-helix from one molecule (molecule B) fitting onto

similar regions on the second molecule (molecule A) (Fig. 1B).

While cGMP in molecule B (cGMP:B) is partially exposed to

solvent, cGMP in molecule A (cGMP:A) is wedged between the

two molecules and participates in crystallographic packing of the

two molecules. Regardless of unique crystallographic contacts,

they both bind each cGMP pocket in a syn configuration (Fig. 2B).

cGMP:A interacts with the PBC of molecule B through two

hydrogen bonds (Fig. 1B). Due to this contact, the tip of PBC in

as a zoom-in view on the right panel. In contrast to the solvent exposed cGMP in molecule B, the cGMP in molecule A (cGMP:A) is wedged between
two molecules. The guanine ring of cGMP:A interacts with the tip of PBC of molecule B (PBC:B) through two hydrogen bonds as shown. Van der Waals
surfaces of the bound cGMP:A and PBC:B are shown in gray. (C) Overall structure of the PKG1b (92–227):cAMP complex showing two molecules in the
unit cell. (D) Overall structure of the partial apo showing four molecules in the unit cell. Bound cAMP and PO4 are labeled. All structure figures were
generated using PyMOL (Delano Scientific).
doi:10.1371/journal.pone.0018413.g001

Table 1. Data and refinement statistics.

Data set cGMP bound cAMP bound Partial APO

Space group P6222 P6222 P43

Cell constants (Å) a = b = 107, c = 171
a=b= 90.0, c= 120

a = b = 107, c = 169
a=b= 90.0, c= 120

a = b = 62.6, c = 202
a= b= c= 90.0

Wavelength (Å) 1.0 1.0 1.0

Resolution (Å) 50–2.9 50–2.49 45–2.75

Total/unique reflections 402498/13503 293611/20607 80424/19782

Average redundancy 29.8(20.2) 13.8(14.2) 4.1(4.1)

Completeness (%) 100(100) 98.7(99.6) 100(99.6)

,I./,sI. 21.2(2.10) 43.5(5.62) 31.2 (2.39)

Rsym
e (%) 13.5(n/a) 10.1(42.4) 5.9(46.4)

Rwork
|| (%) 20.4 20.6 18.0

Rfree
" (%) 26.0 23.0 25.1

Overall B value(Å2) 73.4 46.6 94.4

Rmsd bond length (Å) 0.010 0.014 0.005

Rmsd bond angle(u) 1.42 1.274 0.942

eRsym =ShSi|I(h) - I(h)i|IShSi I(h)i, where I(h) is the mean intensity after rejections.
1Numbers in parentheses correspond to the highest resolution shell of data, which were 2.98 to 2.90 for the cGMP, 2.53 to 2.49 Å for the cAMP and 2.85 to 2.75Å for
APO.

||Rwork =Sh||Fobs(h)| -|Fcalc(h)||ISh|Fobs(h)|; no I/s cutoff was used during refinement.
"5.0% of the observed intensities was excluded from refinement for cross validation purposes.
doi:10.1371/journal.pone.0018413.t001
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molecule B is distorted, tilting slightly toward the b-barrel. While

the PKG Ib:cAMP complex was crystallized in the same P6222

space group, with similar crystal parameters and contacts,

cAMP:A does not form hydrogen bonds with molecule B and

PBC:B shows no apparent contact induced structural changes

(Fig. 2C).

The partial-apo structure was crystallized in a P43 space group

and contained four molecules per unit cell, showing a set of crystal

contacts that are different from the PKG Ib:cAMP and PKG

Ib:cGMP complexes (Fig. 1D and Table 1). Thus, in total we modeled

eight CNBD-A molecules, from three crystal forms. Nearly the entire

protein showed clear electron density, except for residues 219–227,

which correspond to the C-helix that connects CNBD-A to CNBD-B.

Despite the different crystal contacts, the overall structures of the eight

CNBD-A molecules are very similar. Superposition of the cGMP-

structure with the cAMP- and PO4-bound structures showed rmsd

values of 1.2 Å and 0.98 Å for the Ca atoms of molecule A, and 0.65 Å

and 0.44 Å for molecule B respectively. Due to the similarity between

these structures, we will focus on the PKG Ib:cGMP complex.

Comparison with the CNBD-A of PKA RIa
Recent structural studies of PKA have shown that its CNBDs

exist in two distinct conformations: a cAMP bound conformation

that represents the activated state (B-form) [8] and a C-subunit

bound conformation that represents the inactive state (H-form)

[12,13]. Conformational changes in response to cAMP or C-

subunit binding involve rearrangement of the helical structures at

the N- and C-terminus as well as the P-helix within the PBC.

Figure 2. Structure of the PKG Ib (92–227):cGMP complex. (A) Ribbon diagram of PKG Ib (92–227):cGMP with its secondary structure elements
labeled. (B) A Fo-Fc omit map showing the electron density of cGMP in syn conformation contoured at s= 1.0. (C) Structural alignment of two
mononers of PKG Ib (92–227):cGMP complex with a zoom-in view of PBC on the right panel. Despite the crystal contacts, they align well with an rmsd
of 0.87 Å for equivalent 127 Ca atoms.
doi:10.1371/journal.pone.0018413.g002
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These helical rearrangements occur in relation to the structure of

b-barrel, which remains essentially unchanged. Superimposition

with the B and H forms of the PKA RIa CNBD-A reveals that the

PKG Ib CNBD-A:cGMP complex is in a conformation that more

closely resembles the H-form of RIa, not the B-form (Fig. 3A). As

seen in Fig. 3B, the helical subdomain of the PKG Ib CNBD-A

aligns better with the H-form of CNBD-A, which represents the C-

subunit bound state. Like the H-form of RIa, the N-terminal

helical bundle, consisting of the aX:N-a310loop-aA helices,

interacts with the PBC while the aB helix tilts up approximately

7u without engaging either motif (Fig 3C). In particular, the tip of

a310 loop reaches across the rigid b barrel making multiple

contacts with PBC. The side chain of Asn116 forms a hydrogen

bond with Glu183 which anchors the 29 OH of the ribose (Fig. 3D).

As in PKG Ib CNBD-A, the H-form of PKA RIa shows a

hydrogen bond between the corresponding asparagine and

glutamate residues (Asn133 and Glu200 respectively) (right panel

of Fig. 3D). In the B-form of RIa, Glu200 forms a salt bridge with

Arg241 on the aC helix, which plays a major role in mediating

PKA activation (left panel of Fig. 3D) [14]. Additional interactions

that mediate the 310-helix-PBC interaction include the carboxyl

oxygen of Asn116 hydrogen bonding to the backbone amide of

Phe118, whose side chain, in turn, makes a hydrophobic contact

with Leu184, Tyr188 and Leu187 (middle panel of Fig. 3D).

The cGMP binding pocket
Each cGMP binding site in the PKG Ib:cGMP crystal shows a

clear electron density for cGMP bound in a syn configuration

(Fig. 2B), as previously predicted by mutation and other studies

[4,11,15,16]. Contacts between cGMP:A and PBC-B do not

influence the overall interaction pattern of cGMP:A with the

protein; the amino acid contacts with each cGMP are essentially

the same (Figs. 4A and 4B). While the guanine rings are partially

exposed to solvent for both molecules, the sugar-phosphates are

buried in the pockets formed at the PBCs. The cGMP-binding site

is comprised of three parts: the short P-helix together with

conserved glutamate and arginine residues at the PBC which

captures the sugar phosphate (Site 1); a key residue, Thr193 at the

end of PBC that bridges the cyclic phosphate to the guanine ring

(Site 2); and the b5-strand that provides a unique docking site for

the guanine ring (Site 3). While the first site is shared with PKA,

the other two sites are unique to PKG (Fig. 4C).

The first binding site consists of a positively charged pocket

created by a cluster of unpaired backbone amides at the N-

terminus of the P-helix and the side chain of Arg192 [8]. The

exposed backbone amides of Gly182, Glu183, Leu184 and Ala185

of the P-helix together with the guanidinium group of Arg192,

captures the cyclic phosphate through several hydrogen bonds and

electrostatic interactions (Figs. 4, and Table 2). In addition, the

side chain of Glu183 interacts with the 29 OH of the ribose

through a strong hydrogen bond.

The second site, Thr193, is known to provide selectivity for

cGMP [5]. This residue anchors cGMP through side-chain and

backbone interactions. As seen in left panel of Fig. 4C, both the

hydroxyl group and the carbonyl oxygen of Thr193 are within

hydrogen-bonding distance to the 2-NH2 group of cGMP. In

addition, the hydroxyl group of Thr193 interacts with the

equatorial OP1 of cGMP, bridging the phosphate moiety to the

guanine ring of cGMP. The side chains of neighboring residues,

Leu184 and Cys190, help position the side chain orientation of

Thr193 through hydrophobic packing with its Cc atom. Thus,

cGMP binding in the syn conformation is absolutely required for

interaction with Thr193.

The third site is assembled by two consecutive residues, Leu172

and Cys173 on b5, and provides a docking site exclusively for the

purine ring of cGMP (left panel of Fig. 4C). Leu172 and Cys173 are

connected by an unusual non-proline cis-peptide bond, which

orients their side chains toward the purine ring. While Leu172

makes a nonpolar contact with a carbonyl group at the C6 position

of the guanine ring, Cys173 interacts with the unprotonated N7 of

the guanine ring through an extended hydrogen bond. These

interactions are only possible for cGMP bound in syn conformation.

The interactions at sites 2 and 3 are essentially identical between the

two molecules within the unit cell ([Figs. 4A and 4B]). Superposition

with the PKA RIa:cAMP complex reveals differences in the relative

orientation and amino acid composition of the site 3 forming

residues (middle panel of Fig. 4C). Ala189 and Thr190 of RIa align

with Leu172 and Cys173 of PKG Ib, and despite forming cis-

peptide bonds, they do not interact with cAMP (right panel of

Fig. 4C). The b5 strand in RIa is located approximately 3 Å further

away from the base than in PKG (middle panel of Fig. 4C).

Mutations of Thr193 have been shown to remove PKG’s cGMP-

binding selectivity, and the structures presented here are consistent

with these results [5]. For example, mutation of this residue to

alanine or valine resulted in a 27–29 fold increase in the amount of

cGMP required for half-maximal kinase activation (Ka), whereas

substitution with serine required only 4 fold more cGMP. As seen in

our structure, an alanine or valine substitution would completely

abolish the interactions with the 2-NH2 group and the equatorial

OP1 of cGMP, whereas a serine substitution would affect only the

latter interaction, which explains the changes in cGMP affinity

observed with each mutant. Notably, the cGMP binding site of

CNG ion channels have a threonine at this position, and like PKG I

substitution of this residue with alanine decreases cGMP sensitivity

of the channel 30-fold without changing its cAMP sensitivity [17].

Structure of cAMP-bound PKG Ib CNBD-A
To gain additional insight into cyclic-nucleotide binding

specificity, we determined the crystal structure of CNBD-A in

the presence of cAMP. Despite its unique crystallization buffer

conditions, the PKG Ib:cAMP complex showed similar crystal

parameters and contacts as the PKG Ib:cGMP complex

containing two molecules in the unit cell (Fig. 1C and Table 1).

cAMP:A is similarly located at the interface between the two

molecules, but makes no hydrogen bonds with molecule B. A

surprising feature of the PKG Ib (92–227):cAMP complex is that

cAMP binds in two different conformations, anti in one molecule

and syn in the other (Fig. 5). While the sugar phosphates share the

same set of contacts with the protein as the PKG Ib:cGMP

complex at site 1, each purine ring of cAMP shows different

contacts with the protein at sites 2 and 3, depending on its

orientation. For example, the hydroxyl group of Thr193 at site 2

interacts with the unprotonated nitrogen at the 2-position through

a weak hydrogen bond for the syn-configured cAMP whereas no

such contact exists in the anti-configured cAMP. Leu172 at site 3 is

within 3.6 Å and 3.4 Å for the anti- and syn- configured cAMP

respectively (Fig. 5C). Cys173, makes a hydrogen bond with the

unprotonated N7 of the syn-configured cAMP, whose distance is

3.6 Å, but no such contact exists for cAMP in the anti

conformation (Fig. 5C). The side chains of Val165 and Met175

near site 3 come within 3.5–3.8 Å of the purine ring for syn-

configured cAMP, but they are beyond van der Waals distance for

anti-configured cAMP. Superposition of the two molecules at the

PBC reveals that the differences in cAMP binding are mainly

caused by the b4 and b5 strands moving away from the PBC to

accommodate the extended conformation of the anti-configured

cAMP (Fig. middle panel on Fig. 5C).

Structures of PKGIb (92–227) with cGMP and cAMP
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Structure of Partial Apo PKG Ib CNBD-A
Our attempts to obtain crystal structures of an apo form of the

CNBD-A yielded a partial apo structure, where two of the four

molecules in the unit cell were bound by cAMP (CNBD-

A:cAMPP43), which came from the E. coli cultures (Figs. 1D and

6A). Molecules without cAMP were bound by phosphate (CNBD-

A:PO4), possibly due to high concentration of phosphate in the

crystallizing solution (Figs. 1D and 6B). CNBD-A:PO4 superim-

poses well with CNBD-A:cAMPP43, except for the b4 and b5

strands (Fig. 6C). In the absence of cAMP, this region moves

slightly away from the PBC resulting in a more open conforma-

tion.

Figure 3. Structural comparison with cAMP-dependent protein kinase. (A) Stereoview of aligned CNBD-A from PKG and RIa of PKA. The
PKG:cGMP complex is shown in the red. The PKA:cAMP (B-form) and PKA:Holo (H-form) are colored in cyan and yellow respectively. (B) A view
showing differences in the conformation of the N-terminal helices, aX-N-310 loop-aA with respect to the PBC. The PKG Ib:cGMP complex is shown in
red. The PKA:cAMP (B-form) and PKA:Holo (H-form) are colored cyan and yellow respectively. (C) A view highlighting the different conformations of
the aB helix and the disordered aC helix in PKG versus PKA RIa. (D) The helical subdomains of PKG Ib:cGMP, PKA RIa:cAMP (B-form), and PKA RIa:Holo
(H-form) are shown.
doi:10.1371/journal.pone.0018413.g003
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In contrast to our CNBD-A:cAMP complex, where a full electron

density was seen for cAMP bound in two different configurations,

only partial electron density was seen for each bound cAMP in two

of the four molecules in the CNBD-A:cAMPP43 crystal, which

accounts only for the sugar phosphate moiety and pyrimidine

portion of the adenine ring (Figs. 6A and S1). This partial density

can be explained by either syn- or anti-configured cAMP

indiscriminately binding to the cGMP pocket, since either

configuration of cAMP can be fitted to the partial electron density.

The phosphate molecule, binds the same site as the cyclic

phosphates, with the same set of interactions (Fig. 6C and Table 2).

Cyclic nucleotide binding affinities of the PKG Ib CNBD-A
Next, we analyzed the binding characteristics of PKG Ib

CNBD-A to cyclic nucleotides using isothermal titration calorim-

etry (ITC). Our initial ITC measurements showed variable

binding constants, indicating that the purified protein samples

might contain different amounts of cAMP (verified by our partial

apo structure). In order to remove cAMP carried over from E. coli,

we denatured the protein in 6 M guanidine HCl and slowly

refolded it, as described in Materials and Methods. ITC

measurements were reproducible following denaturing and

refolding. Unexpectedly, we found that CNBD-A binds both

cGMP and cAMP with comparably high affinity (Fig. 7). Both

cyclic nucleotides bind to the protein through strong enthalpy

driving forces, with enthalpy values of 212.5 versus 212.4 kcal/

mol at 30uC, suggesting that binding is driven by charge-charge

interactions, most likely between the phosphate groups and the

highly charged residues of the PBC. In contrast, the binding

entropies are unfavorable (24.7 cal/mol/K for cGMP and

26.1 cal/mol/K for cAMP at 30uC). Thus, the subtle difference

in binding affinity (12 nM for cGMP and 27 nM for cAMP) is

provided entirely by difference in the binding entropy terms,

which suggests that the difference is due to hydrophobic

interactions between the different purine bases and the protein.

Discussion

While the basis for the cyclic-nucleotide specificity for PKG I

has been previously studied, the exact molecular mechanism is not

known. Because cGMP and cAMP are structurally different at

only the 2-, 6-, and N1-positions of their purine rings, different

amino acid contacts at these positions were proposed to mediate

the specificity. Due to rotation around their glycosidic bonds,

cyclic nucleotides exist in equilibrium between syn and anti

conformations, with cGMP and cAMP favoring syn and anti

conformations respectively [18,19]. The cGMP-binding site of

PKG and CNG channels has a threonine residue distinct from the

cAMP receptors, and previous models based on the known

structures of PKA and HCN channels have predicted that the

hydroxyl group of these threonine residues interacts with the

guanine 2-NH2 group of syn-cGMP through hydrogen bonds.

We attempted to crystallize several CNBD-A and CNBD-A/B

domains of PKG I, based on the previously solved crystal

structures of PKA RIa [8,20]. So far, only the CNBD-A

corresponding to PKG Ib (92–227) has yielded good diffraction

Figure 4. The cGMP binding pocket of PKG I and the cAMP binding pocket of PKA RIa. (A) and (B) Stereoview of the cGMP binding pockets
showing their interactions with cGMP for molecule A and B respectively. (C) Aligned sequences at the cyclic nucleotide pockets are shown on top
with each site labeled. 100% conserved residues are colored in yellow, over 60% conserved residues are colored in green, and the cGMP-specific
interacting residues are shaded red; the cGMP binding pocket of PKG bound with cGMP is shown on the left, the cAMP pocket of PKA RIa with cAMP
on the right and their alignment is shown in the middle panel. The Van der Waals surfaces of the bound cyclic nucleotides and the cis peptide
forming residues are shown in surface representation.
doi:10.1371/journal.pone.0018413.g004

Table 2. Protein-ligand distances.

PKG I: cGMP
complex PKG I: cAMP complex Partial Apo structure PKA RIa:cAMP complex

cGMP-bound Syn-cAMP bound
Anti-cAMP
bound cAMP-bound PKG I:PO4

Hydrogen
Bonding
Distances

PKG I
Residue
Atom 1

cGMP
Atom

Distance
from
Atom 1
(Å)

cAMP
Atom

Distance
from
Atom 1
(Å)

cAMP
Atom

Distance
from
Atom 1
(Å)

cAMP
Atom

Distance
from
Atom 1
(Å)

PO4
Atom

Distance
from
Atom 1
(Å)

PKA
Aligned
Residue
Atom 1

cAMP Atom Distance
from Atom 1
(Å)

G182 N O2* 3.0 O2’ 2.9 O2’ 2.9 O2’ 2.9 n/a n/a G199N O2* 2.9

E183 OE1 O2* 2.2 O2’ 2.8 O2’ 2.7 O2’ 2.7 n/a n/a E200 OE1 O2* 2.6

A185 N O1P 3.2 O1P 2.9 O1P 2.9 O1P 2.9 n/a n/a A202 N O1P 2.9

R192 NH1 O1P 2.8 NH1 2.8 O1P 2.9 O1P 2.9 O4 2.8 R209 NH1 O1P 2.8

T193 N O2P 2.8 O2P 2.8 O2P 2.8 O2P 2.8 O1 2.7 A210 N O2P 2.9

T193 OG1 O2P
N2

2.7
2.8

O2P 2.9 O2P 2.9 O2P 2.9 O1 2.5 n/a n/a n/a

VDW
Distances

V165 CG1 C5 3.9 C5
C8
N7

3.8
3.9
3.9

C4 3.9 n/a n/a n/a n/a n/a n/a n/a

L172 CD N1
O6

3.2
3.1

N6
C6

3.9
3.7

N6 3.6 n/a n/a n/a n/a n/a n/a n/a

C173 SG N7 3.5 N7 3.6 C2 3.4 C2 3.4 n/a n/a n/a n/a n/a

M175 CE C8 3.9 C8 3.7 n/a n/a n/a n/a n/a n/a n/a n/a n/a

doi:10.1371/journal.pone.0018413.t002
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quality crystals. In all, we obtained three crystal forms and solved

eight molecules of PKG Ib (92–227), bound to a phosphate ion,

cAMP or cGMP. Our structures explain some past biochemical

observations on PKG I. One study demonstrated that intrachain

disulphide bond formation between PKG Ia Cys117 and Cys195

(analogous to PKG Ib Cys133 and Cys211) activates the kinase

[21]. Consistent with this observation, the crystal structure of

CNBD-A clearly shows that these residues are within the proper

distance to form a disulphide bond upon oxidation (Fig. S2). These

residues are located within the A- and B-helices, and in analogy to

PKA, the B-helix is expected to form contacts with the catalytic

domain. We speculate that disulphide bond formation between

these residues alters the conformation of the B-helix such that it no

longer forms a binding surface for the catalytic domain. Another

study demonstrated that cGMP-binding protected full-length PKG

Ia from cleavage by chymotrypsin at Met200 [22]. Our structure

reveals that this methionine links the B-helix to the PBC through

hydrophobic interactions. It appears that cGMP-induced stabili-

zation of the PBC would provide a stable hydrophobic interaction

surface for the methionine, providing a possible explanation for

the observed protection.

A direct comparison between the three structures of the PKG Ib
CNBD-A in the presence and absence of cyclic nucleotides, as well

as with the homologous domain of PKA, provides a possible

mechanism for cyclic nucleotide binding. In the absence of cyclic

nucleotides, the conformation of CNBD-A is similar to the cyclic-

Figure 5. Structure of the PKG Ib (92–227):cAMP complex. (A) Structural alignment of two mononers of PKG Ib (92–227):cAMP complex. They
align well with an rmsd of 0.74 Å for equivalent 126 Ca atoms. (B) A Fo-Fc omit map showing the electron density of cAMP in the anti and syn
configuration contoured at s= 1.0. (C) Showing two cGMP-binding pockets each with bound cAMP. cAMP in molecule is bound in a anti
configuration (left panel) and an syn configuration in the other (right panel). Aligned structures are shown in the middle panel. The Van der Waals
surfaces of the bound cAMPs and the cis peptide forming residues are shown in surface representation.
doi:10.1371/journal.pone.0018413.g005
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nucleotide bound forms; with the exception of the b4/b5 strands

which are in an open conformation with respect to PBC, as seen in

the PO4 bound structure (Fig. 8A). The initial binding of cGMP,

or cAMP, is likely to occur at site 1, mediated mainly by strong

charge-charge interactions between the sugar phosphates and

residues in the PBC. Both syn- or anti-configured cyclic nucleotides

can bind equally at the site 1. Because the interaction pattern with

the sugar phosphate is essentially identical for PKG and PKA, site

1 cannot provide the required cyclic-nucleotide selectivity.

However, at site 2, only cGMP in a syn configuration positions

its 2-NH2 group such that it can form a hydrogen bond with

Thr193. Since a hydrogen atom replaces the 2-NH2 group in

cAMP, no such interaction is possible, and cAMP binds the PKG

CNBD-A in both syn- or anti-configurations (Table 2). Lastly, we

found that the carbonyl at the 6-position and the unprotonated

nitrogen at the 7-position of cGMP interact with the cis peptide

forming residues, Leu172 and Cys173, resulting a ‘‘closed’’

conformation for the b4 and b5 strands. While there is only slight

conformational differences within the b4/b5 region in our three

CNBD-A structures, the temperature factors (B-factors) are

noticeably different in this region (Fig. 8B). The CNBD-A bound

with syn-configured cGMP shows the lowest B-factors, implying

that interaction with the guanine ring is strongest at site 3

compared to other structures (Fig. 8B). In contrast, the structure

with anti-configured cAMP shows the highest B-factors at this

region, indicating that site 3 residues do not interact as strongly

with the adenine ring. Although the corresponding residues in

PKA, Ala189 and Thr190, are also connected by a cis-peptide

bond, they do not interact with cAMP, and the b4 and b5 strands

are further away from the nucleotide compared to PKG (Fig. 8A).

The cGMP-binding affinities for full-length PKG Ia and PKG

Ib, as well as their isolated regulatory domains, have been reported

[11,23,24,25,26]. This report provides Kd measurements of the

isolated PKG Ib CNBD-A for both cGMP and cAMP. While the

Kd for cGMP is somewhat similar to the previously reported values

for full-length PKG Ia [24], the affinity for cAMP is remarkably

high, being only a two-fold weaker than the value measured for

cGMP (Fig. 7). This small difference in binding affinity was

unexpected as full-length PKG Ia has a 100-fold lower affinity for

cAMP than cGMP. Our results may be explained in a number of

ways. Most likely, our results reflect the fact that we are using a

truncated protein and the binding affinities observed for the full-

Figure 6. Structure of the PKG Ib (92-227): Partial apo. (A) Structure of cAMP bound PKG Ib (92–227) shown in cartoon representaion. The
cAMP interacting residues and bound cAMP are shown in sticks. A Fo-Fc omit map showing the electron density of cAMP in syn and anti
configuration contoured at s= 1.0. (B) Structure of PO4 bound PKG Ib (92–227). A Fo-Fc omit map showing the electron density of PO4 contoured at
s= 1.0. (C) Structural alignment of molecule A and C. Despite the crystal contacts and different ligands, they align well with an rmsd of 0.51 Å for
equivalent 118 Ca atoms.
doi:10.1371/journal.pone.0018413.g006

Figure 7. Isothermal titration calorimetry data for cGMP and cAMP binding to PKG Ib (92–227). The calorimetric measurements for cGMP
(panel a) or cAMP (panel b) binding were performed and analyzed as described in Material and Methods.
doi:10.1371/journal.pone.0018413.g007
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length protein are caused by allosteric interactions between

CNBD-A other regions of the R-domain, such as the leucine/

isoleucine zipper, the autoinhibitory sequence and/or CNBD-B.

In fact, previous research has shown that the N-terminal leucine/

isoleucine zipper and/or autoinhibitory regions modulate cGMP-

affinity of the cyclic nucleotide binding pockets [27,28,29,30]. In

addition, our CNBD-A construct lacks regions of the R-domain

that are expected to interact with the cGMP-binding pocket.

Indeed, unlike what is seen in other cGMP- and cAMP-pockets,

our structures show that the nucleotides are partially exposed to

solvent, whereas in PKA RIa ‘‘capping’’ residues increase cAMP

affinity by covering the cyclic nucleotide binding pocket. Using

models of PKG I CNBD-A/B domain, constructed using crystal

structures of the R-subunit of PKA, we find that the C-helix of

CNBD-A or the A-helix of CNBD-B may position near the solvent

exposed side of the binding pocket. Since the cGMP affinity of

PKG I CNBD-A is similar to reported values for full-length PKG

Ia, we speculate that these contacts lower the affinity for cAMP,

thus providing sufficient affinity differential for cyclic nucleotide

selectivity.

Conclusion
Despite the high degree of similarity between PKA and PKG,

our structures reveal that the molecular interactions that mediate

cyclic nucleotide binding are distinct from PKA. These interac-

tions may explain reported differences between the regulation of

PKG and PKA, such as the reversed order of the high and low

affinity CNBDs and differences in cyclic nucleotide induced

conformational changes, as revealed by small angle X-ray

scattering [5,31]. The finding that the cGMP-bound PKG looks

structurally more like C-subunit bound PKA RIa was unexpected,

as was the interaction between Leu172/Cys173 and the guanine

base. The small difference between cGMP and cAMP affinity was

also unexpected, but not completely surprising since our construct

represents a single domain and domain-domain interactions have

been previously shown to modulate cGMP affinity [32]. We are

currently working to extend our structural analysis of PKG I to

include the CNBD-B domain; these studies should reveal

additional molecular contacts that modulate cyclic nucleotide

affinity. Because most effects of cGMP elevating drugs, such as

organic nitrates and phosphodiesterase inhibitors, are mediated by

PKG, direct activators of PKG could provide novel approaches to

treat a wide array of hypertensive diseases. The structures

presented here will be useful for designing such reagents.

Materials and Methods

Protein Expression and Purification
A DNA sequence encoding Human PKG Ib (92–227) was

cloned into pQTEV [33]. The protein was produced in BL21

(DE3) E. coli which were grown at 37uC until OD600 of 0.6 then

induced with 0.4 mM IPTG. The cultures were grown for an

additional 18 hours at 18uC. Cells were suspended in 50 mM Tris,

150 mM NaCl, 1 mM DTT (pH 7.9) and lysed using a cell

disruptor (Constant Systems). His-tagged PKG Ib (92–227) was

purified with a BioRad IMAC resin on a Bio-Rad ProfiniaTM

purification system. The protein was eluted with cell suspension

buffer containing 250 mM imidazole. The sample was incubated

with 1.0 mg/ml TEV protease at 4uC for 48 hours to remove the

His-tag. The protein was purified further with a Q sepharose HP

followed by gel filtration on a Hi-load 16/60 Superdex-75 column

(GE Healthcare) in 25 mM Tris-HCl, pH 8.0, NaCl 150 mM and

1 mM TCEP-HCl.

Crystallization
For the crystallization of the partial apo crystals, the protein

sample was concentrated to 20 mg/ml using a 10 kDa cutoff

Amicon Ultra (Millipore). The partial apo crystals were obtained

using the vapor diffusion method in 1.4 M sodium/potassium

phosphate (pH 5.6) at 22uC. Crystal optimization was done using

an Orxy6TM robot (Douglas Instruments LTD). The bipyramidal

crystals appeared in 1.4 M sodium/potassium phosphate (pH 8.1)

at 22uC in 2 days. Co-crystallization with cGMP was accom-

plished by adding cGMP (Aral Biosynthetics) to a final

concentration of 5 mM to the purified protein sample, which

was then concentrated to 33 mg/ml using a 10 kDa cutoff Amicon

Ultra (Millipore). The crystals of the PKG Ib:cGMP complex were

obtained using the vapor diffusion method in 0.1 M sodium

malonate (pH 5.0), 12% PEG 3350 at 4uC. Similarly, co-

crystallization with cAMP was accomplished by adding cAMP to

a final concentration of 5 mM to the protein sample, which was

concentrated with a 10 kDa cutoff Amicon Ultra (Millipore) to

17 mg/ml. The PKG Ib:cAMP complex crystals were obtained

using the vapor diffusion method in 1.4 M sodium/potassium

phosphate (pH 5.6) at 4uC.

All crystals were transferred to a cryoprotectant solution (25%

glycerol) and flash cooled in liquid nitrogen. X-ray diffraction data

were collected at beamline 8.2.1 (Advanced Light Source,

Berkeley, CA, USA). Diffraction data were processed and scaled

using HKL2000, resulting in acceptable data set with satisfactory

summary statistics (Table 1).

The crystal structure of PKG Ib (92–227):cAMP was deter-

mined by molecular replacement using a truncated model of PKA

RIa (91–379) (PDB: 1RGS) as a molecular replacement probe [8].

Subsequent phasing, density modification and model building

were carried out with phenix.autosol [34]. The resulting model

was manually completed in Coot [35] and restrained-structure-

refinement implementing TLS refinement [36] resulted in cAMP

model with Rwork and Rfree of 20.6% and 23.0% respectively.

Refinement of the 2.9 Å PKG Ib(92–227):cGMP complex was

carried out in PHENIX (dev-403) [10] using reference dihedral

restraints derived from the higher resolution cAMP complex, as

described in the following section. Use of the higher resolution

reference model in refinement improved the R and R-free values,

as well as MolProbity validation criteria, resulting a final model

with Rwork and Rfree of 20.4% and 26.0%, respectively [37]. For

all of the Fo-Fc omit maps shown in the figures, we generated

simulated annealing omit maps, omitting a region with a border of

2 Å around each ligand as described in Terwilliger et al.[38].

Reference model refinement in phenix.refine
To improve refinement stability and associated model quality in

low resolution refinement, the cGMP and partial apo structures

were refined with phenix.refine using dihedral restraints obtained

from the higher resolution PKG Ib:cAMP structure. Dihedral

restraints obtained from the reference model were imposed on the

Figure 8. Structure and backbone B-factor comparison of the PKG Ib:cGMP, PKG Ib:cAMPP43, PKG Ib:PO4 and PKA RIa:camp. (A) Stereo
view of the cGMP binding pocket colored according to calculated B-factors. (B) The PKG Ib:cGMP, PKG Ib:cAMPP43, and PKG Ib:PO4 are colored
according to the B-factors of Ca atoms. The b4/b5 region of each structure is circled with a dotted line. B-factor plots of Ca atoms are shown below.
The b4/b5 region is circled.
doi:10.1371/journal.pone.0018413.g008
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working model if the absolute angular deviation fell within a user-

defined threshold. For this refinement, a threshold value of 15u
was used. These restraints served to direct the overall topology of

the model while avoiding unjustified bias to the high-resolution

model. The refinement scheme is similar in concept to non-

crystallographic symmetry restraints adopted in SHELXL and the

deformable elastic network approach introduced in the following

reference [39].

Isothermal Titration calorimetry
To remove residual cAMP, all samples were denatured by

incubating in 6 M guanidine HCl for 24 h at 4uC, then renatured

by step-wise dialysis against first 2 M and then 0.5 M guanidine

HCl over 48 h. The samples were then purified in 10 mM Tris

(pH 8.0) and 150 mM NaCl on a Hi-load 16/60 Superdex 75

column (GE Healthcare). The calorimetric measurements for

cAMP and of cGMP binding to PKG Ib (92–227) were carried out

using a VP-ITC calorimeter (MicroCal LLC, Northampton, MA).

The protein was placed in the sample cell at a concentration of

15 mM in the column buffer. Cyclic nucleotides were placed in the

injection syringe at a concentration of 250 mM. The injection

volume was 5 ml. The data was processed using the Origin

software with a manufacturer-supplied custom-addon ITC sub-

routine. The reported results were repeated in at least duplicate.

Protein data bank accession codes
The coordinates for the structures described herein have been

deposited in the Protein Data Bank under the accession codes

3OD0, 3OCP and 3OGJ for PKG Ib:cGMP, PKG Ib:cAMP and

the partial apo structures, respectively.

Supporting Information

Figure S1 A Fo-Fc omit map of cAMP and PO4 in the
PKG Ib (92–227): Partial apo structure. A Fo-Fc omit map

showing the electron density of cAMP and PO4 along with the

omitted region shown in mesh. A simulated annealing omit map

was generated, omitting a region with a border of 2 Å around the

bound cAMP and PO4.

(TIF)

Figure S2 A view showing Cys133 and Cys211 of PKG1 b
CNBD-A.
(TIF)
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39. Schröder GF, Levitt M, Brunger AT (2010) Super-resolution biomolecular

crystallography with low-resolution data. Nature 464: 1218–1222.

Structures of PKGIb (92–227) with cGMP and cAMP

PLoS ONE | www.plosone.org 15 April 2011 | Volume 6 | Issue 4 | e18413


