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Abstract: The MEMS array-based inertial navigation module (M-IMU) reduces the measurement
singularities of MEMS sensors by fusing multiple data processing to improve its navigation per-
formance. However, there are still existing random and fixed errors in M-IMU navigation. The
calibration method calibrates the fixed error parameters of M-IMU to further improve navigation
accuracy. In this paper, we propose a low-cost and efficient calibration method to effectively estimate
the fixed error parameters of M-IMU. Firstly, we manually rotate the M-IMU in multiple sets of
different attitudes (stationary), then use the LM-calibration algorithm to optimize the cost function of
the corresponding sensors in different intervals of the stationary-dynamic filter separation to obtain
the fixed error parameters of MEMS, and finally, the global fixed error parameters of the M-IMU are
calibrated by adaptive support fusion of the individual MEMS fixed error parameters based on the
benchmark conversion. A comparison of the MEMS calibrated separately by the fusion-calibration
algorithm and the LM-calibration algorithm verified that the calibrated MEMS array improved the
measurement accuracy by about 10 db and reduced the dispersion of the output data by about 8 db
compared to the individual MEMS in a multi-dimensional test environment, indicating the robustness
and feasibility of the fusion calibration algorithm.

Keywords: MEMS array; fixed error; fusion-calibration algorithm; LM-calibration algorithm

1. Introduction
1.1. Background

Inertial navigation technology [1] is one of the most important navigation technologies
and is characterized by high stealth, strong navigation autonomy, wide navigation coverage,
etc. Meanwhile, MEMS sensors are one of the most important inertial devices in inertial
guidance systems, with small size, light weight, low power consumption, easy integration,
and other characteristics [2], which can make inertial navigation modules more integrated
and miniaturized. Therefore, inertial navigation systems based on MEMS IMU have been
developing rapidly in recent years. However, the low accuracy of MEMS in inertial sensors
and measurement errors, such as high noise, limit their development and application [3] in
military fields such as aviation, aerospace, high-end UAVs, and precision-guided bombs; in
addition, MEMS gyroscopes have integral drift [4], and their accumulated noise is large
during long working hours. Based on the current processing technology and fabrication
process, it is difficult to rapidly reduce the system noise [5] of MEMS in a short period of
time and improve the accuracy of individual MEMS [6], so forming MEMS arrays out of
individual MEMS and using the redundancy [7] of MEMS arrays to further improve the
accuracy of inertial systems have been a hot research topic in recent years.

Consumer-grade MEMS are often shipped from the factory without calibration for the
fixed error parameters, which are caused by errors in the packaging process of the packaged
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IC [8] and non-orthogonality of the sensitive axes of the MEMS array, zero bias, and scale
factor, etc. Therefore, this subject calibrates the individual MEMS [9] before the calibration
of the MEMS array fusion [10], by compensating for the individual axis misalignment [11],
zero bias, and scale factor of the MEMS, and then the MEMS array is analyzed for fixed
errors. A reasonable MEMS calibration fixed error parameter [12] technique is a key process
to reduce the system error.

1.2. Related Works

For the traditional calibration method, see John Baziw, Cornelius T. Leondes et al. [13,14]
who proposed to use the data from navigation to calibrate the inertial guidance for fixed
errors. This method requires accurate latitude and longitude information as an input to
the system, collects the navigation north and east information at multiple positions, then
models the position error information under the system and uses least squares to process
it, and then uses an algorithm to calibrate the fixed error parameters. This method is
limited to the number of calibration parameters and the accuracy of the parameters is
poor. David Tedaldi and Alberto Pretto in [15] proposed a calibration scheme for multiple
positions that guarantees system stability and is easy to implement, placing the sensor in
a set of different static positions, accurately measuring the deviation of the sensor, and
reliably and effectively estimating the fixed error parameters of the sensor. This method
can accurately calibrate accelerometers, but for gyroscopes and magnetometers, the fixed
error parameters cannot be accurately estimated. Zhang Xin et al. in [16] proposed a
MEMS model based on nonlinear calibration factors and based on cone wobble motion and
position oscillation as the excitation input to the MEMS, and then constructed a nonlinear
IMU error model to calibrate the error parameters of multiple IMUs using a global weight
function. Lukas Blocher, Wolfram Mayer in [17] used an extended Kalman filter with real-
time error compensation for low-cost redundant MEMS for inertial devices to eliminate
errors in angular random wander and bias instability, while using a rate table to fine-tune
the system to compensate for fixed errors, and the compensated redundant MEMS was
several times more accurate than a single MEMS. In [18], Hu Pei Da proposed a calibration
method for inertial guidance system mounting errors based on attitude error models
using a two-axis turntable device; the above three calibration methods are more accurate
for specific parameters, but their calibration time is long and experimental equipment is
expensive. JJan Rohac and Martin Sipos in [19], based on the calibration of accelerometers
and gyroscopes, proposed to build the same error model but adopted a different calibration
procedure, with the acceleration using a gravity-based position inversion method and
the gyroscope using a calibration with measurements in the angular velocity and angular
domains, with a reduction in deviation of about 6.28 db after calibration. The above
calibration algorithms and testing techniques are often used to calibrate military-grade
inertial equipment with high accuracy. Based on the irreplaceable role of consumer-grade
inertial navigation equipment in civilian development, and with the improvement of
electronic packaging technology, Feynman [20], the proposer of the MEMS concept and an
internationally renowned physicist, once proposed that consumer-grade MEMS devices
utilize no external device calibration algorithm [21] and filtering method [22]; processing
and improving the accuracy of inertial navigation is an important topic in the development
of MEMS navigation related technologies. Guided by this idea, the approach of multiple
MEMS [23] undergoing fusion algorithms [24] to improve performance has received great
attention in the study of inertial navigation, and, in turn, this technology has been given
several names: batch MEMS [25], redundant MEMS [26], M-IMU [27], virtual MEMS [28],
etc. All of which are largely based on the same principles and can be referred to as sensor
array technology. John-Olof Nilsson in [29] obtained the error parameters of individual
accelerations in an accelerometer array by collecting the static outputs of the accelerometer
array for different positions using the traditional error IMU model with the maximum
likelihood parameters using the Platonic solids on the positive 20 sides of the external
device. In [30], Lu Jiazhen and Hu Maoqing derived measurement models by referring to
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the velocity information of satellite navigation, attitude information provided by the star
sensor, and the measurement output of the redundant IMU, and calibrated the redundant
IMU in orbit by setting three different levels of observation rotation sequences using
Kalman filters, and then proposed a reliable calibration algorithm for the error parameters
of the redundant IMU in orbit. The above method calibrates the multiple redundant IMUs
one by one in a costly test instrument, but the IMUs in the array have different ranges,
which in turn leads to large errors in the estimated scale factors.

The research work in the above literature has imperfections in both hardware and
software algorithms: Hardware redundancy is scarce and MEMS sensors are single degree-
of-freedom, resulting in less reliability and more measurement errors. The estimated error
parameters solved by the algorithm are inaccurate and the calibration algorithm is complex,
resulting in longer delays in output. The experimental steps for calibration are excessively
cumbersome and do not accurately measure the error parameters in complex outdoor
conditions.

1.3. Purpose of This Research

To address how to accurately eliminate randomness error parameters and calibrate
fixed error parameters, we have chosen to calibrate individual MEMS in MEMS arrays
based on consumer-grade experimental equipment, with redundant MEMS calibration as
the main research component, so that their calibrated MEMS arrays can perform accurate
inertial guidance without GPS [28]; specifically, the purpose of developing this work is
twofold, as elaborated below.

(1) The IMU achieves peripheral-free real-time calibration [31] of a single IMU based
on the elimination of its own random errors using ALLAN variance [32], which is
achieved by calibrating a single IMU in real time in the attitude transformation of the
inertial module, and recording the currently calibrated deterministic error parameters,
and calculating the extremes of the deterministic error parameters of the single IMU
through an iterative optimization algorithm. The iterative optimization algorithm
calculates the extreme value of the deterministic error parameter of the individual
IMU, thus obtaining a highly accurate individual IMU.

(2) Based on the calibrated individual IMU, the multi-sensor fusion algorithm [33–35] is
referenced to obtain the fusion calibration algorithm proposed in this thesis, which
is used to calculate the deterministic error parameters of the MEMS array, thus
enabling pure inertial navigation without auxiliary equipment in complex outdoor
environments in a short time.

2. Error Modelling of M-IMU and Cost Functions
2.1. Error Models for M-IMU

This study is aimed at M-IMU with 10 redundancies, which can reduce the measure-
ment error of M-IMU while ensuring high reliability as shown in Figure 1 (M stands for
redundancy of sensors). The M-IMU is arranged in front and reverse ways as shown in
Figure 2, with the coordinates in the aerospace coordinate system of MEMS0 as the refer-
ence, and the layout of the MEMS space is considered under the premise that the volume
constraint is within a certain range. The role of the layout should minimize the correlation
between each MEMS and make the MEMS symmetrically and uniformly distributed, and
thus the lower the correlation the better the fusion effect, in order to obtain better accuracy.

The fixed errors in the IMU come from three main components, including Bias and
Noise, Scale errors, and Axis misalignments. The measurement model for accelerometers
and gyroscopes can be expressed by the following equation.

aB
i = Ta

i Ka
i (as

i + ba
i + va

i ) (1)

ωB
i = Tg

i Kg
i (ω

s
i + bg

i + vg
i + Ggas)

i = 1, 2, · · · , 10
(2)
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where the superscript a represents the accelerometer, g represents the gyroscope, i rep-
resents the i-th sensor, and B represents the orthogonal reference coordinate system.
S represents the transformation matrix of the axis deviations, K represents the scale factor,
and as

i , ωs
i represents the true value of the output of the i-th accelerometer and gyroscope.

b represents the zero bias, and v represents the random error.
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Ta
i is the mounting error matrix of the accelerometer, which shows the angular devia-

tion of the non-orthogonal coordinate system mapped to the orthogonal coordinate system.
For this MEMS, the error angle is relatively small and can be converted to a mounting error
matrix in an orthogonal coordinate system. Meanwhile, the correction algorithm proposed
in this topic converts Ta

i into an upper triangular matrix, which in turn yields its orthogonal
error angle, i.e.,

aO = TaaS, Ta =

1 −αyz αzy
1 −αzx

0 0 1

 (3)

aB is the ratio in the orthogonal coordinate system represented, aS represents the ratio
in the non-orthogonal coordinate system.
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In the case of gyroscopes, reference should be made to the reference coordinate system
of the accelerometer, as the calibrated gyroscope is based on a calibrated accelerometer so
that installation errors causing system errors can be minimized. Its conversion to orthogonal
coordinates under the installation of a non-orthogonal coordinate system becomes

ωO = TgωS, Tg =

 1 −γyz γzy
γxz 1 −γzx
γxy γyx 1

 (4)

ωB
i = Tg

i Kg
i (ω

s
i + bg

i + vg
i + Ggas) (5)

Gg =

G1 G2 G3
G4 G5 G6
G7 G8 G9

 (6)

The measurement of the consumer-grade MEMS gyroscopes is based on the Coriolis
force with ADC conversion to obtain the angular velocity. The output of the accelerometer
affects the oscillation frequency of the MEMS and therefore the output of the gyroscope.
Therefore, Gg (a 3 × 3 bias matrix related to the gravitational acceleration g) is introduced
to eliminate the effect of harmful accelerations.

2.2. Constructing Cost Functions for Accelerometers

The cost function is a convex function constructed by least squares, which in turn
minimizes the cost function for a time window of tw. The set of parameters to be solved
for the accelerometer θacc

i =
[
αyz, αzy, αzx, ka

x, ka
y, ka

z, ba
x, ba

y, ba
z

]
. Therefore, based on the

traditional multi-position method with the addition of the rotation of the array MEMS, the
output ratio of the accelerometer at each static interval of time is the average output ratio
for that time period, and the cost function La(θacc

i ) for the parameters to be found in the
accelerometer is constructed on the basis of the average ratio.

aB
i = h(as

i , θacc
i ) = Ta

i Ka
i (as

i + ba
i + va

i ) (7)

La(θ
acc
i ) =

1
2

M

∑
k=1

( | |h(as
i , θacc

i )|−|g||)
2

(8)

as
i the representation is the mean ratio of sensor i in a static time window, while

ensuring that the ratio data for acceleration i is collected from multiple positions, at different
attitudes.

2.3. Constructing the Cost Function of the Gyroscope
2.3.1. Constructing the Attitude Transformation Matrix

The calibration of the gyroscope is improved on the calibrated accelerometer output
aB

i by using the attitude transition matrix of the dynamic positional transition between the
(k−1)-th static moment and the k-th static moment, thus constructing the cost function of
the gyroscope. The attitude transition matrix of the sensor is expressed in the form of a
quaternion q. The differential equation for the quaternion describes the attitude kinematics
of the quaternion, and considering that the inertial guidance device is attached to the
carrier, it is deduced that the measured angular velocity of the gyro is the absolute angular
velocity along the carrier coordinate system, which in turn can be used to construct the
traditional quadratic differential equation form, see Equation (8). Using the fourth-order
Longacurta method RK4n to solve the above differential equation for the quaternion yields
[q1, q2, q3, q4], ∆t for the time interval, and [q1, q2, q3, q4] to construct the attitude transition
matrix for Equation (9).

Qωs
i =


.
q0.
q1.
q2.
q3

 =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
ωs

i(x)
ωs

i(y)
ωs

i(z)

 =
1
2


0 −ωs

i(x) −ωs
i(y) −ωs

i(z)
ωs

i(x) 0 ωs
i(z) −ωs

i(y)
ωs

i(y) −ωs
i(z) 0 ωs

i(x)
ωs

i(z) ωs
i(y) −ωs

i(x) 0




q0
q1
q2
q3

 (9)
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Qi+1 = Qi +
h
6
(s1 + 2s2 + 2s3 + s4), h = ∆t (10)

s1 =
1
2

Ωiqi , s2 =
1
2

Ωi+ 1
2 ∆t(qi +

∆t
2

s1), s3 =
1
2

Ωi+ 1
2 ∆t(qi +

∆t
2

s2), s4 =
1
2

Ωi+∆t(qi +
∆t
2

s3) (11)

R =

 1− 2q2
2 − 2q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) 1− 2q2

1 − 2q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2q2
1 − 2q2

2

 (12)

2.3.2. The Cost Function of the Gyroscope

The unknown parameter for gyroscope calibration can be expressed as:
θ

gyr
i =

[
γyz, γzy, γxz, γzx, γxy, γyx, sg

x, sg
y , sg

z

]
, when the sensor moves, the gyroscope records

the change in attitude of the gravity vector from the output of the calibrated accelerometer
with the change in attitude vector as the sensor moves.

The subject defines the integration function Ri which takes as input the angular
velocity of the gyroscope output ωs

i for the i-th sensor with a total of M dynamic states
and the initial gravity value aB

init(K) from the calibrated accelerometer and returns the final
gravity value ug,k calculated from the quaternion conversion matrix (see Equation (11), R),
which is also calculated for the (K−1)-th and K-th static intervals.

ug,k = R[Rk−1, ωs
i , aB

i(K−1)] = Rk−1·aB
i(K−1) (13)

Lg(θ
gyr
i ) =

1
2

M

∑
k=1

(
∣∣∣∣∣∣aB

i(k)

∣∣∣−∣∣∣ug,k

∣∣∣∣∣∣)2 (14)

2.4. Optimization Algorithm for Minimizing the Cost Function

The LM (Levenberg-Marquarat) algorithm solves the nonlinear least squares extremum
problem of the cost function (Equations (7) and (13)). The value of the objective function
is required to decrease. If the decrease of the cost function satisfies the condition of
decreasing sensor error, it means that the current iterative process is reliable, then continue
to iterate and continue to calculate the optimal error parameter of the cost function. If
the cost function The increase of the value, that is, the increase of the error, reduces the
trust region range and recalculates, so the LM algorithm combines the advantages of the
gradient descent method and the Gaussian descent method, and the LM algorithm adds
an adjustment factor. Small increases the reliability of the data, making the entire formula
close to the Gauss Newton method; when the convex function declines too slowly, it is used
larger, the overall formula is close to the gradient method, the data convergence speed is
accelerated, and the running algorithm time is reduced. The LM algorithm is shown in the
following formula:

L(x + ∆x) ≈ L(x) + J(x)∆x (15)

∆x = (H + αD)−1g (16)

H = J(x)T J(x) (17)

g = −J(x)T L(x) (18)

L is the cost function shown in Equations (7) and (13); ∆x represents the increment;
H is the Hessian array, represented here by the J(x) Jacobi matrix; D is the transformation
matrix of the increment, and λ is the trust domain radius or damping factor.

The incremental function of the above equation is brought into the iterative equation
of the LM algorithm, and the error parameters optimized for the MEMS in the current
physical environment are determined by iterative referencing of K-th static positions.



Micromachines 2022, 13, 1214 7 of 22

2.5. Algorithm for Fusing Calibration Parameters

The fixed error of MEMS is often linear at narrow measurement ranges and non-linear
at wide measurement ranges, while the error parameters of individual MEMS calibrated
based on LM algorithms are often accompanied by parameter singularities due to changes in
temperature, air pressure, and other real-world conditions. In order to increase the attitude
conversion range and to avoid error parameter singularities, this project selects an array of
multiple MEMS and applies an improved fusion algorithm to enable the inertial guidance
system to increase the measurement range while using the adaptive support of the sensors
to weight and fuse the error parameters into a “high accuracy virtual inertial guidance”
all the way to circumvent the singularity of the measured values. The above arrayed
inertial guidance system has five sensors on one side, a central MEMS, and four MEMS
arranged in a rectangular pattern. The rectangular MEMS are converted according to the
coordinate system conversion equation as shown in the following Equations (18) and (19)
and the center MEMS coordinate system base center alignment. The application of the
rectangular layout of the MEMS array can reduce temperature drift, while using the
coordinate conversion equation to convert the sensor coaxial isotropic, and then the MEMS
are weighted and fused into a set of “high precision virtual inertial guides” using a “virtual
fusion algorithm”. The “virtual determination of error parameters” for this “high precision
virtual fusion inertial guide” directly affects the accuracy of the MEMS array output data,
so the “virtual high precision inertial guide”, which can accurately calibrate the MEMS
array on the basis of the LM-based calibration algorithm that can accurately calibrate the
error, becomes another research point of this paper.

For this project, the spatial layout of the MEMS array is orthogonal, and is based on
the correlation between redundant sensors of the same category. The conversion matrix
(Equations (19) and (20)) is used to perform a coordinate transformation with the central
MEMS0 as the reference, then the fusion-calibration algorithm is used to calibrate the MEMS
array fusion weighted into a “high precision virtual inertial guidance“, deterministic error
parameters, and random error parameters of MEMS0.

R0 =

1 0 0
0 1 0
0 0 1

 R1 =

 0 1 0
−1 0 0
0 0 1

 R2 =

−1 0 0
0 −1 0
0 0 1

 R3 =

0 −1 0
1 0 0
0 0 1

 R4 =

1 0 0
0 1 0
0 0 1

 (19)

R0′ =

1 0 0
0 1 0
0 0 −1

 R1′ =

 0 1 0
−1 0 0
0 0 −1

 R2′ =

−1 0 0
0 −1 0
0 0 −1

 R3′ =

0 −1 0
1 0 0
0 0 −1

 R4′ =

1 0 0
0 1 0
0 0 −1

 (20)

The fusion-calibration method with improved support proposed in this topic is shown
in Figure 3. Each sensor is fused with each parameter independently based on the fixed
error parameters of the conversion matrix. If there is still a large error between the data
after the initial fusion of the sensor and the actual measured value, the initial fused data
need to be judged by the error threshold ψ. If it is less than the threshold, the fusion is
successful; otherwise, the initial fused data are fused again with the sensor parameters.

xi = f (Riθ
sen
i ) (21)

ψ = max
∣∣xi − xj

∣∣ (22)

η = max(xk
1 − xi) (23)

xi, xj represent the data of a fixed error parameter of sensor i and sensor j, respectively;
Ri represents the conversion matrix of sensor i; f represents the sensor error parameter
Riθ

sen
i with respect to the separation function, after the separation conversion; sen represents

the accelerometer or gyroscope; ψ represents the maximum threshold value between
sensors; and η represents the maximum threshold value of the result of the initial fusion xk

1
with respect to a fixed error parameter of sensor i.
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An improved exponentially decaying support function to describe the support be-
tween individual sensors is expressed as follows.

supij = aij = exp(−β(xi − xj)
2), i 6= j(1, 2, · · · 10); η ≤ ψ (24)

supim = aim = exp(−β(xi − xm)
2), xm(xj, xk

1); η > ψ (25)

si =
1

1 + σi
(26)

σi =

n
∑

i=1
((xi − x))2

n
, (n = 10, η ≤ ψ); (n = 11, η > ψ) (27)

βa =
√

sisj, i 6= j(1, 2, · · · 10); η ≤ ψ (28)

βb =
√

sism, i 6= m(xj, xk
1); η > ψ (29)

The above equation uses σi to represent the variance of the output data of sensor
i per unit time; supij, supim represent the support of the observations of sensor i and sensor
j; x represents the mean value of sensor i per unit time; βa, βb are adjustable parameters,
which in turn modulate the metric scale; when η ≤ ψ, Equations (24) and (26)–(28) form the
adaptive support function of sensor i and sensor j; when η > ψ, Equations (25)–(27) and (29)
form the adaptive support function of sensor i, sensor j and the first fusion result xk

1.
The matrix of mutual support between the sensors is:
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A =



a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n

...
. . .

...
ai1 ai2 · · · aij · · · ain
...

... · · ·
...

...
...

an1 a12 · · · anj · · · ann


(30)

The normalization of the total support yields a consistency measure function for sensor
i as:

wi(k) =
sum(i)
n− 1

, i = 1, 2 · · · 10; 0 < wi ≤ 1 (31)

The consistency mean of the i-th sensor at moment K of unit time is expressed as:

wi(k) =

{
wi(1), k = 1

k−1
k wi−1(k) + 1

k wi(k), k > 1
(32)

The observed consistency variance of the i-th sensor at moment K of unit time is:

λ2
i (k) =

 0, k = 1

k−1
k λ2

i (k− 1) + 1
k [wi(k)− wi(k)]

2
, k > 1

(33)

In the actual fusion process, full use should be made of observations from sensors
with large consistency mean values and small consistency variance at the same time, so
that the correlation weight of the ith sensor observation at moment K is:

µi(k) =
wi(k)

α + aλ2
i (k)

, i = 1, 2 · · · n (34)

In the above equation, α is the noise constant of the system observations; a is an
adjustable parameter disturbed by the environment, by adjusting this parameter the effect
of λ2

i (k) on the weighting parameters can be changed. The final fusion estimates obtained
are:

xk
m =

n
∑

i=1
[µi(k)xi(k)]

n
∑

i=1
µi(k)

, i = 1, 2 · · · n = 10; m = 1 or 2 (35)

The practical superiority of this fusion calibration algorithm compared to other cali-
bration algorithms is shown in Table 1. The measurement variance of this fusion calibration
algorithm is influenced by a variety of factors, including both the effect of noise in the sen-
sor system and environmental disturbances, etc. This adaptive weighted fusion algorithm
ensures the reliability of the sensor measurements and minimizes the total variance of a
fixed error parameter obtained after fusion.
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Table 1. Comparison of fusion-calibration algorithms with conventional algorithms.

Simultaneous Calibration of
MEMS Arrays

Duration of
Calibration

(Min)

Real-Time
Calibration

Auxiliary
Equipment

Accuracy of
Calibration

Multi-position swing Not
applicable 20 Not

applicable YES Excellence

Multi-rate
rotation

Not
applicable 20 Not

applicable YES Excellence

Traditional
LM-calibration

Not
applicable 5 Applicable NO Good

Fusion-
calibration Applicable 7 Applicable NO Excellence

3. MEMS Array Calibration Experiments
3.1. Calibration Experimental Procedure
3.1.1. Static and Dynamic Filters

As mentioned earlier, the raw data stream is divided into two forms: smooth and
moving. The accuracy of the calibration then depends heavily on the reliability of classifying
the static and dynamic, using the static interval to calibrate the accelerometer, using the
motion interval between the K-th static interval and the (K−1)-th static interval to calibrate
the Gyroscope, while the output data from the calibrated accelerometer at the (k−1)-th
moment are used as the standard quantity in Equation (13) for comparison, and thus the
gyroscope error parameters are calibrated to the optimum value.

The static and dynamic filter is constructed based on a band-pass filter, with the
variance Equation (25) of the data in the time period with Tinit, constructed as a comparison
quantity, judged on the following basis.

ς(tinit) =

m
∑

i=1

√
[vartw(at

x)]
2
+[vartw(at

y)]
2
+[vartw(at

z)]
2

m

i = 1, 2, · · ·m
(36)

The above equation vartw(at) represents the variance of the acceleration at over the
time period tw. To determine the motion of the MEMS array, simply compare ς(tw) with
the threshold ς(tinit), larger is motion and the opposite is static, while taking tw = 2s,
tinit = 50s; Figure 4 below reflects the static and dynamic distribution of the entire sensor
pose transition.
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3.1.2. Calibration Procedure

The calibration algorithm is composed of a data acquisition part and iterative opti-
mization of the parameters part. In the data acquisition phase, the raw data of the IMU
are collected from different sensor MEMSi; this inertial guidance module is calibrated by
placing it in M different positions, and by placing it stably in each position attitude for at
least tw s, also determines the time tinit = 50s of the first pose placement. The calibration
intervals in the optimal parameters section are determined by manually adjusting the
attitude transitions of the sensors, using static positional placement and dynamic attitude
transitions to calibrate the gyroscopes and accelerometers in the MEMS, respectively.

Based on the fixed error parameters of the calibrated individual MEMS, the subject
proposes a fusion calibration algorithm for the convergence of M-IMU. Firstly, we exclude
the case of random wandering in the random error, when the IMU will have an absolute
error calibration parameter, and secondly, the optimization of the minimum value error will
occur when optimizing the cost function in the calibration algorithm. If the optimal values
found at θacc and θgyro satisfy the smallest subcost function value, the estimate is close to
the absolute calibration parameter. In order to avoid being trapped in a local optimum,
an improved fusion function is introduced to pinpoint the global optimum based on the
adaptive weights, and the entire calibration experiment flow is detailed in Figure 5.
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3.2. Calibration of MEMS Data Parameters for Real Experiments

The experimental data are divided into two data streams according to the static and
dynamic filter: the first group is the attitude stationary data of the MEMS array used to
calibrate the accelerometer, and the second group is the attitude rotational data of the
MEMS array used to calibrate the gyroscope. The random error of the eliminated MEMS
array is based on MEMS0, and the random error parameters are analyzed using ALLAN,
as shown in Figure 6 and Table 2 below, while the random error parameters and the fixed
error parameters T, K, b form a model, as shown in Equations (1) and (2), and the above
model is transformed into the following equation:

as
i = (Ta

i Ka
i )
−1aB

i − ba
i − va

i (37)
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ωs
i = (Tg

i Kg
i )
−1

ωs
i − bg

i − vg
i − Ggas (38)

The above Equations (31) and (32) separate the observed and actual quantities and
then use the actual experimental data for the calibration of the MEMS array. So far, there is
no consensus data set for the calibration of the IMU, and we do not use external tools with
high accuracy such as tri-axis turntables or star-sensors in order to better match the actual
environment, e.g., rainforest wetlands, bad weather, etc. To obtain accurate parameters,
experiments in Section 4 are needed to demonstrate the accuracy of the algorithm in
calibrating the sensors.

The experiment was conducted using a six-axis IMU sensor from ST, LSM6DS0, which
uses a gyroscope with an actual range of±500 dps (degree per second) and an accelerometer
with an actual range of ±4 g. The IMU sensor was manually converted to attitude and
about 300 (30 × 10) sets of data were collected under the conditions for calibration, and the
calibrated results are shown in Table 3.
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scope.

Table 2. Allen parameters for the accelerometer (MEMS0) and gyroscope.

Parameters

Accelerometers Gyroscope

White
Noise

Bias
Instability

Random
Walk

White
Noise

Bias
Instability

Random
Walk

X-axis 0.0012 1.5702 × 10−5 3.3759 × 10−4 0.1219 5.6467 × 10−4 0.0119
Y-axis 0.0015 5.0196 × 10−6 1.3451 × 10−4 0.1219 5.6467 × 10−4 0.0119
Z-axis 0.0011 3.5621 × 10−6 1.0334 × 10−4 0.1526 0.6689 0.2182

Table 3 above calibrates all the fixed error parameters of the MEMSi (i = 1, 2, . . . , 10) in
the MEMS array. The error parameter estimates vary for each MEMS calibrated due to
the different axes of each MEMS as in Figure 1, and, also, in different calibration environ-
ments, air pressure, current strength, and other actual environments can affect the parame-
ters leading to data singularities Therefore, according to the fusion calibration algorithm
Equations (18) and (19), the coordinates are converted to the coordinate system of the
reference MEMS0, and then according to the adaptive support Equation (17), the fused
fixed error parameters are shown in Tables 4–6, which become the global optimal values,
and the M-IMU system compensates for the above-fused calibration error parameters to
make the MEMS0 an inertial device that can perform accurate autonomous navigation at a
certain time.
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Table 3. Fixed error parameters for accelerometers and gyroscopes.

MEMS0 MEMS1 MEMS2 MEMS3 MEMS4 MEMS5 MEMS6 MEMS7 MEMS8 MEMS9

βyz 0.0156 0.0129 −0.0087 −0.0098 −0.0098 0.0045 0.0073 0.0118 0.0063 −0.0078
βzy 0.3246 0.1244 0.0501 0.0440 0.0440 −0.0415 −0.0558 −0.1911 −0.1737 −0.0478
βxz 0.0134 0.0127 0.0098 0.0100 0.0119 0.0100 0.0098 0.0103 0.0135 0.0103
βzx −0.1703 −0.1345 0.0116 0.0010 0.0010 −0.0017 0.0119 0.0166 −0.1746 0.0135
βxy −0.0201 −0.0201 −0.0201 −0.0201 −0.0201 −0.0201 −0.0201 −0.0201 0.0201 0.0201
βyx 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 −0.0098 0.0098
αyz 0.4074 0.1613 −0.9850 −0.2787 0.0978 −0.3137 −0.7320 −0.0314 0.0600 0.0963
αzy 0.3176 −0.0346 −0.0255 2.3920 0.0872 −3.1487 1.2964 0.1114 0.0658 −1.4672
αxz 0.5530 0.1421 −0.4196 −2.0693 −0.2942 −1.8412 −1.5592 0.0224 0.0534 −1.9963
αzx −0.3486 −0.3173 0.6723 −0.1927 −0.1102 0.6250 1.4246 −0.0464 0.1800 0.2984
αxy −0.1713 0.1323 0.9803 −0.2584 0.7119 2.1076 0.7412 −0.1229 −0.0744 0.0173
αyx 0.2140 0.6368 −0.2490 −2.6332 −0.6268 −3.3696 −1.6540 0.1367 0.1282 −1.7084
Sax 1.1774 0.9793 −1.0370 −0.9737 1.1470 −0.9557 0.9467 0.9770 0.9515 0.9571
Say 0.9009 0.9881 −0.9203 1.0206 0.9232 −1.0450 0.9548 1.1411 1.1741 0.9739
Saz 0.9775 1.1296 −1.1527 −1.1377 −0.8155 −1.1217 0.9822 0.9771 −0.9602 1.1010
Sgx 1.4908 1.7746 −2.9116 2.8745 3.0908 −1.3875 −1.4758 0.5557 −1.3609 −0.5601
Sgy −3.0940 −3.0137 −0.5167 −1.6659 1.3196 3.1842 2.9777 −1.6535 −3.0783 3.0474
Sgz −0.5662 0.5544 1.6354 0.5374 0.5623 0.5511 0.5471 3.0038 0.5633 0.5968
bax 0.0125 0.0013 0.0071 0.0183 −0.0029 −0.0180 0.0006 0.0034 −0.0231 0.0028
bay 0.0016 −0.0146 0.0072 −0.0037 −0.0065 0.0013 −0.0264 −0.0123 −0.0154 −0.0235
baz 0.0078 0.0025 −0.0073 −0.0098 0.0040 −0.0065 0.0151 0.0011 −0.0107 0.0097
bgx 0.4659 0.2948 0.5430 0.7256 −0.3401 0.0263 0.6740 −0.4590 0.0745 0.6452
bgy 0.1180 0.4999 0.7233 0.0607 0.3091 −0.1212 0.6842 −0.3417 −0.7949 0.2644
bgz −0.3766 −0.1295 0.0336 −0.0817 −0.0485 −0.5892 −0.6529 −0.3511 0.7438 −0.6763

Table 4. Calibration factors for MEMS0 accelerometers and gyro-sensitive axes.

Parameters X-Axis Y-Axis Z-Axis

Accelerometers 1.0659 0.9485 1.0356
Gyroscope 1.2683 3.0275 0.5551

Table 5. Zero bias of MEMS0 accelerometers and gyroscopes.

Parameters X-Axis Y-Axis Z-Axis

Accelerometers 0.0090 −0.0112 0.0074
Gyroscope 0.4254 0.3912 −0.3682

Table 6. Misalignment errors of MEMS0 accelerometer and gyro-sensitive axes.

Parameters X-Axis Y-Axis Z-Axis

Accelerometers
X-axis 0.9990 0.0089 −0.0453
Y-axis 0.0112 1.0001 0.0451
Z-axis 0.0201 0.0098 0.9998

Gyroscope
X-axis 1.6206 −0.2243 −0.6300
Y-axis −0.6494 1.5533 −0.1190
Z-axis −0.3780 −0.6812 1.4497

4. Validation and Discussion

The fusion-calibration algorithm for multi-sensor data combines the measurement
parameters from each sensor to obtain more accurate, stable, and reliable global parameters,
thus minimizing the singularities [16] in the multi-sensor measurement data. The global
variables obtained in Tables 4–6 above must be evaluated against the following metrics to
verify the authenticity of the fusion- calibration algorithm:
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(1) Static measurements: compare the static output of the original data [36], the static
output after calibration by the LM-calibration algorithm, the static output of the
fusion-calibration algorithm, compare the estimated value of the output data with the
measured value, and simultaneously measure the RMSE of the above three sets of
data per unit of time.

(2) Dynamic measurements: for accelerometers, uniform acceleration motion in the
X-O-Y plane at a certain acceleration to measure the accuracy of the acceleration; for
gyroscopes, rotation at a fixed angular rate using a single axis turntable to compare
the accuracy of the angular rate after LM-calibration, and then after fusion-calibration.

(3) Integrated measurement: the GPS prescribed path as a benchmark, the planned
trajectory is in the width of 2 m, the total length of 4 km road vehicle travel route,
the vehicle in the first 10 s uniform speed straight line walking, 10–100 s accelerated
curve walking, after deceleration to the end of the actual environment there are trees,
tall buildings shade, obstacles road stalls and other interference, in the vehicle speed
and road conditions complex The GPS planned path, the inertial guidance path of LM
calibration algorithm and the inertial guidance path of fusion calibration algorithm
are observed in the situation. The path coincidence, planar displacement error and
skyward displacement error of these three solutions are analysed.

4.1. Static Validation

Data were collected for 30 min at rest, constant temperature, and pressure: raw ac-
celerometer and gyroscope (MEMS0), accelerometer and gyroscope calibrated by the LM al-
gorithm (MEMS0), and accelerometer and gyroscope calibrated by the fusion-calibration al-
gorithm (MEMS0). The static errors of the current MEMS0 output data were then compared,
while the obtained estimates were compared with the true values, see Figures 7 and 8 and
Tables 7 and 8.
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Table 7. MEMS0 accelerometer performance parameter ratio graph.

Axial X-Axis Y-Axis Z-Axis

Parameters Average RMSE Average RMSE Average RMSE

Raw data 0.0125 2.3559 × 10−4 −0.0235 3.7514 × 10−5 0.9903 9.2439 × 10−5

LM-calibration 0.0028 2.9632 × 10−6 −0.0182 5.9399 × 10−6 1.0078 3.0600 × 10−6

Fusion-calibration 0.0002 5.0428 × 10−7 −0.0092 2.7991 × 10−7 1.0019 9.4217 × 10−7

Table 8. MEMS0 gyroscope performance parameter ratio chart.

Axial X-Axis Y-Axis Z-Axis

Parameters Average RMSE Average RMSE Average RMSE

Raw data 0.6452 2.1370 0.2644 0.0425 −0.3766 0.3137
LM-calibration 0.4659 0.0385 0.2466 0.0054 −0.3341 0.1371

Fusion-calibration 0.2703 0.0021 0.1180 0.0034 −0.3118 0.0105

The reliability of the calibration fusion algorithm can be illustrated according to
Figures 7 and 8 and Tables 7 and 8. For accelerometers: the data output from the
acceleration-sensitive axes at rest is more accurate, but the singularity of the calibration
error parameter still occurs. In the ideal case of an accelerometer in the gravity coordinate
system with X-axis, Y-axis at 0 g, and accelerometer Z-axis at 1 g (g being the local gravi-
tational acceleration), an individual MEMS calibrated accelerometer improves accuracy
over the original accelerometer in the sensitive axis: 16.49 db, 1.10 db, 0.95 db, and its LM
algorithm calibrated accelerometer improves stability over the original accelerometer in
the X, Y, Z axis: 19 db, 8 db, 15 db, respectively; for gyroscope: at rest, the gyroscope is
affected by the frequency of vibration, so the calibration of fixed error is often the key to
reduce the initial attitude error and improve IMU navigation, the above LM algorithm cali-
brated gyroscope original gyroscope in the sensitive axis accuracy improvement: 1.41 db,
0.3 db, 0.52 db, its LM algorithm calibrated gyroscope improves stability over the original
gyroscope in the X, Y, Z axis: 17.44 db, 8.96 db, 3.60 db, respectively.

The consumer-grade MEMS raw data have more wild values, and the LM-calibration
algorithm enables the MEMS to increase the convergence of the data, but to avoid local
optimum solutions for the MEMS array, the error parameters of the MEMS array are
weighted and fused using the adaptive support of the calibration algorithm to make
MEMS0 a set of high-precision inertial guides. For accelerometers: The fusion calibration
algorithm improves the accuracy of the static raw data calibrated by the LM calibration
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algorithm: 11.46 db, 2.96 db, 6.13 db. The fusion algorithm improves the convergence of
the accelerometers calibrated by the LM algorithm in the X, Y, Z axis: 7.69 db, 13.26 db,
5.12 db, respectively.

4.2. Dynamic Validation

In a static state, the sensor is greatly affected by random errors, while ignoring the
influence of the actual environment, such as the influence of dynamic errors such as the
earth’s rotation and vibration frequency. At the same time, the quaternion transformation
matrix of Equation (29) uses the angular velocity of the gyroscope as a parameter, and the
acceleration and pose play an important role in the inertial navigation of the IMU. Therefore,
dynamic verification has become the MEMS array of this topic as an important support in
inertial navigation. The working environment of the dynamic verification is carried out
under the experimental conditions of constant temperature and constant pressure. The
accelerometer is tested with a constant local gravitational acceleration around the sensitive
axis, and the gyroscope is tested with a fixed angular rate of 10 rad/s. For the comparison
unit time: original data, data after calibration by LM algorithm, data after fusion calibration,
and mean value and root mean square error of the above three data, see Figures 9 and 10
and Tables 9 and 10 for details:
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Table 9. Comparison of MEMS0 accelerometer parameters under dynamic conditions.

The Axis of
Rotation

MEMSO Accelerometer (m/s2)

Axial Raw Data LM-Calibration Fusion-Calibration

Parameters Average RMSE Average RMSE Average RMSE

X-axis
X-axis 9.7673 0.1246 9.7674 0.0312 9.8226 0.0081
Y-axis −0.0858 0.9835 −0.0820 0.2060 −0.0715 5.2899 × 10−5

Z-axis 0.7076 1.3006 0.7070 0.4738 −0.0751 6.8966 × 10−5

Y-axis
X-axis 0.0111 2.5050 0.0110 0.4441 −0.0090 6.3637 × 10−5

Y-axis 9.6402 1.1647 9.7401 0.5740 9.8221 0.0205
Z-axis 0.3766 2.4213 0.3655 0.3364 −0.0199 1.1143 × 10−4

Z-axis
X-axis −0.1488 0.6900 −0.1486 0.0206 −0.0005 5.4024 × 10−5

Y-axis 0.0138 0.1337 0.0100 0.0028 0.0110 5.4158 × 10−5

Z-axis 9.8309 0.6390 9.8306 0.5420 9.8009 0.4667

Table 10. Comparison of MEMS0 gyroscope parameters under dynamic conditions.

The
Axis of

Rotation

MEMSO Gyroscope (dps)

Status Raw Data LM-Calibration Fusion-Calibration

Parameters Average RMSE Average RMSE Average RMSE

Stationary 0.0759 0.0966 0.0073 1.1726 × 10−4 0.0020 3.5822 × 10−5

X-axis Rotation 9.7167 0.0031 9.8170 1.1910 × 10−4 9.9348 4.4647 × 10−5

Stationary 0.0210 0.0035 0.0032 1.8668 × 10−4 0.0014 1.5160 × 10−4

Stationary 0.4177 2.0450 0.0199 6.9120 × 10−4 0.0113 2.1360 × 10−4

Y-axis Rotation 9.7987 0.0044 9.8999 1.3235 × 10−4 9.9829 1.0088 × 10−4

Stationary 0.0100 0.0847 0.0108 0.0016 0.0019 4.6261 × 10−4

Stationary 0.4534 2.6219 0.0014 8.3999 × 10−5 −0.0004 3.6236 × 10−5

Z-axis Rotation 9.8063 0.0046 9.9052 3.3486 × 10−4 9.9886 3.2120 × 10−5

Stationary 0.1740 0.0048 0.0400 1.7718 × 10−4 0.0025 3.4964 × 10−5

The above acceleration calibration experiment is based on the perceived gravitational
acceleration in the static interval as a known quantity, and the cost function is constructed
from the known quantity, so it is important to verify the gravity vector and root mean
square error of each axis, which can be obtained from Figure 9, after the LM-calibration
algorithm increases the convergence of the original sensing, and after the fusion-calibration
algorithm searches for the global optimal value, which, in turn, accurately calibrates the
fixed error of MEMS0 parameters.

The experimental procedure for verification was as follows: the coordinate system
of the MEMS array module was aligned with the local Cartesian coordinates coordinate
system (ENU), and then the sensitive axes were aligned with the direction of the gravity
vector, and the data from the three axes of the accelerometer were collected in this state for
30 s. The rotation around the sensitive axes in the table above: the acceleration accuracy of
the sensor calibrated by the LM algorithm and the original sensor was improved: 0.02 db,
4.26 db, 1.76 db, and the stability of the data was improved: 6.01 db, 3.07 db, 1.18 db. The
fusion calibration algorithm improves the accuracy of the sensor calibrated by the LM
algorithm by 1.59 db, 4.33 db, 15.31 db and the stability of the data by a significant margin.

The dynamic verification process of the gyroscope is shown in Figure 10 above as
follows: using a single axis turntable at 10 rad/s, the estimated value of the gyroscope
is compared to the measured value. The initial stationary state is maintained for about
25 s and then a 10 s rotation around the sensitive axis is performed to collect data from
the other axes. Finally, another 10 s of stationary is performed. Since the certainty of the
dynamic attitude transformation of Equation (29) is concerned with the accuracy of the
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gyroscope calibration results, this above dynamic scheme is also based on the accuracy of
the quaternion transformation matrix.

Table 10 above verifies that the gyroscopic accuracy of the sensor calibrated by the LM
algorithm and the original sensor in a rotated state around the sensitive axis is improved:
1.90 db, 3.03 db, 3.10 db; its data stability is improved: 14.15 db, 15.21 db, 11.38 db. The
fusion calibration algorithm improves the accuracy of the sensor calibrated by the fusion
calibration algorithm over the LM algorithm: 4.71 db, 7.67 db, 9.20 db. 7.67 db, 9.20 db and
its data stability improved: 6.31 db, 1.18 db, 10.18 db.

4.3. Integrated Validation

The above static and dynamic measurements were performed under more rational
laboratory conditions, verifying that the individual sensors in the MEMS array have good
estimates under laboratory conditions. However, M-IMUs are based on inertial navigation
products in real-world navigation environments, and M-IMUs use attitude, heading, and
odometry information in heading projections to project relative positions to the starting
point, so accurate evaluation of the performance of calibrated and compensated M-IMUs in
real-world dynamic navigation [37,38] will be the focus of this section.

The experimental procedure was chosen to plan the driving trajectory in full open-
air conditions; the trajectory has site tall buildings, trees, obstacles barricades, and other
complex terrain environments, see Figure 11. The verification experimental steps have
been described in detail in the preamble of Section 4, and the GPS positioning results were
compared with the trajectory solved by the MEMS array, the MEMS array calibrated by the
LM-calibration algorithm, and the MEMS calibrated by the fusion-calibration algorithm.
The RMSE of the horizontal position and the initial error misalignment angle error in the
localization error are compared.
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environmental trajectory; (b) Planar trajectory.

The difference in effectiveness between the fusion-calibrated MEMS array and the
LM-calibration algorithm MEMS in real-world inertial navigation is still relatively obvious.
The vertical and horizontal errors in the navigation process were analyzed by comparing
the results of the calibrated MEMS array with those of the individual MEMS, using GPS as
a benchmark, and are shown in Figure 12. In the first 8 s of inertial navigation, the modules
are coarsely aligned to the navigation coordinate system and then the individual MEMS are
placed in the sun for the trajectory tour. In the first 50 s, the errors in the individual MEMS
are greater due to poor calibration of the MEMS by the LM algorithm and the temperature
drift of the modules caused by the sunlight. At 60–72 s during the process, the individual
MEMS sensor modules are less affected by the temperature drift due to the shading of
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trees and buildings. The MEMS array was laid out as shown in Figure 1 to effectively
suppress the effects of temperature drift, while the fusion calibration algorithm was used
to accurately calibrate the fixed error parameters in the MEMS array, which in turn enables
the inertial navigation of MEMS0 to be rapidly improved in a short period of time. The
following analysis of the northward root mean square error and eastward root mean square
error as well as the misalignment angle error after 3 s is shown in Table 11.

Table 11. Vertical comparison error and horizontal comparison error.

Calibration
Algorithms RMSE in North Direction (m) RMSE in East Direction (m) Initial Gravity Misalignment

Angle Error (◦)

GPS 0 0 0
LM-calibration 1.0637 1.2263 2.56

Fusion-calibration 0.9856 0.8541 0.56
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Table 11 above shows the root mean square errors of the calibrated MEMS array and
calibrated MEMS in the north and east directions in the entire inertial navigation. The
whole experiment of this verification is also planned in the “North–East” direction. It is
shown in the table above that the convergence of errors in the east direction of the fusion
calibration algorithm is improved by 0.33 dB and 1.57 dB compared with that of the LM
calibration algorithm based on GPS. The error of the gravity misalignment angle decreases
correspondingly, indicating that the calibrated MEMS array has better accuracy in the
trajectory tour planned in inertial navigation.

5. Conclusions

This paper presents a calibration method to accurately calibrate the fixed error of
MEMS arrays by placing the MEMS array in different attitude transitions, using static
intervals to calibrate the accelerometer and dynamic intervals to calibrate the gyroscope.
The simple experimental procedure also makes the proposed algorithm easy to implement.
Using this calibration scheme, a large amount of data can be collected from the MEMS
array, further providing the necessary conditions to calculate the optimal solution for the
global fixed error parameters of the MEMS array, which can then be calibrated using an



Micromachines 2022, 13, 1214 20 of 22

adaptive fusion algorithm to estimate the global optimal value. Experiments on real data
sets show that the model and fusion calibration algorithms proposed in this topic are
feasible, and the method is shown to be more accurate for fusion-calibrated MEMS arrays
than for individual MEMS calibrated by the LM-calibration algorithm in static validation,
dynamic validation, and navigation validation, with the following key findings:

(1) Building a high-precision static and dynamic screener for M-IMU: for the M-IMU cali-
bration, we do not use high-cost calibration instruments as experimental equipment,
rather, on the basis of a redundant consumer-grade MEMS composition array using
the original data of the MEMS array multi-position attitude rotation and stationary
interval for accurate estimation of the error parameters of the array MEMS, this subject
uses ALLAN variance to calculate the stationary state of the initialization time Tinit
and defines the variance of the output data of the MEMS array as a covariate during
the period of Tinit for weighted average. Its weighted average value is the threshold
value for judging the static and dynamic of this M-IMU system, which is greater than
the threshold value per unit of time as dynamic, and less than the threshold value as
static, and this filter can accurately distinguish the different state intervals required
for different sensors.

(2) Construction of a calibration parameter optimization algorithm for individual MEMS:
For individual MEMS arrays subject to fixed errors, a non-linear calibration factor
based on the LM-calibration algorithm is proposed, which optimizes the deterministic
error parameters by calculating a non-linear cost function constructed according to
the IMU error model and using the LM algorithm to iteratively optimize the cost
function in different state intervals. The method is able to guarantee the reliability
of the data on the premise of faster convergence; that is, the sensor cost function in
multiple targets can quickly converge to the optimal value.

(3) Constructing a fusion calibration algorithm for MEMS arrays: For MEMS arrays
affected by the error of autocorrelation and intercorrelation of MEMSi and MEMSj,
this paper uses the gravity coordinate system of MEMS0 as the reference, and the
angular rates of the remaining MEMS sensitive axes are mapped with the reference
as the system coordinate system. Each MEMS after coordinate transformation is
calibrated with fixed error parameters, and the fixed error parameters of the obtained
MEMS arrays are subjected to a fusion algorithm for improving adaptive support
based on a priori information. The fusion-calibration algorithm’s support quotes
an exponential function that efficiently and accurately quantifies the support of the
sensor observations, allowing the MEMS array fixed error parameters to be fused into
the error parameters of a “high precision virtual inertial guidance” MEMS0 along the
way.

(4) The feasibility of the calibration algorithm is verified in a practical environment from
multiple perspectives: the traditional validations of calibration results are: validation
of the data set, validation of the variance of the fixed error parameters, and validation
of the static output of the sensor. The above-mentioned validation methods are carried
out at the system level in an ideal laboratory environment, and the non-linearity of the
calibration factor cannot be accurately verified in real-world situations. The dispersion
of the fused and calibrated sensor data converges exponentially. The fusion-calibrated
M_IMU outdoor navigation trajectory in the real environment also overlaps well with
the GPS-planned trajectory [39], and the horizontal orientation error is small. By
comparing the calibrated trajectories of different calibration algorithms, it is verified
that the proposed fusion calibration algorithm has a high robustness in the real
environment.
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