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Prostate cancer displays a certain phenotypic plasticity that allows for the

transition of cells from the epithelial to the mesenchymal state. This process,

known as epithelial–mesenchymal transition (EMT), is one of the factors that

give the tumor cells greater invasive and migratory capacity with subsequent

formation of metastases. In addition, many cancers, including prostate cancer,

are derived from a cell population that shows the properties of stem cells.

These cells, called cancer stem cells (CSCs) or tumor-initiating cells, not only

initiate the tumor process and growth but are also able to mediate metastasis

and drug resistance. However, the impact of EMT and CSCs in prostate cancer

progression and patient survival is still far from fully understood. Heparanase

(HPSE), the sole mammalian endoglycosidase capable of degrading heparan

sulfate (HS), is also involved in prostate cancer progression. We had previously

proved that HPSE regulates EMT in non-cancerous pathologies. Two prostate

cancer cell lines (DU145 and PC3) were silenced and overexpressed for HPSE.

Expression of EMT and stemness markers was evaluated. Results showed that

the expression of several EMTmarkers are modified by HPSE expression in both

the prostate cancer cell lines analyzed. In the same way, the stemness markers

and features are also modulated by HPSE expression. Taken together, the

present findings seem to prove a new mechanism of action of HPSE in

sustaining prostate cancer growth and diffusion. As for other tumors, these

results highlight the importance of HPSE as a potential pharmacological target

in prostate cancer treatment.
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Introduction

Of all the existing cancers, prostate cancer is the one that has

globally recorded the greatest growth in cases over the last 30

years in both developing and developed countries. Being a male

cancer that occurs mainly in old age, the aging of the population

is one of the factors that have contributed most to the increase in

cases (1). It is estimated that prostate cancer will increase to

nearly 2.3 million new cases and 740,000 deaths per year by 2040

simply as a result of population growth and aging (2, 3). The

severity of the disease is conferred by the ability of cancer cells to

disseminate and metastasize, affecting various organs and

tissues—specifically, bone tissue in 84% of cases, distant lymph

nodes in 10.6%, the liver in 10.2%, and the thorax in 9.1% (4).

Two phenomena that contribute to the progression and

metastasis of this neoplasm are the epithelium–mesenchymal

transition process (EMT) and the presence of tumor stem cells.

The EMT is a reversible cell-differentiation process during which

the morphological and phenotypic conversion of polarized

epithelial cells into mesenchymal cells occurs. These cells have

a greater migratory capacity, greater resistance to apoptosis,

increased expression of mesenchymal markers, and resistance to

senescence. This change involves the loss of the junction systems

that hold epithelial cells together and the loss of baso-apical

polarity and various rearrangements of the cytoskeletal

apparatus (5, 6).

The EMT process has also been shown to be present in

prostate cancer, and among the various factors that seem to be

involved in promoting this change, androgens and estrogens

with their related signaling, hypoxia, transforming growth factor

beta (TGF-b), and epidermal growth factor (EGF) must be

mentioned (7).

These factors promote the activation of the PI3K/AKT and

MAPK signaling pathway—thus activating the downstream

effectors such as GSK3b and NF-kB, which increase the

activity of SNAI-1 and Twist and consequently induce the

expression of mesenchymal proteins (8).

Cancer stem cells, according to the American Association for

Cancer Research, are described as “a cell within a tumor that

possesses the capacity to self-renew and to cause the

heterogeneous lineages of cancer cells that comprise the tumor” (9).

Consequently, in line with this definition, CSCs possess both

the ability to expand the population of cancer stem cells and, after

differentiation, to give rise to other types of neoplastic cells that

will make up a large part of the tumor mass. Since non-stem cells

in cancer have a limited capacity for proliferation, the only cells

with unlimited potential are cancer stem cells, which are thus able

to guide the growth and metastatic process (10). For this reason,

CSCs that have very long division times, and which are relatively

insensitive to drug therapies aimed at targeting rapidly

proliferating cells, may be one of the sources of cancer

recurrence (11). Over the last few years, experimental evidence
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has accumulated in favor of the existence of CSC in prostate

cancer and its role in tumor and metastatic progression (12). CSCs

of the prostate can originate from basal or luminal-type

progenitor/stem cells that will develop into tumors with

markedly different biological and clinical characteristics in terms

of aggressiveness and response to chemotherapy treatments and

androgen-deprivation therapy (ADT) (13, 14). Since prostatic

CSCs play a fundamental role in ADT resistance, it is currently

considered essential to develop new anti-CSC strategies to

compensate for treatment failure and disease recurrence (15).

More recently, it has been suggested that the expression of

HPSE, the only enzyme capable of degrading the heparan sulfate

(HS) chains of HS-proteoglycans (HSPGs), is associated with the

characteristics of CSCs in Hodgkin’s lymphoma cells (16) and in

myeloma (17).

HS is a highly sulfated linear polysaccharide, attached to the

core protein of heparan sulfate proteoglycans (18, 19). HS

proteoglycans are ubiquitously found both at the cell surface

(i.e., syndecans and glypicans) and in the extracellular matrix

(ECM) (18) where they regulate ECM structure and cell–ECM

interaction (20, 21). In addition, HS regulates the activity of

several molecules (cytokines, growth factors, etc.) (22–25).

Currently, heparanase (HPSE) is defined as a multitasking

protein capable of performing enzymatic-degradative activity

towards HS chains, but which, at the same time, also manifests

non-enzymatic activities (26). Through its cutting activity of the

side chains of heparane sulfates (HS), it contributes both to the

remodeling of the extracellular matrix and to the release and

diffusion of various bioactive molecules linked to HS such as

growth factors, cytokines, and enzymes. Considering that

heparanase is not only produced and secreted by cancer cells

but also by endothelial cells and activated immune cells and

platelets, it is not surprising that its activity has a strong impact

on the tumor microenvironment, thanks to those factors linked

to HS, which, once released, promote tumor growth, neo-

angiogenesis, and the formation of a metastatic niche (27). As

a proof of concept, it has been shown that heparanase

overexpression in transgenic mice (Hpa-Tg) makes the tumor

microenvironment more conducive to neoplastic development

in various experimental models of in vivo tumorigenesis (28, 29).

Since prostate cancer also has an increased expression of

HPSE (30), we decided to verify whether this increase could be

able to regulate EMT and cancer stem cells properties of

prostate cancer.
Methods

Cell lines

DU145 (ATCC® HTB-81™) and PC3 (ATCC® CRL-

1435™) prostate cancer cell lines were cultured in Roswell
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Park Memorial Institute (RPMI) containing 10% fetal bovine

serum and supplemented with 1% penicillin/streptomycin. Cells

were maintained in a humidified environment containing 5%

CO2 at 37°C, and the culture medium was replaced every 2 days.
Transfection of HPSE overexpressing and
shRNA plasmid

In order to stably obtain HPSE-overexpressing DU145 cells,

we used a plasmid-coding HPSE ORF purchased from OriGene,

and as a negative control, we used the corresponding

empty vector.

To stably obtain HPSE-silenced PC3 cells, we used four

different shRNAs targeting human heparanase (NM_006665)

purchased from OriGene as described earlier (31, 32). As a

negative control, we used an shRNA pRS non-effective GFP

plasmid (TR30003).

DU145 and PC3 cells were seeded in six-well plates and

when they reached 70%–80% of confluence, they were

transfected with Lipofectamine 3000 (Invitrogen) according to

the manufacturer’s instructions. Forty-eight hours after

transfection, DU145 cells overexpressing HPSE were selected

with 500 mg/ml G418 (Sigma), and PC3 cells silenced for HPSE

were selected with 0.75 mg/ml of puromycin (Sigma). Single

clones were isolated and analyzed for HPSE expression. The

ones with the highest overexpression/silencing rate were used in

the subsequent experiments.
RNA isolation and real-time
qPCR analysis

Total RNA was extracted from cells by Trizol reagent

(Invitrogen) according to the manufacturer’s instructions (33).

RNA yield and purity were checked using a Nanodrop
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spectrophotometer (EuroClone), and total RNA from each

sample was reverse transcribed into cDNA using Moloney

Murine Leukemia Virus Reverse Transcriptase (Sigma-

Aldrich). Real-time PCR was performed on a StepOne™ Real-

Time PCR System (Thermo Fisher) using SensiFAST SYBR Hi-

Rox (Bioline). The comparative Ct method (DDCt) was used to

quantify gene expression, and the relative quantification was

calculated as 2−DDCt. The presence of non-specific amplification

products was excluded by melting curve analysis. Statistical

analyses on real-time PCR data were performed using the

Relative Expression Software Tool (REST) (34). The forward

and reverse primer sequences were reported in Table 1.
Western blotting and
immunofluorescence

Cells were lysed in radioimmunoprecipitation assay buffer

(RIPA) buffer composed of 150 mM NaCl, 50 mM TRIS_HCl

(pH 8), 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate

(SDS), and 1% Triton-X with Complete Protease Inhibitor

Mixture (Roche Applied Science, Penzberg, Germany). In

brief, equal amounts of proteins were treated in reducing

sample buffer and denatured for 10 min at 100°C. Protein

samples were then resolved in 10% sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS–PAGE) and

electrotransferred to nitrocellulose membranes. Non-specific

binding was blocked for 1 h at room temperature with non-fat

milk (5%) in TBST buffer (50 mM Tris–HCl, pH 7.4, 150 mM

NaCl and 0.1% Tween 20). Membranes were exposed to primary

antibodies GAPDH (sc-47778 Santa Cruz), HPSE (MA1-83806

HP3/17, Thermo Fisher), E-cadherin (E-CAD) (GTX10443

GeneTex), vimentin (VIM) (sc-7557 Santa Cruz), a-SMA

(A5228 Sigma), SOX2 (GTX101507 GeneTex), OCT4

(GTX627419 GeneTex), and NANOG (GTX100863 GeneTex),

overnight at 4°C and incubated with a secondary peroxidase-
TABLE 1 Primer sequences used for real-time PCR .

Gene Forward Sequence (5'–3') Reverse Sequence (5'–3') Product Length (bp)

GAPDH ACACCCACTCCTCCACCTTT TCCACCACCCTGTTGCTGTA 112

HPSE ATTTGAATGGACGGACTGC GTTTCTCCTAACCAGACCTTC 136

E-CAD TTCTGCTGCTCTTGCTGTTT TGGCTCAAGTCAAAGTCCTG 142

VIM AAAACACCCTGCAATCTTTCAGA CACTTTGCGTTCAAGGTCAAGAC 74

a-SMA GAAGAAGAGGACAGCACTG TCCCATTCCCACCATCAC 143

TGF-b CGTGGAGCTGTACCAGAAAT GATAACCACTCTGGCGAGTC 90

SDC1 GAAGATCAAGATGGCTCTGGG GTTCTGGAGACGTGGGAATAG 145

SOX2 AGCTACAGCATGATGCAGGA GGTCATGGAGTTGTACTGCA 126

OCT4 CCTCACTTCACTGCACTGG CAGGTTTTCTTTCCCTAGCT 164

NANOG CAGTCTGGACACTGGCTGAA CTCGCTGATTAGGCTCCAAC 149

CD133 TCAGTGAGAAAGTGGCATCG GCTTTTCCTATGCCAAACCA 121
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conjugated antibody for 1 h at room temperature. The signal was

detected with Luminata™ Forte Western HRP Substrate

(Millipore) according to the manufacturer’s instructions, and

the signal was acquired with Mini HD9 (UVItec, Cambridge,

UK) . Immunofluorescence ce l l s were fixed in 4%

paraformaldehyde for 15 min, permeabilized with 0.2% Triton

X-100 in phosphate-buffered saline (PBS) for 5 min, and blocked

with 3% bovine serum albumin (BSA) in PBS at room

temperature for 30 min. Cells were then incubated overnight

at 4°C with the primary antibodies in PBS with 1% BSA and then

washed three times for 5 min with PBS before incubation for 1 h

at 37°C with the secondary antibody, again in PBS with 1% BSA.

Cell nuclei were visualized with a Hoechst 33258. Images were

obtained with a confocal LeicaSP5 microscope.
Colony formation assay

WT and HPSE-silenced/overexpressing prostate cancer cells

were seeded in 35-mm culture dishes (1,000 cells per well) and

incubated with RPMI supplemented with 10% FBS for 7–10 days

(35, 36). The media was renewed every 2 days. The colonies were

fixed using paraformaldehyde and stained with 0.1% crystal

violet. Cell colony-forming ability was assessed by counting

the number of colonies. A colony was defined when the

number of cells was more than 50.
Hanging drop assay

To assess the spheroid-formation capacity and compare the

spheroid size of the cells, 500 cells in DMEM-F12 complete

medium were placed as drops (20 ml each) into the lid of a Petri

dish. The lid was then rapidly re-inverted onto the culture dish

that was filled with 10 ml of sterile PBS to prevent evaporation of

the drops. The hanging drop cultures were incubated at 37°C in a

humidified atmosphere with 5% CO2 for 1 week. Pictures of the

spheroids inside the drop were taken using a Leica MZ16F

stereomicroscope, and their comparative size was obtained

measuring the area occupied by the spheres using the software

NIH ImageJ.
Results

Establishment of HPSE overexpressing/
silenced prostate cancer cell lines

In order to investigate the function of HPSE in prostate

cancer, we choose to use two prostate cancer cell lines because

they display very different morphological aspects related to

EMT. DU145 has a more epithelial phenotype, whereas PC3

cells are elongated and spindle-shaped like mesenchymal cells.
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Starting from this evidence, we decided to overexpress HPSE in

DU145 and to silence it in PC3 (Supplementary Figure S1).

HPSE was overexpressed in DU145 cells and silenced in PC3

cells. Results confirmed a significant HPSE upregulation in

DU145 cells both at gene and protein level confirmed by WB

and immunofluorescence (Figure 1) with respect to DU145

control cells transfected with the empty vector (CTR). CTR

cells displayed HPSE expression levels comparable to wt DU145

cells (data not shown). Furthermore, HPSE was silenced by

shRNA in PC3 cells by more than 50% both at gene and protein

levels (Figure 1).
HPSE regulates EMT in prostate cancer
cells

In order to investigatewhetherHPSE is able tomodulate EMT,

the expression levels of epithelial and mesenchymal markers were

measured in DU145 and PC3 cells. Gene expression analyses

indicated a decrease in epithelial marker E-cadherin in HPSE

overexpressing DU145 cells compared with the control. Also

observed was a marked increase in the expression levels of

vimentin, a-SMA, SNAI1, and TGF-b compared with the control

(Figure 2A). By contrast, in HPSE-silenced PC3 cells, E-cadherin

gene expressionwas increased, and the expression ofmesenchymal

markerswas reduced (Figure 2C). The reduction inE-cadherin and

the increase in vimentin and a-SMA in HPSE-overexpressing

DU145 cells were also confirmed at protein level by WB and by

immunofluorescence (Figures 2B, E). On the other hand, the

reduction in vimentin and a-SMA in HPSE-silenced PC3 cells

was also confirmed at protein level (Figures 2D, E). These results

indicate that HPSE likely promotes EMT in prostate cancer cells.

HS proteoglycans has an important role on prostate

epithelium–stroma architecture (34). In particular, syndecans,

a family of heparan sulfate proteoglycans that are present on the

cell surface, are involved in the control of cell proliferation,

apoptosis, and transformation. In prostate cancer, the expression

of syndecan-1 in epithelial cells decreases when cells are

transformed and acquire invasive properties. This decreased

expression is associated with a bad prognosis (37–39).

In addition, HPSE cleaves HS chains on syndecan-1, and a

tight relationship between HPSE and syndecan-1 has been

documented in tumor and non-tumor models (19, 32, 40, 41).

Results showed that syndecan-1 gene expression was reduced

inHPSE-overexpressing DU145 cells, and, in contrast, syndecan-1

expression was increased in HPSE-silenced PC3 cells.
HPSE regulates stemness features in
prostate cancer cells

Numerous studies have shown that the key regulators in

maintaining the stemness of embryonic stem cells, including
frontiersin.org
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Oct4, Sox2, and Nanog, along with their activation targets, are

commonly overexpressed in cancer stem cells in several

malignancies (42–44). In addition, a series of molecules,

including CD44, CD133, integrin a2b1, ALDH1A1, and Bmi1,

involved in the regulation of cancer stem cell self-renewal,

metastasis, and drug resistance, have also been confirmed in

prostate cancer (45, 46). Results showed that the stemness

markers SOX2, OCT4, NANOG, and CD133 were upregulated

both at gene and protein level in HPSE-overexpressing DU145

cells compared with the control. By contrast, the same markers

were significantly reduced in HPSE-silenced PC3 cells compared

with the control (Figure 3).

Two important characteristics of cancer stem cells are the

capacity to grow starting from a single cell and to form a sphere

in an independent anchoring system.

Colony formation is the ability of cancer stem cells to form

colonies when seeded on cell culture dishes at very low

concentrations after limiting dilutions (47). Results showed
Frontiers in Oncology 05
that HPSE overexpression in DU145 cells increases the

number of colonies compared to control cells and that HPSE

silencing in PC3 significantly limited the ability to form colonies

(Figures 4A, B).

To assess the spontaneous sphere formation efficiency of

cancer stem cells, we used the hanging drop method (48, 49).

Both cell lines were able to form similar circular spheres. HPSE

overexpression in DU145 cells increased the sphere perimeter,

whereas HPSE silencing in PC3 cells exerted the opposite effects

(Figures 4C, D).
Discussion

The malignant growth and progression of tumor disease are

supported by key features of cancer cells that have collectively

been referred to as “hallmarks of cancer.” To the initial six

hallmarks (supporting proliferative signaling, evading growth
A

B

D

E

F

G

C

FIGURE 1

HPSE overexpression and silencing in prostate cancer cells. HPSE gene expression was evaluated by real-time PCR on DU145 (A) and PC3 (D)
cells. Data were normalized to GAPDH expression. Means ± SD (error bars), n=6. **p < 0.001 vs. CTR. WB analysis of HPSE in DU145 (B) and
PC3 (E) and relative quantification (C, F). (G) HPSE immunofluorescence in DU145 and PC3 cells (green). Nuclei were counterstained with
Hoechst 33342. Scale bar = 100 mm.
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suppressors, replicative immortality, resistance to cell death,

inducing angiogenesis, and activating invasion and metastasis),

four other “enabling features” have more recently been added,

such as instability and mutation of the genome, tumor-

promoting inflammation, deregulated energy metabolism, and

escape from immune destruction (50). Since it is now

consolidated evidence that all tumors examined to date

overexpress HPSE, some authors have proposed that with its

multiple roles within the tumor microenvironment, heparanase

can regulate each of these distinctive characteristics of cancer

and, in turn, highlight the need for therapies aimed at its

inhibition (51).

Starting from this evidence, our goal was to evaluate how the

overexpression and silencing of heparanase in prostate cancer cells

affect stemness characteristics and epithelium–mesenchymal

transition (EMT)—two of the classic tumor “hallmarks.”
Frontiers in Oncology 06
EMT is thought to be activated in cancer cells, linked to their

dissociation from the primary tumor and their intravasation into

blood vessels (52). However, the impact of EMT in cancer

progression and patient survival is still far from fully understood.

EMT was originally described during morphogenesis and

later was observed in several pathological events, including

fibrosis and cancer metastasis (53). During EMT, epithelial

cells lose adherence junctions and (54) apical–basal polarity

and acquire a mesenchymal phenotype with an enhanced

motility. In response to various signals (55–58), epithelial cells

upregulate a group of transcription factors to orchestrate EMT,

and the main ones are SNAI-1 and TWIST. EMT can be

considered to be a continuum process (59), and cells with this

hybrid phenotype have been referred to as “metastable” (60),

reflecting the flexibility of these cells in inducing or reversing the

EMT process (61).
A B

D

E

C

FIGURE 2

EMT markers expression in prostate cancer cells. E-CAD, VIM, a-SMA, TGF-b, and SDC-1 gene expression was evaluated by real-time PCR in
DU145 (A) and PC3 (C) cells. Data were normalized to GAPDH expression. Means ± SD (error bars), n=6. **p < 0.001, *p<0.05 vs. CTR. E-CAD,
VIM, a-SMA, and protein level were quantified by WB in DU145 (B) and PC3 (D) cells. GAPDH was included as loading control. (E) E-CAD (green)
and a-SMA (red) immunofluorescence in DU145 and PC3 cells. Nuclei were counterstained with Hoechst 33342. Scale bar = 100 mm.
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A

B

C

FIGURE 3

Stemness markers expression in prostate cancer cells. SOX2, OCT4, NANOG, and CD133 gene expression were evaluated by real-time PCR in
DU145 (A) and PC3 (B) cells. Data were normalized to GAPDH expression. Means ± SD (error bars), n=6. **p < 0.001, *p<0.05 vs. (C) SOX2,
OCT4, and NANOG protein level were quantified by WB in DU145 and PC3 cells. GAPDH was included as loading control.
A

B

D

C

FIGURE 4

Stemness properties in prostate cancer cells. Representative images of colony (A) and sphere (C) assays evaluated in DU145 and PC3
cells. (B, D) Bars represent the quantification of colony and sphere assay respectively and are expressed as mean ± SD values; n=8. **p <
0.001, *p<0.05 vs. CTR.
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Heparanase is the sole mammalian endoglycosidase capable

of degrading glycosaminoglycan HS. The enzymatic cleavage of

HS by HPSE results in ECM remodeling and releasing these

bioactive mediators, producing a rapid tissue response to local or

systemic stimuli. These effects profoundly affect multiple

pathophysiological processes such as tumor progression,

inflammation, and fibrosis (62–65). Since uncontrolled HS

degradation results in significant tissue damage, HPSE

expression is tightly regulated (19, 66, 67), whereas it is

overexpressed in malignant tumors (66, 68).

Prostate cancer is responsible for more gender-specific

cancer-related deaths in men than any other cancer (1). Zhou

et al. (69) have shown that HPSE overexpression can facilitate

tumor invasion and accelerate bone destruction caused by

prostate cancer metastasis. Expression of HPSE has also been

evaluated in prostate neoplasia; its malignant transformation has

been shown to be associated with heparanase-1 increased

expression at both mRNA and protein levels (70). These

authors have also correlated HPSE expression with the degree

of metastasizing tumors and suggested its use as a potential

marker for diagnosis of the prostate metastatic process (70).

We and other previous literature support the contention that

heparanase is needed for pathological organ fibrosis, and this

action is exerted thorough the regulation of EMT. In vitro and in

vivo studies have shown that HPSE regulates renal EMT induced

by FGF-2, TGF-beta, and hypoxia (71–74). We have also proved

that HPSE regulates high glucose-induced EMT of mesothelial

cells (75). In addition, it has been proven that HPSE participates

in lung fibrosis by regulating EMT (76), and it probably also has

a role in the liver (33).

We induced HPSE overexpression in DU145 cell line and its

silencing, by shRNA, in PC3 cell line. The silencing/

overexpression rate was confirmed both at gene and protein

levels. Results showed that HPSE is an EMT inducer in prostate

cancer. Indeed, the epithelial marker E-cadherin was reduced in

HPSE-overexpressing DU145 cells and upregulated in HPSE-

silenced PC3 cells with respect to control. In contrast, the

expression of mesenchymal markers a-SMA and vimentin was

increased in HPSE-overexpressing DU45 cells and reduced in

HPSE-silenced PC3 cells with respect to control.

Moreover, we have proved that HPSE regulates the

expression of TGF-b (one of the principal EMT activators)

and the levels of its associated transcription factor SNAI-1.

Specifically, TGF-b and SNAI-1 were increased in HPSE-

overexpressing DU145 cells and reduced in HPSE-silenced

PC3 cells with respect to control.

During malignant transformation depletion of epithelial cell

surface, syndecan-1 profoundly alters cell morphology and

anchorage-dependent growth: thus, syndecan-1 is necessary in

maintaining the epithelial phenotype. TGF-b can induce EMT

by activating SNAI-1, which in turn, represses the expression of

syndecan-1. A coordinated loss of syndecan-1 and E-cadherin
Frontiers in Oncology 08
has been documented in many epithelial malignancies compared

to their benign counterparts. In the prostate, changes in

syndecan-1 expression are linked to EMT (77). It has been

described that syndecan-1 expression is lower in PC3 and

DU145 prostate cancer cell lines than in normal prostate

epithelial cells (78).

Here, we have shown that HPSE expression modulates

syndecan-1: HPSE overexpression reduced syndecan-1 in

DU145 cells, and HPSE silencing increased syndecan-1

expression in PC3 cell line.

Recently, EMT has been linked to stem cell phenotype (79),

since cancer cells with EMT characteristics acquires stem-cell-

like features, such as self-renewal and slow proliferation (80, 81).

Cancer stem cells acquire more complete EMT molecular

characteristics and exhibit more aggressive abilities.

Specifically, prostate cancer stem cells display increased EMT

markers and increased tumorigenesis, migration, and invasion

ability (82). Cancer stem cells have a specific gene signature, and

the principal markers are SOX2, OCT4, and NANOG.

Additionally, other genes involved in maintaining self-renewal

capacity in prostate cancer include CD-133 and CD-44 (83, 84).

Here, we have proved that HPSE expression modulates

prostate CSCs. Specifically, the stemness markers SOX2, OCT4,

NANOG, and CD133 were upregulated both at gene and protein

levels in HPSE-overexpressing DU145 cells and reduced in HPSE-

silenced PC3 cells compared with the control. In addition,

functional assays confirmed a role of HPSE in prostate cancer

stemness: HPSE increases the capacity to grow starting from a

single cell and to form a sphere in an independent anchoring

system. Future studies could also characterize the potential role of

HPSE in self-renewal capacity of prostate CSCs.

Here, we report that the expression of several EMTmarkers is

controlled by HPSE expression in prostate cancer. Moreover,

stemness markers and features of CSCs are also modulated by

HPSE. Collectively, these results proved an additional mechanism

by means of which HPSE can contribute to prostate cancer

progression and metastasis, and further studies will be necessary

to clarify its potential as a pharmacological goal.
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