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Transcription factor RUNX1 holds an integral role in multiple-lineage

haematopoiesis and is implicated as a cofactor in V(D)J rearrangements during

lymphocyte development. Runx1 deficiencies resulted in immaturity and

reduction of lymphocytes in mice. In this study, we found that runx1W84X/W84X

mutation led to the reduction and disordering of B cells, as well as the failure of

V(D)J rearrangements in B cells but not T cells, resulting in antibody-

inadequate-mediated immunodeficiency in adult zebrafish. By contrast, T cell

development was not affected. The decreased number of B cells mainly results

from excessive apoptosis in immature B cells. Disrupted B cell development results

in runx1W84X/W84X mutants displaying a similar phenotype to common variable

immunodeficiency—a primary immunodeficiency disease primarily character-

ized by frequent susceptibility to infection and deficient immune response, with

marked reduction of antibody production of IgG, IgA and/or IgM. Our studies

demonstrated an evolutionarily conserved function of runx1 in maturation and

differentiation of B cells in adult zebrafish, which will serve as a valuable model

for the study of immune deficiency diseases and their treatments.
1. Introduction
Multipotent haematopoietic stem cells germinate lymphoid-restricted progenitors

that differentiate into subsets of B and T cells. Lymphocytes play a vital role in adap-

tive immunity, while B cells provide varied immunoglobulin antibodies which

perform the humoral immune response [1]. The matured B cells can differentiate

into plasmocytes and memory cells to eliminate pathogens and maintain the

health of individuals via the immune response. Therefore, the dysregulation of

the production and functionality of B cells often results in a variety of human dis-

eases, including leukaemia [2], common variable immunodeficiency (CVID) [3]

and X-linked agammaglobulinaemia [4]. CVID refers to a heterogeneous collection

of primary immunodeficiency diseases, primarily characterized by frequent suscep-

tibility to infection and deficient immune response, concomitant with a marked

reduction in antibody production of IgG, IgA and/or IgM. Defective lymphocyte

development, especially of B cells, is the major pathophysiological cause of CVID [5].

Mammalian B cell development is a sequential process, which can be divided

into seven stages: pre-pro-B cell, pro-B cell, pre-B cell, immature B cell, mature B

cell, activated B cell and plasma B cell [6,7]. V(D)J rearrangements of B cells are
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responsible for producing the Ig heavy chains during the B cell

maturation. Complex pathways and multiple genes drive B

lymphopoiesis, including B cell maturation, commitment,

specification and differentiation. Mouse and cell line studies

have shown that Pax5 (B cell-specific activator protein, BSAP)

has concerted action with a set of genes such as Runx1, Blk,

E2a, Ikaros and other B-lineage-specific transcription factors to

establish the B cells development network [6,8–10]. Coordi-

nation failure between different signalling molecules and

regulators would result in defects in B lymphopoiesis.

RUNX1 is a critical member of the RUNX (runt-related)

family harbouring highly conserved DNA binding and

protein–protein interaction domains as heterodimeric tran-

scription factors in vertebrate [11–14]. Mutations in Runx1
are known to be strongly and frequently associated with hae-

matological malignancies [15], where RUNX1 serves as a key

regulator in the initiation and maintaining a steady state of hae-

matopoietic stem cell [16–18], the emergence of thrombocytes

[19] and growth of lymphocytes [20–22]. A recent survey study

concluded that of 128 patients with acute lymphoblastic

leukaemia, approximately 18.3% patients with T cell acute

lymphoblastic leukaemia and 3.8% patients with B cell acute

lymphoblastic leukaemia carried a RUNX1 mutation [23]. Sev-

eral genes have been shown to be the downstream targets of

Runx1, including Ebf1, Ly6d, Spib and Ikzf3 [20,21]. However,

the mechanism and signalling pathway of RUNX1 in modulat-

ing lymphocyte development remain incompletely elucidated.

Haematopoietic processes of zebrafish are evolutionarily

similar to mammalian processes, including lymphopoiesis

[24]. Zebrafish has been an excellent vertebrate genetic and

developmental system for disease analysis, contributing a valu-

able increase in the understanding of haematopoiesis and the

immune system [25,26]. In zebrafish, the thymus is generally

the first to develop as a lymphoid organ accumulating T cells

[27], which is initiated by expression of rag1/2. B cells emerge

from 21 days post-fertilization (dpf) in the pronephros and

kidney marrow [28], in which large antibody repertoires exist

[29]. The conserved haematopoietic programme of zebrafish

has served as a versatile model organism to demonstrate the

events in vertebrate lymphoid ontogeny.

The tightly regulated network of runx1 activation has been

studied extensively in humans and mice, but not in adult

zebrafish. We have established a CVID model by utilizing zebra-

fish runx1W84X/W84X mutants, which mimic the haematopoietic

and immunodeficiency of B cells. Using these mutants, we

address how runx1 regulates B cell growth and the mechanism

of CVID. Our results indicated a dramatic decrease of B cell

numbers, ineffective immune response and aborted V(D)J

rearrangements of B cells in runx1W84X/W84X mutants, demon-

strating a conserved role of runx1 in B cell development. This

model can be used for exploring potential therapies for CVID.
2. Results
2.1. Abnormal development of lymphocytes in

runx1W84X/W84X mutants
Runx1 is essential for survival and for the continued develop-

ment of B cells and T cells in mice [20,21,30,31]. To gain

insights into the roles of runx1 in adult zebrafish lymphocyte

development, we used runx1W84X/W84X mutants that produce

truncated proteins and lack runx1 function [32,33]. As in other
teleosts, adult zebrafish maintain multi-lineage haematopoiesis

in the kidney marrow, an organ that is equivalent to the mam-

malian bone marrow, the source of B cells and T cells. We used

Tg(igm:eGFP), Tg(rag2:dsRed) and Tg(lck:dsRed) transgenic lines;

these closely recapitulate mammalian B cell [34,35] and T cell

ontogeny, respectively. FACs analysis demonstrated that

runx1W84X/W84X mutants showed sharply reduced percentages

of igm:eGFPþ and rag2:dsRedþ B cells but expanded lck:dsRedþ

T cells compared with runx1þ/þ (figure 1a–c). We then exam-

ined the expression of B-cell- and T-cell-related genes in

lymphocytic populations of kidney marrow from adult

runx1þ/þ and runx1W84X/W84X mutants using Q-RT-PCR [34].

Specific primers were designed as seen in table 1. As expected,

we found decreased B cell genes and increased T cell genes

(figure 1d), indicating that T cell number may not be affected

or may even increase. To more accurately discern whether

runx1 would affect T cell development, we measured T cell

number in the kidney (figure 1e). The absolute T cell number

in runx1W84X/W84X mutants is comparable to that of runx1þ/þ.

Therefore, the increase in T cell percentage is likely to be

the mathematical consequence of the reduction in B cell

percentage, rather than the increase of T cell quantity.

Additionally, B cells from another immune organ, spleen,

were reduced in runx1W84X/W84X mutants (electronic supplemen-

tary material, figure S1A,B). To determine the precise

developmental stages during which B cell differentiation is

blocked, we analysed the expression of B-cell-specific genes such

as e2a, ebf1a, ebf1b, pax5, igd, igz, iglc3, cd79a and cd79b which are

important at multiple stages of B cell development [36–38]

(figure 1f ). These results indicated that B cells had been deficient

from an early stage of B cell development in runx1W84X/W84X

mutants, similar to the Runx1 knock-out mouse [20].

2.2. B cells but not T cells are dysfunctional in
runx1W84X/W84X mutants: establishment of
common variable immunodeficiency model

We observed that although runx1W84X/W84X mutants were simi-

lar in size to runx1þ/þ, 35 of 687 (about 5.09%) runx1W84X/W84X

mutants appeared frail and ill, suffering recurrent infection and

displaying anomalies in sustained swimming and morphology

(electronic supplementary material, figure S2A). By recording

the gross survival rate of runx1þ/þ and runx1W84X/W84X mutants

every day, we found a much lower survival rate of runx1W84X/

W84X mutants compared with runx1þ/þ (electronic supplemen-

tary material, figure S2B). The dysplasia of B cells and T cells

prompted us to test the immune function of runx1W84X/W84X

mutants by measuring the immune response [35,39]. To this

end, phosphate buffer solution (PBS) as the control and KLH

emulsified in complete Freund’s adjuvant were used

as antigen to immune Tg(igm:eGFP);runx1þ/þ and Tg(igm:eGF-
P);runx1W84X/W84X mutants, Tg(lck:dsRed);runxþ/þ and

Tg(lck:dsRed);runx1W84X/W84X mutants. Two weeks later, PBS

and KLH emulsified in incomplete Freund’s adjuvant (IFA)

boosted the immune fish (figure 2a). After four weeks, the per-

centage of igm:eGFPþ B cells in lymphocytes were increased in

Tg(igm:eGFP);runx1þ/þ, but not in Tg(igm:eGFP);runx1W84X/

W84X mutants (figure 2b,d). The data indicated that the residual

B cells in runx1W84X/W84X mutants lacked immune response to

antigen stimulation. In contrast, compared with

Tg(lck:dsRed);runxþ/þ, the immune response of lck:dsRedþ T

cells in Tg(lck:dsRed);runx1W84X/W84X mutants was normal
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Figure 1. Aberrant developmental characterization of lymphocytes in adult runx1W84X/W84X mutants. (a – c) FACS analysis of B cell makers igm (a) and rag2 (b),
T cell maker lck (c) in kidney marrow of runx1þ/þ and runx1W84X/W84X mutants. Black boxes outline the captured positive lymphocytes with fluorescence in
lymphocytic populations of kidney marrow; the percentage data represents the mean+ s.e.m. (d ) Relative expression of B cell makers and T cell makers in
runx1þ/þ (blue bars, n ¼ 54) and runx1W84X/W84X mutants (red bars, n ¼ 54) were examined by Q-RT-PCR. (e) Absolute numbers of T cells in runx1þ/þ

(blue bar, n ¼ 3)and runx1W84X/W84X mutants (red bar, n ¼ 3). (f ) Relative expression of genes important at multiple stages of B cells development. Each
experiment was performed in duplicate. Unpaired Student’s t-test; ns, no significance; *p , 0.05; **p , 0.01; ***p , 0.001.

rsob.royalsocietypublishing.org
Open

Biol.8:180043

3

(figure 2c,e). These data provided the conclusion that loss of

runx1 function in zebrafish resulted in dysfunctional develop-

ment of B cells but not that of T cells, a phenotype resembling

CVID with reduced B cells, defects in B cell development, and

impaired secretion of immunoglobulin in humans [40].

2.3. Apoptosis of B cells is increased in runx1W84X/W84X

mutants
It is known that lymphocytic V, D and J gene segment rearrange-

ments are the initial essential events that occur in the maturation

of B cells and T cells. Adult runx1W84X/W84X mutants have abnor-

mal development of B cells and/or T cells. We intended to detect

V(D)J rearrangements of B cells and T cells in kidney from
runx1þ/þ and runx1W84X/W84X mutants by semi-nested PCR

assays. The expression of Ig heavy chain isotypes igm and igz,

in addition to T cell receptor tcrb rearrangements, were checked

by the primers listed in table 2 [41–43]. Igm, igz and tcrb were

robustly amplified in both runx1þ/þ and runx1W84X/W84X

mutants. runx1W84X/W84X mutants had nearly undetectable igm
and igz rearrangement expression but had normal tcrb transcrip-

tional rearrangement expression in the kidney (figure 3a). These

results imply that, similar to the Runx1-null mutation in mice, B

cell rearrangements were interrupted in runx1W84X/W84X

mutants. This suggests a functional requirement of runx1 in

the maturation and/or maintenance of B cells in zebrafish. More-

over, we found that in zebrafish, runx1’s role is indispensable in

the development of B cell but not T cells.



Table 1. Primers used in Q-RT-PCR.

gene FP RP

ef-1a TACTTCTCAGGCTGACTGTG ATCTTCTTGATGTATGCGCT

rag1 AATGATGCAAGGCAGAGGA CAATGATGCCCACATCCC

rag2 TGAGACTCAGAAGCGCATGG ACCAAGTACGACTGTGGCTG

igm GTTTCCTCAGCTCAACCA AGTATAATCTCCTTCCTTCCC

ikaros AGAAGG GTAACCTGCTCCGACAC GGGCTT TCCAACCGAATGAGT

cd4 GTGGTCTTCATCTTGCTTGT AATCCCTTTGGCTGTTTGTT

cd8 AAGAGCATAGCACCGTAG GACTTCCGTCTGCTTTGCG

lck ACGTAAACATGGGGAACTG TCTTCTCCCCTTTCTCAAAC

tcra GAAGCCGAATATTTACCAAGTG AACAAACGCCTGTCTCCT

tcrb AAATCAACAAACAAATTCACCTG TATGCCAGCTTCATCCACTG

e2a AATGTGCAAGAAGGACTTCCAGATC CATGATGCCTTCGCTGGAGCTGAT

ebf1a TTTACAGCAACGGCATCAGAACAG GGTTACATTTGAGGAAGAATTTCAGG

ebf1b ATCATATTTGGAGCATGCTGCACCT CTTATAGGAGAGTGTGACCTCTACC

pax5 CTGATTACAAACGCCAAAAC CTAAATTATGCGCAGAACG

igd GACACATTAGCCCATCAGCA CTGGAGAGCAGCAAAAGGAT

igz AAAGCAACGATACCAAAGTG AACAGCTTGCAAGACAATTC

iglc3 AAGGAACTAAACCCATTGTGACGGA TCGCTGCATTCAGATTTCCTGATG

cd79a TCAAGAATACTCCCGCCATC GGCTTCTCCAGCTGAATGTC

cd79b GCTCACTTACGAATGACCAGAGAATAAC GTCCTCATACACATCTCCACCAACC

distal primer ACTAGATGACAATGTTGCGCTGGCAAC CAGTTGGGGGTAATTATGACTAACAAAAGTGCT

proximal primer GACAGCTAATGGTAGTTCGGCTTACTTATG CTTGTGGAGACAGCTCCCTCGCTGTTC
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In theory, reduced B cells in kidney from runx1W84X/W84X

mutants could be due to any one or more of the three follow-

ing underlying cellular abnormalities: (1) impaired

proliferation of existing B cells; (2) reduced de novo B cells;

(3) enhanced apoptosis of B cells. In the light of the essential

role of runx1 in proliferation and cell apoptosis, we next mon-

itored the proliferation and cell apoptosis of B cells via BrdU

incorporation assay and TUNEL (terminal deoxynucleotidyl

transferase dUTP nick end labelling) assay [44] respectively

to survey which cellular mechanisms mediated the reduced

B cells in runx1W84X/W84X mutants. Quantification of the

DAPI/rag2:dsRed/BrdU triple positive cells population

showed the B cell proliferation was similar between

runx1þ/þ and runx1W84X/W84X mutants (figure 3b,c). How-

ever, measurement of the DAPI/rag2:dsRed/TUNEL triple

positive cell population showed a significantly increased ratio

in runx1W84X/W84X mutants compared with runx1þ/þ, suggesting

that B lymphocyte apoptosis was increased (figure 3d,e).
It was reported that Runx1 controls B lymphopoiesis by

regulating Ebf1 [20], and loss of Ebf1 results in increased apop-

tosis in pro-B cells [45]. Many EBF1 target genes, for example,

components of the pre-BCR and BCR, Cd79a, Cd79b, B lym-

phoid kinase, Vpreb1, Igll1 and Cd19 genes, are required for B

cell survival [46]. In this study, we found that runx1W84X/W84X

mutation led to the reduction of ebf1, pax5, rag1/2, cd79a and

cd79b, which are necessary for B cell survival (figure 1d,f ). In

addition, we detected the binding of Runx1 to the zebrafish

ebf1a promoter. Four putative Runx1 consensus sites identified

within 20.5 � 0 kb proximal region using JASPAR online soft-

ware, with their positions (marked by stars) relative to the

transcription initiation site, are shown (figure 3f ). Chromatin
immunoprecipitation (ChIP) showed that Myc-tagged Runx1

binds to the 20.5 � 0 kb proximal but not distal promoter

region (22.5 � 22 kb) of the ebf1a promoter (figure 3g).

These Runx-binding motifs may be essential for gene

expression, suggesting that Runx1 may directly control the

transcription of ebf1a. Therefore, runx1 is likely to promote B

cell development by regulating key factors such as ebf1a,

which in turn regulates pax5, its known downstream target,

to control the development of B cells.
2.4. Runx1 regulates B cells development in a cell-
autonomous manner in zebrafish

The importance of the expression of runx1 in haematopoiesis

raised the question of whether runx1 is required cell-

autonomously or non-cell-autonomously for the development

of B cells in runx1W84X/W84X mutant zebrafish. To determine

between the two possibilities, we conducted reciprocal

kidney transplantation experiments between runx1þ/þ and

runx1W84X/W84X mutants [47–49] (figure 4a). We transplanted

whole kidney blood cells from Tg(igm:eGFP);runx1þ/þ donor

to runx1þ/þ host, Tg(igm:eGFP);runx1þ/þ donor to

runx1W84X/W84X mutant host and Tg(igm:eGFP);runx1W84X/W84X

mutant donor to runx1þ/þ host. We found that in

Tg(igm:eGFP);runx1þ/þ to runx1þ/þ group, 10 of 12 hosts have

runx1þ/þ-phenotyped B cell reconstitution (figure 4b–d);

in Tg(igm:eGFP);runx1þ/þ to runx1W84X/W84X group, 6 of 8

hosts have runx1þ/þ-phenotyped B cell reconstitution; and in

Tg(igm:eGFP);runx1W84X/W84X mutants to runx1þ/þ group, 5 of

7 hosts runx1þ/þ displayed B cell phenotype identical to
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runx1W84X/W84X mutants (figure 4b–d). In brief, these data

strongly argued that runx1 regulates development of B cells

through a cell-autonomous manner in zebrafish.
3. Discussion
In our study, we confirmed that the necessity of runx1
in B lymphopoiesis of adult zebrafish is conserved. We

established the CVID model in adult zebrafish with runx1W84X/

W84X mutation, which demonstrates a phenotype consistent

with that of adult Runx1-null mice. A decreased ratio of B cells

with an increased ratio of T cells was observed in adult zebrafish

kidney with runx1 absence. From the reduced igm:eGFPþ and

rag2:dsRedþ B cells, we recapitulated that the mature and imma-

ture B cells were both decreased in runx1W84X/W84X mutants
kidney and spleen. This result could be explained by the pre-

vious research that rag2-positive cells are likely to be restricted

to immature B cells in the kidney [34]. Furthermore, we found

that the absolute T cell number in runx1W84X/W84X mutants is

comparable to that of runx1þ/þ. Nevertheless, we were not sur-

prised to discover the increased percentage of T cells in

runx1W84X/W84X mutants. It is supposed that the ratio of T cells

may be relatively increased rather than absolutely increased, as

it is accompanied by a reduction of B cells.

In mammals, Runx1 is induced to express in early B cell

development and maintained at the subsequent various stage

of B cells [50–52]. The essential regulators E2a, Ebf1 and Pax5
are tightly associated with maturation of B cells in both mouse

and human [35,53]. Our studies showed a marked decrease in

the expression of pax5 and ebf1a in runx1W84X/W84X mutants,

consistent with previous observations in mice. To our



Table 2. Primers used in rearrangement assays.

gene FP RP

ef-1a TATCTCCAAGAACGGACAGAC GCAAACTTGCAGGCGATGTG

igVH1-V (first round) GATGGACGTGTTACAATTTGG CGTGCACAGTAATAAACAGCT

igVH1-V (second round) CCTCCTCAGACTCTGTGGTGA CGTGCACAGTAATAAACAGCT

igVH1-Jm (first round) GATGGACGTGTTACAATTTGG GTTCCYTTHCCCCAGTAGTCAAA

igVH1-Jm(second round) CCTCCTCAGACTCTGTGGTGA GTTCCYTTHCCCCAGTAGTCAAA

igVH1-Jz (first round) GATGGACGTGTTACAATTTGG AAGGTCTATTACTAACAGATCAC

igVH1-Jz(second round) CCTCCTCAGACTCTGTGGTGA AAGGTCTATTACTAACAGATCAC

Vb14.5-Cb1(first round) GAATCCAATGTGACGTTAACATGC AAGATGACAAGGCCATACAGTC

Vb14.5-Cb1(second round) CATGATCATAAGGACCACTACAG GTCCGCTCTTAGCAATGGTC
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knowledge, runx1 could cooperate with pax5 in activation of the

ebf1a gene promoter in mastering the B cells development [20].

We also identified the conserved runx1-ebf1a axis regulation on

the B cells development in zebrafish. We confirmed the Runx-

binding motifs on ebf1a promoter, which suggested that

Runx1 may directly control the transcription of ebf1a in zebra-

fish. Therefore, in our zebrafish model, runx1 is likely to

promote B cell development by regulating key factors such as

ebf1a, which in turn regulates pax5, its known downstream

target, to control the development of B cells.

Characteristics of the zebrafish immune system are compar-

able with that of mammals, making it a versatile model to

address questions about immunity and disease. By measuring

the KLH-mediated proliferation of B cells and T cells in the

kidney, we found a negative immune response to antigen and

crippled immunoglobulin secretion of B cells in runx1W84X/

W84X mutants, suggesting that runx1 deficiency impaired the

adaptive defense system. This reminded us that the phenotypes

of runx1W84X/W84X mutants were similar to CVID in human.

CVID is diagnosed mainly based on decreased serum immuno-

globulin levels, recurrent infection and the absence of specific

antibodies against antigens [5]. CVID is intractable without

clear pathogenesis. To date, it has not been reported that the

lesion in runx1 is genetically associated with CVID.

B cells with ineffective V(D)J rearrangements demonstrate

immaturity, which promotes apoptosis [54]. Mechanistically,

we found that absence of runx1 increased apoptosis of B cells.

This is probably due to the blocked maturation of B cells

incurred by inhibited runx1 function. In addition, by kidney

transplantation, we found cell-autonomous regulation of

B cells growth in adult zebrafish. This confirmed the

indispensable role of runx1 in haematopoiesis.

In conclusion, loss of runx1 function resulted in dysfunc-

tion of B cells in adult zebrafish. We are the first to use

inherited runx1W84X/W84X mutants in zebrafish with B cell

deficiency to establish a powerful CVID model, which will

provide chances to further explore B cell development as

well as potential therapy for CVID patients.
4. Material and methods
4.1. Zebrafish strains and maintenance
Zebrafish stocks were handled and bred in standard circulating

water system as described previously [55]. runx1W84X/W84X
mutant zebrafish line [32,33] was kindly provided by

Dr P. Paul Liu and Dr Zilong Wen. runx1þ/þ zebrafish were

spawned to produce the runx1þ/þ zebrafish and homozygous

runx1W84X/W84X mutants were spawned to propagate

runx1W84X/W84X mutants in this study. Tg(Cau.Ighv-ighm:eGFP)
referred to in texts as Tg(igm:eGFP) [35], Tg(rag2:dsRed)zf411
referred to in texts as Tg(rag2:dsRed) [56], Tg(lck:loxp-dsRed-
loxp-eGFP) referred to in texts as Tg(lck:dsRed) [25] and
Tg(hsp70l:MYC-runx1)hkz02t referred to in texts as hps70l:myc-
runx1 [57] were used in this study. Genomic DNA was

harvested from clipped tail fins, PCR amplification and diges-

tion by Hae II restriction enzyme determined the genotype

of runx1W84X/W84X mutants. Adult runx1W84X/W84X mutants

zebrafish were mated to Tg(igm:eGFP), Tg(rag2:dsRed) and
Tg(lck:dsRed) respectively, and their embryos were harvested

and raised. Then we generated Tg(igm:eGFP);runx1W84X/W84X

mutants, Tg(rag2:dsRed);runx1W84X/W84X mutants and

Tg(lck:dsRed);runx1W84X/W84X mutants lines. In all experiments,

zebrafish embryos were raised in fish water consisting of

2 mg l21 methylene blue in deionized water as a fungicide.

4.2. Flow cytometry
Haematopoietic cells obtained from adult runx1þ/þ and

runx1W84X/W84X mutants were processed as described [58].

Haematopoietic cells isolated from kidney and spleen were

resuspended using ice-cold PBS with 5% FBS, then subjec-

ted to measurement based on forward scatter and

side scatter with a flow cytometer (Becton Dickinson, San

Jose, CA) and results were analysed with FlowJo software

(TreeStar, Ashland, OR). Lymphocytic populations in

FSCintSSClow were sorted based on forward and side scatters

on flow cytometry sorter (Becton Dickinson, San Jose, CA)

and was used in reverse transcription reactions. The percen-

tage of GFP fluorescence-activated cells or dsRed

fluorescence-activated cells in the lymphocytic population

was analysed [59].

4.3. RNA extraction and quantitative RT-PCR
Total RNA from lymphocytes of adult runx1þ/þ and runx1W84X/

W84X mutants were extracted by TRIzol Reagent (Roche, Basel,

Switzerland) following the manufacturer’s instructions and con-

verted to complementary DNA (cDNA) using M-MLV Reverse

Transcriptase (Promega, Madison, USA) with oligo18-dT

(deoxy-thymine) primers. RNA was treated with RNase-free
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Figure 3. Deficiency of B cells development in runx1W84X/W84X mutants. (a) V(D)J rearrangements of igm, igz and V(DJ)C rearrangement of tcrb analysis in kidney marrow
from runx1þ/þ (n ¼ 2) and runx1W84X/W84X mutants (n ¼ 4) by semi-nested PCR. The ef-1a and igVH1-V PCR were used as positive control. NC, negative control. (b – c)
Cell proliferation assay of B cells in kidney marrow of runx1þ/þ and runx1W84X/W84X mutants. (b) Triple staining of DAPI, rag2:dsRed and BrdU. Blue: DAPI, red: dsRed,
green: BrdU; arrows indicate DAPI staining, rag2:dsRed staining, BrdU staining and triple co-staining cells. (c) Comparison of percentage of rag2:dsRedþ cells for BrdU co-
staining cells between runx1þ/þ (blue bar, n ¼ 3) and runx1W84X/W84X mutants (red bar, n ¼ 3). Unpaired Student’s t-test; p , 0.05; ns, no significance; mean+
s.e.m. (d – e) Cell apoptosis assay of B cells in kidney marrow of runx1þ/þ and runx1W84X/W84X mutants. (d ) Triple staining of DAPI, rag2:dsRed and TUNEL. Blue: DAPI, red:
dsRed, green: TUNEL; arrows indicate DAPI staining, rag2:dsRed staining, TUNEL staining, and triple co-staining cells. (e) Comparison of percentage of rag2:dsRedþ cells for
TUNEL between runx1þ/þ (blue bar, n ¼ 3) and runx1W84X/W84X mutants (red bar, n ¼ 3). (f ) Schematic diagram of the 2.5 kb ebf1a promoter region. The transcription
initiation site is designated as 0. Putative Runx1 consensus sites (marked by stars) are shown. (g) Semi-quantitative PCR analysis of the enrichment of the 20.5 � 0 kb
proximal region (ii) and the 22.5 � 22 kb distal region (i). The left lanes were input DNA control. Each experiment was performed in duplicate. Unpaired Student’s t-
test; mean+ s.e.m; **p , 0.01; scales bars, 100 mm.
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DNase (Thermo Fisher Scientific, Waltham, USA) before the

reverse transcription reaction. Q-RT-PCR reactions were per-

formed using LightCycler Nano System (Roche, Basel,
Switzerland) with FastStart Universal SYBR Green Master

(ROX) (Roche, Basel, Switzerland) with 10 pmol of each primer

and each sample was tested in triplicate. The housekeeping
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gene, elongation factor 1-a (ef-1a), served as an internal control to

normalize the relative fold changes using the DDCt threshold

method. The primers used in Q-RT-PCR are listed in table 1.

4.4. Analysis of V(D)J rearrangements
Kidneys were obtained from adult runx1þ/þ and runx1W84X/W84X

mutants then subjected to genomic DNA isolation (QIAGEN,

Hilden, Germany). Semi-nested PCRs were processed with pub-

lished primers spanning the V(D)J-JM region of igm (igVH1-Jm),

and igz (igVH1-Jmz) using the genomic DNA [41–43]. The semi-

nested PCRs program was carried out as follows: first round, 1

cycle for 948C/120 s, 30 cycles for 948C/30 s, 618C/30 s and
728C/30s-90 s, 1 cycle for 728C/180 s. After the first round of

semi-nested PCR, 1 ml PCR product was diluted into 20 times

as the template for the second round of semi-nest PCR. The

semi-nested PCRs programme of the second round was as fol-

lows: 1 cycle for 948C/120 s, 21 cycles for 948C/30 s, 618C/

30 s and 728C/30s-90 s, 1cycle for 728C/180 s. For tcrb
rearrangements assay, RNA was isolated from the kidney

marrow of adult runx1þ/þ and mutants and converted to

cDNA. tcrb rearrangements were PCR amplified, referred to in

the figure as Vb14.5-Cb1 using semi-nested PCRs, as previously

described [42]. The first round of PCR cycle parameters were as

follows: 1 cycle for 948C/120 s, 35 cycles for 948C/30 s, 568C/

30 s and 728C/60 s, 1 cycle for 728C/180 s. 1 ml PCR product
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was diluted into 20 times as the template for the second round of

semi-nest PCR. The cycling parameters were identical to those of

the first reaction, except that the steps were repeated for 25 cycles.

The ef-1a and igVH1-V PCR products used as the stan-

dard control were run in the parallel tubes. The semi-nested

PCR products were analysed by 1.5% agarose gel electro-

phoresis and stained with ethidium bromide. The primers

used in the rearrangement assays are listed in table 2.
hing.org
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4.5. Survey of immune responses
Keyhole limpet haemocyanin (KLH) (Sigma-Aldrich, St. Louis,

USA) dissolved in sterile PBS fully, then emulsified in CFA

(Sigma-Aldrich, St Louis, USA) and in IFA (Sigma-Aldrich,

St Louis, USA) at the concentration of 5 mg ml21 [35,60].

Ultrasonic emulsification on ice with 4 s, 2 s, 350 W was per-

formed until the mixture would stay agglomerated when

dropped on the ice-water. Adult Tg(igm:eGFP);runx1þ/þ

and Tg(igm:eGFP);runx1W84X/W84X mutants with both sexes,

weighing approximately 0.5–1 g, body lengths 2–3 cm

were randomly prepared into four groups: the

Tg(igm:eGFP);runx1þ/þ-PBS, the Tg(igm:eGFP);runx1þ/þ-KLH,

the Tg(igm:eGFP);runx1W84X/W84X-PBS and the Tg(igm:eGF-
P);runx1W84X/W84X -KLH, to receive the detection of immune

response. The four groups were immunized by intraperitoneal

injection with the same volume of sterile PBS and a dose of 5 mg

KLH emulsified in CFA, respectively. Followed 14 days later,

the Tg(igm:eGFP);runx1þ/þ and Tg(igm:eGFP);runx1W84X/W84X

mutants were again intraperitoneally injected with same 1 ml

volume of sterile PBS and 5 mg KLH emulsified in IFA,

respectively [39]. Four weeks later, the percentage and

number of igm:eGFPþ cells in the lymphocytic popula-

tion of kidney from adult Tg(igm:eGFP);runx1þ/þ and Tg
(igm:eGFP);runx1W84X/W84X mutants as well as lck:dsRedþ cells

in the lymphocytic population of kidney from adult

Tg(lck:dsRed);runx1þ/þ and Tg(lck:dsRed);runx1W84X/W84X

mutation lines were analysed to examine the function of B

cells and T cells.
4.6. B cell proliferation and apoptosis assay
Adult runx1þ/þ and runx1W84X/W84X mutants were incuba-

ted in 10 mM bromodeoxyuridine (BrdU, Sigma-Aldrich,

St Louis, USA) dissolved in system water for 4 h as described

with modification [61]. Blood smears were obtained as

described previously [62]. Kidney marrow blood cells were

fixed by 4% paraformaldehyde, stained with mouse-anti-

BrdU (Roche, Basel, Switzerland, cat.#1170376001, 1 : 16)

and rabbit-anti-dsRed Abs (Clontech, Mountain View, USA,

cat.#632496, 1 : 400), coupled with Alexa Fluor 488 anti-

mouse (Abcam, England, cat.#ab150153, 1 : 400) and Alexa

555 anti-rabbit (Abcam, England, cat.#ab150078, 1 : 400) for

fluorescent observation. The ratio of rag2:dsRed and BrdU co-

staining cells in rag2:dsRedþ cells was calculated between

runx1þ/þ and runx1W84X/W84X mutants. TUNEL assay was

conducted using In-situ Cell Death Detection Kit (Roche,

Basel, Switzerland) as described [63], coupled with rabbit-

anti-dsRed Abs (Clontech, Mountain View, USA, cat.#632496,

1 : 400) and Alexa 555 anti-rabbit (Abcam, England,

cat.#ab150078, 1 : 400). The ratio of rag2:dsRed and TUNEL

co-staining cells in rag2:dsRedþ cells was calculated between

runx1þ/þ and runx1W84X/W84X mutants.
4.7. Chromatin immunoprecipitation
Embryos were harvested from hsp70l:myc-runx1zebrafish and

heat shocked at 398C. Crosslinked chromatin was immuno-

precipitated with anti-Myc antibody (MBL, Japan, cat.#m192-3,

1 : 63) or IgG (negative control, Invitrogen, USA, cat.#10003D)

according to the procedure described by Hart et al. [64]. The

immunoprecipitates were subjected to semi-quantitative

PCR. The primers used in this assay are listed in table 1.

4.8. Transplantation procedure
Kidney marrow transplantation experiments were carried out

as described previously [59,65] with some minor modifi-

cations. Adult runx1þ/þ and runx1W84X/W84X mutant hosts

were g-irradiated beforehand with a total dose at 25 Gy and

then received transplantation after two days without feed.

Kidney marrow blood cells suspension from adult donors

Tg(igm:eGFP);runx1þ/þ and Tg(igm:eGFP);runx1W84X/W84X

mutants were filtered through a 40 mm strainer. Kidney

marrow blood cells were calculated manually by a haemato-

cytometer. Counted kidney marrow blood cells were

centrifuged at 800 g for 5 min at 48C, then resuspended in

injection medium (PBS with 5% FBS containing 3U Heparin

and 1U DNaseI) and divided into desired volumes for the

following transplantation. Approx. 106 kidney marrow

blood cells from donors were transplanted into the heart

of hosts using a glass capillary needle (Eppendorf, Hamburg,

Germany). Transplanted hosts were raised very carefully

and fed for the next week. The three groups

assigned were Tg(igm:eGFP);runx1þ/þ donor to runx1þ/þ

host, Tg(igm:eGFP);runx1þ/þ donor to runx1W84X/W84X

mutants host, Tg(igm:eGFP);runx1W84X/W84X mutants donor

to runx1þ/þ host. 4 weeks after transplantation, igm:eGFPþ

cells and kidneys of hosts were measured by flow cytometry

and the fluorescences were observed.

4.9. Imaging analysis
Images of blood smear samples were captured on an Olympus

DP 71 microscope (Olympus, Tokyo, Japan) and a Zeiss confo-

cal microscope (ZEISS LSM 510, Germany). Adult zebrafish

were observed using a ZEISS microscope (ZEISS Discovery.

v. 20, Germany) and photographed by an Olympus MVX10

microscope (Olympus, Tokyo, Japan). All the images were

handled by Adobe PHOTOSHOP CS5 (Adobe, San Jose).

4.10. Statistical analysis
The data were organized by the two-tailed Student’s

t-test or ANOVA, while comparison of survival curves was

performed with the log-rank test. And the data were shown

as a mean+ s.e. of the mean (s.e.m). Differences were con-

sidered significant when the P value was less than 0.05.

Statistical analyses were done using graphpad PRISM v. 6

(GraphPad Software, La Jolla, USA).
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