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The coronavirus disease 2019 (COVID-19) has emerged as a global burden comprising
cardiovascular and respiratory complications. Herein, endothelial cell infection causing
endotheliitis is discussed as a key mechanism. However, knowledge on underlying molecular
pathways is still scarce. In this opinion we would like to highlight the role of glycocalyx disturbance
for endothelial cell infection possibly being the limiting factor to SARS-CoV-2 disease exacerbation.

Besides the development of an acute respiratory distress syndrome (ARDS) in patients who are
critically ill after infection with SARS-CoV-2, endothelial dysfunction seems to be an underlying
cause of multiorgan failure. In fact, SARS- CoV-2 directly infects human vascular organoids in
vitro (1) and autopsy studies of patients dying from coronavirus disease 2019 (COVID-19) show
severe endothelial cell damage with disrupted cell membranes, intracellular virus and endotheliitis
(2, 3).

The glycocalyx is a key regulator of endothelial cell homeostasis, tissue oedema and
inflammatory processes (4). It consists of membrane-bound proteoglycans and glycoproteins and
covers endothelial cells at the luminal vessel side (4, 5). Together with adsorbed molecules from
the blood plasma, the glycocalyx forms the endothelial surface layer (4). This fragile barrier is
disturbed in inflammatory processes (6) and cardiovascular diseases (7–9) being associated with
patient outcome (10–12). Recently, it was shown that glycocalyx thickness is predictive of mortality
in septic patients, with higher perfused boundary regions (PBR) measured within 24 h after ICU
admission in non-survivors (12). Perfused boundary regions were visualized using sublingual
non-invasive sidestream-darkfield imaging and used as an indirect and inverse marker of the
glycocalyx (12).

In addition, during septic shock, plasma levels of glycosaminoglycans (GAGs) increase
suggesting glycocalyx destruction (6, 13) with higher plasma levels of hyaluronan and heparan
sulfate (HS) in non-survivors (6). Similarly, urinary levels of hyaluronic acid and HS are higher in
non-surviving patients (10). Furthermore, the levels of urinary GAGs predicted the development
and progression of renal dysfunction in patients with septic shock and were also associated with
in-hospital mortality in patients with ARDS (10). Finally, another component of the glycocalyx,
syndecan-1, is elevated continuously in septic non-survivors, while it decreases during the course
of the disease in surviving patients (14).

The current SARS-CoV-2 induced COVID-19 is associated with similar patterns of disease
exacerbation, namely sepsis, renal failure, and ARDS (3, 15). Since the glycocalyx has a main role
in the development of tissue oedema according to the Starling equation, it has been postulated that
glycocalyx disintegrity impacts the development of ARDS (16).

Intriguingly, beside binding to angiotensin-converting enzyme 2 (ACE2) (17), SARS-CoV needs
HS, themajor component of GAGs in the glycocalyx (18), as adhesionmolecule (19). The suggested
binding site of HS is constituted of positively charged amino acid residues at the receptor-binding
domain adjacent to the ACE-2 binding site (20).
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SARS-CoV has a similarity to human coronavirus NL63
(HCoV-NL63), an alphacoronavirus, which also uses ACE2 and
HS for cellular entry (21). In fact, HS proteoglycans act as
adhesion molecules thereby increasing HCoV-NL63 density on
the cellular surface (21). The use of glycans as attachment (co-)
factors is also observed in the initial interaction of numerous
viruses with host cells (22).

The influenza virus, adenovirus, rotavirus, and reovirus
bind to sialic acid via stalk-like attachment proteins (23).
Herpes simplex virus type 1 (HSV-1) uses galectin-3 as entry
mediator (24). In addition, HSV-1 cellular entry depends on
HS and especially 3-O-sulfation of specific HS glucosamine
residues (25). For HSV-2 the HS entry site is virtually
inactive (26). Both HSV-1 and HSV-2 use nectin-1, which
interacts with the glycosaminoglycans of the glycocalyx, as entry
receptor (26).

Human immunodeficiency virus 1 (HIV-1) binds to HS in
a complex manner, where HS can promote viral attachment
and transcytosis through epithelia (27). A specific CD4-
HS glycoconjugate has been developed to inhibit HIV-1
attachment (27).

In addition, enteroviruses use HS for attachment to host cells
(28–30). HS binding is also used by different hepatitis viruses
(31–33), human papillomavirus (34), polyomaviruses (35, 36),
rhinoviruses (36–38) and coxsackie viruses (39, 40).

Finally, also arthropod-borne viruses like the chikungunya,
yellow fever, Japanese and Murray Valley encephalitis virus,
eastern equine encephalitis virus, West Nil and Dengue virus are
dependent on the glycocalyx as entry site (41–48).

This finding is surprising, as it questions the protective role
of the glycocalyx. However, for HCoV-NL63 these observations
were seen in vitro among others by adding HS proteoglycans
to the cell culture (21). In vivo, glycocalyx degradation
and release of soluble HS is part of the innate immunity,
as it is recognized as danger- associated molecular pattern
(DAMP), hereby promoting an inflammatory burst by toll-
like receptor interaction (49). Hence glycocalyx destruction
seems to mediate severe COVID-19. Recently, Stahl et al.
demonstrated that COVID-19 patients experience an acquired
loss of the protective heparanase 2 and an increase in PBR
(50). However, future research should be conducted to give
further insights into the natural course of disease pathology and
the role of HS. In addition, current studies should emphasize
on mutations in the receptor-binding domain of SARS-CoV-2
as for e.g., the N501Y mutation (51) and potential effects on
HS binding.

The glycocalyx is a very fragile structure, regulated by shear
forces and strongly susceptible to environmental changes (4).
Therefore, it has for years been underestimated, because applied
staining protocols degraded its structure (4). Furthermore,
the endothelial layer is determined by the interaction of the
glycocalyx with different plasma proteins (4). In cell cultures,
glycocalyx formation is modified by cell type, cellular density,
culture conditions and shear stress (52). The latter influences
glycocalyx structure and composition (52). Viral cell entry of
SARS pseudovirus was reported to be inhibited by lactoferrin,
which binds to HS (19).

Hence we assume that glycocalyx disintegrity accounts for
enhanced viral entry. It is known, that inflammatory conditions
lead to severe glycocalyx modulations, including the shedding
of its components like HS, chondroitin sulfate or syndecan and
glypican core proteins with attached GAGs (52). Recent reports
suggest enhanced heparanase activity in more severe COVID-19
disease (53).

Further, glycocalyx shedding can be conferred by cytokines
and chemoattractants (52, 54). The latter, i.e., the complement
system was discussed as key factor in SARS- CoV-2 mediated
ARDS (55).

Activation of the complement cascade develops 1 day after
SARS-CoV infection (56). Herein, activation of C3 has a key role
in disease exacerbation, as C3 deficient mice experienced less
respiratory dysfunction and weight loss (56).

Following extensive modifications by D-glycuronyl C5-
epimerase and 2-O-, 3-O-, and 6-O-sulfotransferases HS is
characterized by a heterogenous structure (57). HS structural
variability accounts for e.g., for either activation or inhibition
of the complement system (57). The grade of sulphation
determines C3b cleaving, which is accelerated by HS with lower
sulphation (58).

Potential therapeutic approaches include the administration
of the glycoprotein SPARC, which has been reported to
restore the glycocalyx in coxsackievirus-B3 induced myocarditis
(59). Further, albumin infusions have been shown to preserve
the glycocalyx and mediate its recovery (60, 61). Albumin
carries sphingosine-1 phosphate to the endothelium, which
inhibits syndecan-1 shedding (62). Further, rhamnan sulfate, a
polysaccharide extracted from the green algae M. nitidum has
antiviral and antithrombotic properties (63, 64). Sevoflurane,
which is used during anesthesia, has been shown to be protective
against ischemia- reperfusion injury of the glycocalyx (65).
Recently, liposomal nanocarriers with pre-assembled glycocalyx
have been developed and shown to restore NO- production
in heparanase III -treated endothelial cells (64, 66). Another
therapeutic opportunity includes an anti-adhesive coating of
the glycocalyx, consisting of a dermatan sulfate backbone with
multiple selectin- binding peptides, which prevents platelet
binding to inflamed endothelium (67). This coating reduced
in vivo thrombus formation in a mouse model of deep vein
thrombosis (67).

Heparin, which is closely related to HS has further been
speculated to be protective, while binding SARS-CoV-2 and
inducing its conformational change (68). Further, heparin acts
as heparanase inhibitor (11). However, the grade of sulphation
might limit its beneficial effects regarding C3b cleavage and
complement activation (58). In addition, heparin interferes
with the binding of antithrombin III to the glycocalyx (69).
Antithrombin III is known to reduce inflammation (69–71) and
to protect the glycocalyx from enzymatic degradation (69).

Another heparanase inhibitor, sulodexide, which is a
glycosaminoglycan extracted from porcine intestinal mucosa,
was already applied in patients with type 2 diabetes and increased
retinal and sublingual glycocalyx thickness (11, 72).

In pre-clinical models the application of atrasentan, a
selective endothelin A receptor antagonist, increased glycocalyx
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dimensions, NO concentrations and reduced heparanase
expression and albuminuria (73).

As the inflammatory response is more and more regarded as
crucial in COVID-19 exacerbation, the use of steroids, might
be helpful to preserve glycocalyx structure in severe cases (74–
76). The application of dexamethasone is already recommended
in patients who require supplemental oxygen or mechanical
ventilation (77). However, adverse effects on glycocalyx structure
and endothelial permeability of steroid application have also been
reported (78, 79).

In summary, though to date knowledge on SARS-CoV-
2 pathogenesis is still scarce, histological findings show

endotheliitis and recent in vivo measurements suggest
endothelial dysfunction as integral element in severe COVID-19
(2, 3, 50).

In consequence we would like to urge researchers to focus
on preservation models for glycocalyx composition to enhance
benefits for patient outcome.
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