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ABSTRACT: Worldwide COVID-19 infection poses an enormous risk to public health and an alarming global 

socioeconomic burden. The impact of the COVID-19 pandemic on individuals with underlying health conditions 

as well as on the elderly population is extensive and effective strategies are needed to understand the mechanism 

behind it. Cellular senescence defines as an irreversible cell cycle arrest due to DNA damage leading to 

accumulation of senescent cells in the elderly population and may result in worsening of COVID-19 mediated 

increased mortality. However, whether this variation in senescence levels, in different aged populations, 

translation to COVID-19 infection is unknown. The spike protein of SARS-CoV-2 has been recently identified to 

be responsible for inducing pathogenic signals, although a clear understanding of how the host receptor interacts 

with SARS-CoV-2 protein and mediates the immune responses is not clear. In this review, we address the 

epidemiology of SARS-CoV-2 and the cellular senescence responding immune response to pathogenic SARS-CoV-

2. We provide a prospective summary of what to expect and how to brace the possible immunological strategy to 

protect against COVID-19 infection. The review majorly explores an underline mechanism of how senescent cells 

trigger a hyperimmune inflammatory response and cause high mortality in aging people could serve as a potential 

aid to alleviate the treatment for elderly battling COVID-19 infection. 
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1. COVID-19 pandemic and the aging community  

 

The rapid transmission of SARS-CoV-2 (Severe Acute 

Respiratory Syndrome Corona Virus-2) lately emerges as 

an nCOVID-19 pandemic, 37.7 million confirmed cases, 

1 million fatalities, and massive socio-economic burdens, 

as of the writing of this article [1]. With 7.8 million 

SARS-CoV-2 positive cases and 215,022 deaths, the 

United States is the worst affected nation with COVID-19 

infection [2]. The COVID-19 situation is declared a 

pandemic by World Health Organization (WHO) on 

March 11, 2020. The most common symptoms are 

headache, loss of smell, nasal obstruction, cough, 

myalgia, sore throat, congestion, and diarrhea in early 

phase of COVID-19 infection. Most clinical cases found 

to resolve within 7 days of infection. However, Acute 

Respiratory Distress Syndrome (ARDS) and acute 

respiratory failure complication develops in advance 

phase of COVID-19 infection, which requires mechanical 

ventilation support to patients admitted in  the ICU [3-

5].Individuals underlying medical conditions such as 

cardiovascular disease, diabetes mellitus, cancer, or 

advanced chronological aging perturb a high number of 

co-morbidities in COVID-19 infection [6, 7]. 

Remarkably, the countries having high median age 

populations found increased disease burden and high 

fatality rates compared to the country having low median 

age population, suggesting a positive correlation between 
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the increased age and case fatality rate (Fig. 

1A). According to a report released by Centers for 

Disease Control and Prevention (CDC), fatality was 

highest in the ≥85 age group ranging from 10% to 27% as 

compared to 3% to 11% in 65–84, 1% to 3% 55-64 years 

age group, <1% in 20–54 aged, and no mortalities persons 

aged below 19 years in the United States. Interestingly, 

the transmission rate of SARS-CoV-2 found comparable 

to the young age and elderly population in representative 

data of the United States; however, the statistics showed 

that the fatality rate is successively corresponding to aging 

(Fig. 1B). It indicates that the compromised immune 

system in the aging population is not enough to clear 

SARS-CoV-2 transmission besides less transmission and 

leads to much higher mortality in the elderly. As this 

outbreak identifies older age as a high risk of mortality 

and co-morbidities, an underlying mechanistic study with 

emphasis on advanced chronological age persons is 

required to find an effective clinical outcome of COVID-

19 infection as predicted by the estimation of severity of 

COVID-19 [8-10]. 

 

 
Figure 1. A correlation between aging and COVID-fatality. (A) Data from different countries showing a 

correlation between median age and case fatality rate of COVID-19. The case fatality rate calculated by dividing 

confirmed death with the total number of cases (source: https://ourworldindata.org/grapher/case-fatality-rate-

of-covid-19- vs-median-age). (B) The representative data shows the SARS-CoV-2 transmission rate and (C) 

the fatality rate in the United States (source: www.cdc.gov/coronavirus/2019-ncov/casesupdates/cases-in-

us.html); where the case fatality rate and hospitalization rate successively increase with aging [2].  
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Figure 2. An overt lung inflammation perturb cytokine storm to SARS-CoV-2 infection in aging 

underlying health condition. Senescence alveolar lung epithelial cells from aging and underlying health 

conditions individuals exhibit, decline autophagy, low ACE2, and dysregulated innate and adaptive CD4, CD8 

cells produce, which produces a high amount of IFNγ, IL6, TNFα cytokine in aging populations. The increased 

amount of cytokine storm level consequences in higher co-morbidities in aging and underlying health 

condition individuals. 

2. Comparative etiology of SARS-CoV-2 and cross-

species viral transmission  

 

Coronaviruses are defined as zoonotic, enveloped, and 

large 27.9-31 kb positive-stranded RNA viruses, which 

belong to the Coronaviridae family [11]. Based on 

encoded protein sequences, CoVs classified as alpha-

CoV, beta-CoV, gamma-CoV, and delta-CoV [12]. β-

coronaviruses contain highly pathogenic SARS-CoV-2 

[13], SARS-CoV, and Middle East Respiratory Syndrome 

(MERS)-CoV all involved in preceding fatal outbreaks 

[14, 15]. Cross-species viral pathogenesis is found to be 

the cause of emergence of many new viruses responsible 

for various different viral epidemics [16]. In case of 

coronaviruses, bats and rodents are found to be significant 

sources and reservoirs [17]. Likely, the coronavirus 

genomic RNA segments also transferred from bat and 

rodent species to humans or other mammals. Indeed, 

nCOVID-19 is the third encounter of the coronavirus, 

alongside SARS-CoV (China, 2003) and MERS-CoV 

(Saudi Arabia, 2013) in a short time interval. 

Interestingly, a molecular modeling prediction suggests 

that both SARS-CoV-2 and SARS-CoV viruses exhibit 

79% homology at the nucleotide level and utilizes human 

ACE2 (Angiotensin Converting Enzyme 2) to bind their 

S1 spike protein [18]. However, transmission and 

mortality rates with SARS-CoV were found to be 

significantly lower as compared to SARS-CoV-2. This 

can be seen during the SARS-CoV epidemic, in the year 

of 2003, where 8000 deaths were reported [19, 20]. On the 

other hand, there is constant mutation and adaptation of 

the co-evolved CoVs S1 spike protein binding partner 

human ACE2 at the order, classes, and species level [21, 

22]. Recent findings suggest the variable expression of 

human ACE2 is critical to the spread of the SARS-CoV-2 

in the aging population [23] . Different studies suggest the 

coronavirus evolutionary relatedness with human ACE2 

plays an important role, and hosts ACE2 switching could 

be a limit factor for COVID-19 pathogenesis majorly in 

elderly persons.  

 

3. Immune senescence and SARS-CoV-2 infection 

 

3.1.  Cellular senescence, SASP and Aging 

 

Cellular senescenece is the irreversible loss of cell 

proliferation and cell cycle growth arrest. It is mainly 

attributed to the DNA damage, cellular and metabolic 

stress [24]. The cells undergoing to senescence secrete 

increased amount of inflammatory factors such as 

chemokines (CXCL1, CXCL9, CXCL 10, CXCL11, 

CCL, CCL4), and cytokines (TNFα, IL1b, IL6, IL8, IL18 

and IL12 cytokines), this phenotype of increased secretion 

of factors is termed as senescence-associated secretory 

phenotype (SASP)[25, 26]. Rodier et al observed that the 

persistent DNA damage in the senescent cells (SCs) lead 

to the increased secretion of cytokines [27]. The increased 

secretion of cytokines, termed as cytokine storm, found to 

exacerbate tissue damage and pathology in SARS-CoV-2 

and other viral infections [28-31]. Further, Dong et al 

provided the direct evidence between senescence and viral 

infection severity, they found when senescence-
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accelerated mice infected with influenza A virus, there is 

significant reduction of cellular immunity leading to 

higher mortality rate and increased persistence of virus in 

the lungs [32]. Usually immune cells helps to clearance of 

senescent cells, however, during aging there is decline in 

immune surveillance leading to accumulation of 

senescent cells in several aging tissues and therefore, 

accumulation of SCs leads to induce SASPs and possess 

higher tissue damage [33-37]. On the other hand, 

decreased lymphoid lineage from aging hematopoietic 

stems cells are shown to provide an impaired antigen 

recognition, lessen memory CD8 T cell, and poor vaccine 

response to viral infection [38, 39]. Whereas abundantly 

differentiated myeloid cells provide weaken immune 

response and are shown to be incompetent in viral 

clearance in aging and underlying health condition 

individuals [40, 41]. 

 

3.2.  Paradox of ACE2 expression and SARS-CoV-2 

infection 

 

Recent findings reveal that human Angiotensin-

Converting Enzyme 2 (ACE2) is a distinct gateway for the 

entry of SARS-CoV-2 into cells. Studies from South 

Korea and Italy's epidemiologic data confers that the 

ACE2 expression declines with aging, leading a 

predisposed co-morbidity in older individuals with 

cardiovascular disease infected with COVID-19 [21, 42]. 

These datasets explain an apparent paradox; if ACE2 

itself allows SARS-CoV-2 to enter in the cell, then how 

does the reduction of ACE2 expression exacerbate 

COVID-19 manifestation in older persons? Given the fact 

that hACE2 also plays an essential anti-inflammatory 

function converting angiotensin II to angiotensin 1-7 

during RAS signaling in the cells. The increased RAS 

signaling leads to a decline in ACE2 expression and 

aging, leading to the induction of pro-inflammatory 

signaling and exacerbating the elderly's pathology. 

Likely, CD26, also known as dipeptidyl-peptidase IV 

(DPP4), serve as host receptor to recognize highly related 

MERS-CoV coronavirus. Coincidently, CD26 highly 

expresses on senescent profibrotic myofibroblast cells. 

The upregulation of CD26 expression on senescent cells 

provides an excellent opportunity to bind the MERS-CoV 

spike and to produce large amounts of inflammatory 

cytokines as a result of the senescence-associated 

secretory phenotype (SASP), IL-6 and other 

inflammatory cytokines [7, 43-46]. 

 

3.3. Toll-like receptors and SARS-CoV-2 

 

Invading RNA virus particles are usually recognized by 

host innate Toll-like receptors (TLR) TLR 3, TLR7, 

TLR8, and TLR9, RIG-I, MDA5, and cGAS and trigger 

the series of the immune response in the respiratory 

mucosa. Followed by, Interferon Regulatory Factor 3 

(IRF3), Nuclear Factor-κB (NF-κB) are major 

transcription factor to produce the type I Interferons (IFN-

α /β) as well as a series of pro-inflammatory cytokines 

[47, 48]. Age-associated dysregulation of TLR expression 

and mediated signaling inflammatory shown to increased 

mortality of the elderly battling with the viral infection. 

Furthermore, the age-associated reduction of SARS-CoV-

virus specific CD8 T memory cells in elderly mouse lungs 

exacerbates lung pathology to SARS-CoV infection [49]. 

SARS-CoV-virus specific CD8 T memory cells are 

shown to protect against SARS-CoV infection, 

emphasizing the host’s adaptive immune response toward 

COVID-19 clearance. Interestingly, CD26 also expresses 

CD8 T cells and helps to recognize MERS-CoV viruses. 

The decline expression of CD26 in aging could precede 

the deficit numbers of antigen-specific CD8 T cells in 

aged mice infected with SARS-CoV in  the lungs [50]. 

 

3.4. Cytokine storm and SARS-CoV-2 

 

Overwhelming cytokine storm also reported to 

exacerbates high fever and low blood pressure incur to 

underlying health condition COVID-19 elderly patients 

and succumbed them with acute respiratory distress 

syndrome [51]. Plasma cytokines and chemokines, 

including IL-1b, IL-2, IL-4, IL-10, IL-12, IL-13, IL-17, 

MCSF, MCP-1, MIP-1α, TNF-α, and IFN-γ majorly 

found in the immunopathology of COVID-19 patients 

[31]. The early detection of plasma cytokines is 

challenging for COVID-19 patients as it takes a few days 

before a cytokine storm is detectable. Late detection of the 

high surge of plasma cytokines leads to severe tissue 

damage in the lungs. Senescent cells under the aging 

process tend to produce enhanced protein synthesis but 

also produces increased SASP inflammatory mediators, 

required for the onset of chronic inflammation as well as 

disease manifestation. The magnitude of senescence led 

to a high surge of IL6, IL1b, IFNγ, C-reactive protein, and 

TNFα is reported in several epidemiological studies to 

lower airway and lung injury and risk for in COVID-19 

elderly patients [4]. 

 

3.5. Autophagy and SARS-CoV-2 

 

On the other hand, autophagy is the conserved selective 

degradation process that removes damaged cellular 

components during viral infections, cellular stress, and 

aging processes. Interestingly, during evolution, each 

virus has developed its own unique strategies to hijack and 

subvert the autophagy processes to immune evasion and 

their replication [52, 53]. Such as, the Paramyxoviridae, 

Orthomyxoviridae, Togaviridae, and Herpesviridae virus 
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families are known to induce autophagy [54-63]. The 

studies shown the use of autophagy inhibitor, 

hydroxychloroquine for the inhibition of Zika virus 

transmission in pregnant mice which suggests the 

antiviral role of widely used drug in SARS-CoV-2 

infection [64]. MERS-CoV viral replication have been 

shown to decrease autophagy regulator Beclin1 (BECN1), 

and autophagy agonist leads an at least 28,000-fold 

decrease of MERS-CoV replication [65]. Besides, 

autophagy persuading drugs, rapamycin, statins, 

carbamazepine, and metformin is known to have antiviral 

activities [66]. Growing evidence explicit that autophagy 

is unlikely to play a role in the replication of beta 

coronaviruses, MHV, and SARS-CoV and autophagy acts 

as a cellular defense to modulating SARS-CoV-2 and 

ACE2 interactions. Interestingly, the decline in the 

autophagic process has been described in aging and aging-

associated diseases and raises concern if the decline in 

autophagy is involved in COVID-19 infection [53, 67-

71]. A detailed underlying mechanism elucidating the 

autophagy function during SARS-CoV-2 infection in the 

elderly remains unknown and warrant further research.  

 

4. Combat with COVID-19 infection with an 

underlying condition in aging  

 

Recent evidence suggests that COVID-19 infection 

opportunistically targets the senescent lung cells of 

advanced elderly peoples. Mechanistically, senescent 

cells have increased propensity for protein synthesis, 

which allows a succeeding environment for efficient viral 

particle production. Senolytics compounds are used to 

eliminate cellular senescence and remove senescent cells. 

Senolytics compound Resveratrol (3,5,4-trihydroxy-

trans-stilbene) found in grapes, increases the host’s 

autophagy induction by stimulating SIRT1 pathways in 

the cells [72, 73]. Additionally, Resveratrol function has 

been shown to alleviate several viral diseases. Tomatidine 

is another natural senolytics compound that exhibits 

antiviral properties for dengue virus serotypes and 

Chikangunya virus infection and shown to induce 

autophagy and alleviate lifespan in several organism 

model systems [74-76]. FDA approved autophagy agonist 

drugs like carbamazepine, rapamycin, statins, and 

metformin known to antiviral activities. Research 

purposes of these drugs and there potential impacts 

towards the SARS-CoV-2 infection have not been 

explored and warrant further investigation[77, 78].  

New vaccine research aims to produce antibodies to 

block virus SARS-CoV-2 spike protein S1 subdomain 

interaction with host ACE2 receptor, and ultimately stop 

virus replication. Although developing a SARS-CoV-2 

vaccine for older people is challenging, since the elderly 

historically do not respond as adequately to vaccines as a 

younger age group. Recent research has found several 

candidates for vaccines for SARS-CoV-2 in the animal 

models. However, an inadequate immune response 

coupled with a vaccine of low efficacy results in lung 

damage and high mortality of the animal [79-83]. 

Comprehensive research requires designing a compelling 

live or attenuated COVID-19 vaccine, and carefully look 

at whether they could provide long-term protection to 

COVID-19 infection in the elderly. Congruently, single 

transfusion of convalescent plasma obtained from 

recovering virus-infected patients gains recent attention to 

reduced pathology and mortality in SARS-CoV-2 

morbidity in recent clinical trials [84]. Transfusion of 

convalescent plasma has also shown promising effects of 

protection in previous outbreaks such as SARS-CoV, 

MERS, Ebola, H1N1, and H5N1 avian influenza viruses 

[85-89]. However, plasma transfusion contains technical 

challenges of 3.7% clotting, 1.5% of cases of blood access 

difficulties, and 1.5% allergic reactions have been found. 

Plasma transfusion in the elderly population is not 

commonly used[90]. However, along with experienced 

staff, it may be a safe and efficient method to improve the 

outcome of elderly patients of SARS-CoV-2 morbidity. 

Plasma transfusion in the elderly population is not 

commonly used[90]. However, along with experienced 

staff, it may be a safe and efficient method to improve the 

outcome of elderly patients of SARS-CoV-2 morbidity. 

High-throughput screening of new drug targets is 

recently emerging as the fastest way to find potential 

therapeutic molecules for the ongoing COVID-19 

pandemic. Bioinformatic analysis of existing genomic 

information, protein codes, and pathological databases is 

compared with other coronaviruses, such as SARS-CoV 

and MERS-CoV, to screen molecules that may have a 

therapeutic effect on coronavirus. These approaches will 

enable the prediction of a variety of compounds that may 

inhibit novel coronavirus and could provide scientists 

with information on compounds that may be effective. 

The off-target drug is a significant drawback in making a 

broad-spectrum target for SARS-CoV-2 infection, and 

their side effects should not be underestimated. 

Subsequent in vitro and in vivo validation requires the 

measurement of efficacy and the antiviral effects of the 

final compound in the clinical treatment of COVID-19 

infection. 

 

5. Conclusion 

 

Based on the recent frameworks, this review offers insight 

on a comprehensive overview of the COVID-19 

pandemic, as well as plausible therapeutics for elderly 

people battling a COVID-19 infection. Epidemiological 

data suggests massive mortality and co-morbidities found 

in frail older people with underlying health conditions 
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living in community-dwelling nursing homes assisted 

living facilities. The transmission of SARS-CoV-2 is 

more advanced than previous SARS-CoV and MERS-

CoV outbreaks. The viral pathogen has developed 

strategies during co-evolving with the host to subvert the 

host immune system. Thereby, a clear understanding of 

the SARS-CoV-2 receptor binding domain protein and 

their binding partner human ACE2 expression is required 

in finding an active target to block SARS-CoV-2 binding 

and their entrance in the cell. Our phylogenetic analysis 

data suggests the host ACE2 also evolved order, classes, 

and species-level along with viral spike protein. However, 

variable switching ACE2 expression in-particular to 

elderly persons need to understand better, which could be 

a limit factor for COVID-19 pathogenesis.  

Cellular senescence triggers a hyperimmune 

inflammatory response and causes high mortality in aging 

people. The dysregulation of the expression of toll-like 

receptors and impaired SARS-CoV-2 virus specific CD8 

T memory cell response leads to disease exacerbation in 

elderly mice. The high surge of IL6, IL1b, IFNγ, C-

reactive protein, and TNF-α senescence leads to lower 

airway and lung injury and increased risk for COVID-19 

in elderly patients. The early detection of plasma cytokine 

storm is challenging, and late detection of the high surge 

of plasma cytokines led to severe tissue damage in the 

lungs. Given senescent cells tends towards enhanced 

protein synthesis, increased SASP inflammatory 

mediators, which would make senescent cells an ideal 

host target for increase viral replication. Senolytics usage 

has been proposed and could be promising in the 

treatment of COVID-19. Autophagy, on the other hand, 

and other cellular mechanisms targeting viral infection 

and replication are controversial and finding a common 

mechanism for COVID-19 infection needs further efforts 

to elucidate. Apart from pharmaceutical agents, 

modulating autophagy is adequate in controlling viral 

infections, although further study is required for the 

access of an autophagy modulator in COVID-19 

infection. Neutralizing the ACE2 receptor, designing 

antibodies against ACE2 could better candidates for 

vaccination, although, a detailed clinical trial required for 

access to clinical outcome and side effects. 

Overall, the field of gerontology has been 

overwhelmed by COVID-19, and prominent therapeutics 

are long-awaited. Therefore, for future studies, the 

underlying mechanism of immune senescence should be 

considered for useful drug invention or protective 

vaccination in the elderly.  
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