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INTRODUCTION

Lung cancer is a malignant tumor with the highest 
morbidity and mortality rates worldwide [1] with a 
5-year survival rate of approximately 20% [2]. Lung 
adenocarcinoma accounts for nearly 40% of all lung cancer 
cases [3]. The early symptoms of lung adenocarcinoma 
are insidious, and most patients miss the opportunity 
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to undergo radical surgery at the time of consultation. 
Epidermal growth factor receptor (EGFR) mutations are the 
most common genetic mutations in lung adenocarcinoma 
[4]. Patients with EGFR mutations can be treated with 
targeted tyrosine kinase inhibitors (TKIs), such as afatinib 
and erlotinib [5]. Previous studies have shown that TKIs 
can prolong the disease-free and overall survivals of 
patients with EGFR mutations [6-8]. Exon 19 deletion (19 
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del) and exon 21 L858R missense (21 L858R) account 
for approximately 85%–90% of all EGFR mutational types 
[9], and afatinib or oxitinib is clinically preferred for 
patients with 19 del, whereas erlotinib, in conjunction with 
bevacizumab, is recommended for patients with 21 L858R. 
Therefore, it is vital to clarify whether lung adenocarcinoma 
is accompanied by EGFR mutations and their exact 
mutational subtypes before targeted therapy.

An analysis of tumor tissues acquired by biopsy or 
surgical excision is the gold standard for diagnosing EGFR 
mutations; however, these tests are invasive. Surgery 
for central lung adenocarcinoma is risky, and a risk of 
secondary puncture surgery exists owing to the presence of 
heterogeneous or necrotic tumor tissue. Moreover, the false-
negative rate of circulating tumor DNA for EGFR mutation 
detection is high, and the detection is expensive [10,11]. 
Therefore, a noninvasive and efficient diagnostic method is 
required. 

18F-fluorodeoxyglucose (18F-FDG) PET/CT has been widely 
used for the diagnosis and staging of cancers [12,13]. 
EGFR mutations activate multiple signaling pathways that 
indirectly affect the tumor glucose uptake [14]. Some 
researchers have reported that the maximum standardized 
uptake value (SUVmax) of EGFR-mutant tumors is lower 
than that of EGFR wild-type tumors (both p < 0.001) 
[15,16]; however, Caicedo et al. [17] suggested no 
statistical difference in the SUVmax between these two 
types (p = 0.742). This inconsistent result indicates 
that the metabolic parameters of PET/CT are not stable 
enough to predict the EGFR mutational status. With the 
rapid development of radiomics, many researchers have 
attempted to use it to discriminate the EGFR mutational 
status [18]. Based on PET/CT radiomics features, it is not 
only possible to quantify the characteristics and change 
patterns of pixel grayscale distribution but also to reveal 
the heterogeneity of 18F-FDG spatial distribution, thus 
reflecting the subtle differences between different tumors 
[19]. As previously reported, a diagnostic model based on 
PET/CT radiomics features can identify EGFR mutational 
status [20,21]; however, the reliance on radiomics alone 
is one-sided. Moreover, few studies have identified EGFR 
mutational subtypes using radiomics. Therefore, this study 
aimed to integrate PET/CT radiomics and clinical features 
to identify the EGFR mutational status in patients with 
lung adenocarcinoma. Additionally, to guide individualized 
treatment plans more precisely, we constructed a PET/CT 
radiomics model to distinguish between the 19 del and 21 

L858R EGFR mutational subtypes.

MATERIALS AND METHODS

Patients
This retrospective study was approved by the Ethics 

Committee of Shengjing Hospital of China Medical 
University (IRB No. 2021PS686K). Informed consent was 
obtained from all the patients. A total of 179 patients were 
enrolled between January 2015 and October 2021. The 
inclusion criteria were as follows: 1) no antitumor treatment 
before PET/CT examination, 2) EGFR genetic testing within 
one month before and after PET/CT examination, 3) lung 
adenocarcinoma confirmed by pathological examination, 
and 4) a single tumor lesion with a diameter greater than 
1 cm. The exclusion criteria were as follows: 1) combined 
with other malignant tumors (n = 3), and 2) unclear tumor 
boundaries (n = 17), hindering the accurate outlining of the 
region of interest (ROI). Among the 179 patients, 74 had 
the wild-type EGFR genotype and 105 had EGFR mutations 
(EGFR exon 18 mutations: n = 3; exon 19 del mutations: 
n = 46; exon 21 L858R mutations: n = 53; exon 21 L861Q 
mutations: n = 3). These patients were randomly divided 
into training (n = 125) and testing (n = 54) cohorts in a 
7:3 ratio (Fig. 1). The clinical characteristics of the patients 
were recorded. The SUVmax, mean standardized uptake 
value (SUVmean), and metabolic tumor volume (MTV) of 
the primary lesions were measured semi-automatically using 
the Advanced Workstation (AW, version 4.5, GE Healthcare), 
whereas the total lesion glycolysis (TLG) was calculated 
using a formula (TLG = SUVmean x MTV) [22].

EGFR Mutational Status 
Tumor tissue specimens were obtained via biopsy or 

surgical resection and tested using real-time fluorescence 
quantitative polymerase chain reaction. If accompanied by 
mutations in any EGFR exon 18–21, it was considered an 
EGFR mutation; otherwise, it was considered a wild-type 
EGFR.

FDG PET/CT Image Acquisition
Patients fasted for more than 6 hours before the 

examination and had a blood glucose level of < 11.10 
mmol/L. An intravenous injection of 18F-FDG (0.10–0.15 
mCi/kg) was administered, followed by approximately 1 
hour of rest. All patients were positioned supine on the GE 
Discovery Elite PET/CT couch and scanned from the cranial 
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vault to the mid-femoral level. The detailed scanning 
plan and parameters were as follows. A spiral CT scan was 
performed under 140 kV tube voltage, 180–240 mA automatic 
tube current, and 3.75 mm slice thickness. According to 
the patients’ height, PET images were acquired in 6–7 beds, 
and each bed position took 1.5 minutes. PET images were 
attenuated by CT data and reconstructed using a three-
dimensional ordered subset expectation-maximization 
algorithm.

Image Pre-Processing, ROI Segmentation, and Feature 
Extraction

Image pre-processing was completed using the Artificial 
Intelligence Kit (A.K, version 3.2.0, GE Healthcare), and 
followed the Image Biomarker Standardization Initiative 
guidelines [23]. The transverse thickness of CT images was 
resampled to 1 mm by using a linear interpolation algorithm 
as well as coronal and sagittal sections. The CT image 
normalization was accomplished by Gaussian filtering. Only 
image standardization was required for the pre-processing 
of PET images. After image pre-processing, the ROIs from 
the CT and PET images were separately segmented by two 
experienced nuclear medicine physicians using ITK-SNAP 

(version 3.8, http://www.itksnap.org/pmwiki/pmwiki.
php). They adopted a combination of manual and semi-
automatic (adaptive brush tool) methods to delineate 
the tumor boundaries layer by layer. Eventually, the ROI 
did not include calcifications, vacuoles, or normal lung 
tissue. Neither physician was aware of the patient’s EGFR 
mutations.

The radiomics features were automatically calculated and 
extracted with the utilization of A.K. The radiomics features 
of the original images included 18 first-order features, 14 
shape features, 24 gray level co-occurrence matrix features, 
14 gray level dependence matrix features, 16 gray level 
run-length matrix features, 16 gray level size zone matrix, 
and five neighboring gray tone difference matrix features. 
Subsequently, filters, including wavelet, local binary 
pattern, and Laplacian of Gaussian, were applied to the 
original PET and CT images to obtain more efficient features 
(except shape features). Finally, 1316 x 2 radiomics features 
were extracted from the PET and CT images.

Modeling for Identification of EGFR Mutations
Radiomics feature screening was performed using IPM 

statistics (IPMs, version 2.5.2, GE Healthcare). First, we 
adopted variance to select the 2632 PET/CT radiomics 
features (threshold: 1.0). Further, 1070 radiomics 
features were retained. However, some of them had a 
strong linear relationship with each other. Hence, the 
correlation selection method (Correlation_xx) was utilized 
to remove features with correlations greater than 0.7 
between independent variables, and 176 radiomics features 
remained. Subsequently, optimal feature subset selection 
was performed using univariable logistic regression analysis 
(p < 0.050) and multivariable logistic regression analysis 
(p-in < 0.050, p-out > 0.100) using a stepwise selection 
method. A radiomics model score (rad-score) was built 
based on the optimal feature subsets, and the PET/CT 
radiomics model, whose parameters were determined by 
a 5-fold cross-validation method, was constructed using 
logistic regression. Receiver operating characteristic (ROC) 
curve analysis was performed to determine the performance 
of the PET/CT radiomics model in the training and testing 
cohorts. Similarly, we established CT and PET radiomics 
models.

To integrate PET/CT radiomics and clinical features, we 
constructed a combined diagnostic model based on the rad-
score with the addition of sex, smoking history, and tumor 
diameter using a multivariable logistic regression model. 

Patients with lung adenocarcinoma on PET/CT 
from January 2015 to October 2021 (single lung lesion)

Combined with other 
  tumors (n = 3)
Unclear tumor boundaries 
  (n = 17)

Lung adenocarcinoma (n = 179)
  - EGFR wide-type (n = 74)
  - EGFR mutant (n = 105)

Training cohort 
(n = 125)

Combined clinical and 
PET/CT radiomics model 

for indentification 
of EGFR mutations

PET/CT radiomics model 
for distinguishing 

EGFR mutation subtypes

19 del (n = 46); 
21 L858R (n = 53)

Training cohort 
(n = 69)

Testing cohort 
(n = 30)

Testing cohort 
(n = 54)

Elimination

7:3

7:3

Fig. 1. The flowchart of the study participants. EGFR = epidermal 
growth factor receptor, 19 del = 19 deletion, 21 L858R = 21 L858R 
missense

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
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Moreover, a clinical diagnosis model was built based on the 
tumor diameter, sex, and smoking history.

Modeling to Differentiate EGFR Mutational Subtypes
There were 46 patients with 19 del mutations and 53 

with 21 L858R mutations. The patients were divided into 
training and testing cohorts (69:30). The optimal radiomics 
feature subsets of PET/CT were screened using Pearson’s 
correlation analysis (cutoff: 0.7) and univariable analysis 
(p < 0.050). A PET/CT radiomics model for discriminating 
EGFR mutational subtypes was constructed on the subsets, 
and the performance of the model was assessed using ROC 
curve analyses.

Statistical Analysis
All statistical analyses were performed using IPMs or SPSS 

25.0 (IBM Corp.). Independent sample t tests or Mann–
Whitney U tests were used for continuous variables, and 
categorical variables were tested using the χ2 or Fisher exact 
probability method. The Delong test was used to assess 
the statistical differences in the area under the ROC curve 
(AUROC) of the models. A two-tailed test with p < 0.050 
was considered statistically significant.

RESULTS

Characteristics of the Patients
Table 1 shows the characteristics of the 179 patients. 

Smoking history was significantly different between 
those with EGFR wild-type and EGFR mutations in both 
the training (p = 0.001) and testing cohorts (p < 0.001), 
whereas there were no statistical differences in terms of 
age, SUVmax, or SUVmean between EGFR mutation and EGFR 
wild-type (all p > 0.050). Female were more likely to have 
EGFR mutations in the training cohort (p = 0.001), while 
in the testing cohort, the difference was not statistically 
significant (p = 0.074). Compared to those of the wild-type, 
the MTV and TLG of the EGFR mutation were lower; however, 
the differences were not statistically significant in the 
training cohort (p = 0.056 and p = 0.051, respectively). 

Feature Selection in the PET/CT, PET, and CT Radiomics 
Models

The optimal feature subsets for the PET/CT radiomics 
model contained four CT and two PET radiomics features 
(Supplementary Table 1). The rad-score was calculated 
based on these six features using the following formula: rad-
score = 0.55745595 - 0.56643332 x CT-HHL + 1.17316734 x 
CT-glszm - 1.04555703 x CT-lbp - 0.80138451 x PET-HHH - 
0.90487447 x CT-LLH + 0.53307567 x PET-lbp. As shown in 
Figure 2, the rad-scores were significantly different between 
EGFR mutation and wild-type EGFR in both the training and 
testing cohorts (both p < 0.001). Meanwhile, the CT-glszm 
of the EGFR mutation was significantly higher than that of 
the wild-type EGFR (0.35 [0.30, 0.43] vs. 0.30 [0.26, 0.37], 
p = 0.001, Supplementary Table 1). In addition, the PET 

Table 1. Patient Characteristics

Characteristics 
Training Cohort (n = 125)

P
Testing Cohort (n = 54)

PEGFR Wild-Type 
(n = 52)

EGFR Mutant
(n = 73)

EGFR Wild-Type
(n = 22)

EGFR Mutant
(n = 32)

Age, year 59.00 (53.45, 64.00) 60.00 (53.00, 66.30) 0.606 60.05 ± 8.05 62.97 ± 8.81 0.220
Sex < 0.001 0.074

Male 35 26   9   6
Female 17 47 13 26

Smoking history 0.001 < 0.001
Never 24 55   8 27
Ever or current 28 18 14   5

Diameter, cm 3.30 (2.40, 4.50) 3.00 (1.97, 3.90) 0.080 3.65 (2.10, 4.71) 2.25 (1.84, 2.81) 0.033
SUVmax 12.18 (9.73, 15.01) 11.01 (7.88, 15.46) 0.136 13.86 (9.31, 17.54) 10.95 (5.98, 13.22) 0.065
SUVmean 7.39 (5.77, 9.13) 6.70 (4.73, 9.37) 0.217 8.72 (5.69, 10.71) 6.48 (3.61, 8.02) 0.098
MTV 8.68 (4.57, 20.53) 5.87 (2.33, 12.35) 0.056 7.98 (3.88, 17.97) 3.06 (1.75, 7.30) 0.023
TLG 59.73 (31.45, 158.02) 43.50 (11.95, 108.24) 0.051 86.48 (16.92, 164.40) 21.02 (8.27, 53.33) 0.027
Rad-score -1.05 ± 1.98 1.70 ± 1.83 < 0.001 -0.88 ± 2.27 1.79 ± 2.25 < 0.001

Data are median (interquartile range) or mean ± standard deviation for continuous variables and patient numbers for categorical 
variables. EGFR = epidermal growth factor receptor, MTV = metabolic tumor volume, Rad-score = radiomics score, SUVmax = maximum 
standardized uptake value, SUVmean = mean standardized uptake value, TLG = total lesion glycolysis
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model was based on two PET radiomics features, and the CT 
model was established using three CT radiomics features. 

Model Performance in Identifying EGFR Mutations
As presented in Table 2, the AUROCs of the PET/CT 

radiomics model were higher than those of the PET and CT 
radiomics models in both the training and testing cohorts, 
albeit mostly without statistical significance (vs. PET, p = 
0.019 and p = 0.356, respectively) (vs. CT, p = 0.109, p = 
0.797, respectively). The AUROC of PET/CT radiomics for 
diagnosing the EGFR mutational status was 0.853 in the 
training cohort, with an accuracy rate of 78.4%. In the 
testing cohort, these were 0.804 and 74.1%, respectively. 

The performance of the clinical diagnostic model was 
moderate, with AUROCs of 0.746 and 0.737 for the training 
and testing cohorts, respectively. When PET/CT radiomics 
and clinical features were integrated, the combined model 
(Logit(p) = -1.1422 + 1.1439 x rad-score + 0.1707 x tumor 
diameter + 1.3331 × sex - 0.5200 x smoking history) 
showed a higher AUROC than that of the PET/CT radiomics 
model (Fig. 3), albeit without statistical significance (p = 
0.145 and p = 0.182 for the training and testing cohorts, 
respectively). With the combined model, the accuracy in 
the training cohort increased to 81.6% and the sensitivity 
in the training and testing cohorts increased to 90.4% and 
78.1%, respectively. 

Model Performance in Distinguishing EGFR Mutational 
Subtypes

As shown in Table 3, there were no significant differences 
in sex, smoking history, tumor diameter, SUVmax, SUVmean, 
MTV, or TLG between the 19 del and 21 L858R cohorts (all 
p > 0.050). The EGFR mutational subtype identification 
model was based on the four PET/CT radiomic features. The 
AUROCs of the training and testing cohorts were 0.708 and 
0.652, respectively, and their accuracies were 66.7% and 
56.7%, respectively (Fig. 4).

DISCUSSION

Targeted therapy benefits tumor patients [24,25]. With 
regard to lung adenocarcinoma, EGFR-TKIs can prolong the 
survival of patients with EGFR mutations, whereas patients 

Fig. 2. Distribution of rad-scores.
A. Box plot of rad-score in the training cohort. B. Box plot of rad-score in the testing cohort. EGFR = epidermal growth factor receptor, rad-score = 
radiomics score
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Table 2. The Diagnostic Performance of Each Model in 
Identifying EGFR Mutations

Model AUROC (95% CI) Accuracy Sensitivity Specificity
Training cohort

Clinical 0.746 (0.672, 0.82) 0.72 0.753 0.673
CT 0.781 (0.711, 0.848) 0.76 0.849 0.635
PET 0.72 (0.643, 0.793) 0.672 0.589 0.788
PET/CT 0.853 (0.794, 0.905) 0.784 0.767 0.808
Combined 0.882 (0.829, 0.927) 0.816 0.904 0.692

Testing cohort
Clinical 0.737 (0.618, 0.844) 0.667 0.781 0.5
CT 0.78 (0.669, 0.882) 0.722 0.812 0.591
PET 0.717 (0.596, 0.835) 0.685 0.594 0.818
PET/CT 0.804 (0.699, 0.898) 0.741 0.719 0.773
Combined 0.837 (0.746, 0.918) 0.741 0.781 0.682

Accuracy, sensitivity, and specificity are obtained to give the 
larges Youden index value. AUROC = area under the ROC curve,  
CI = confidence interval
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with wild-type EGFR do not benefit significantly. Studies 
have reported more than 200 types of EGFR mutations, the 
most prominent of which are 19 del and 21 L858R [26], and 
the outcome of targeted therapy differs between the two 
types [27,28]. For more precise individualized treatment, 
it is necessary to identify whether a lung adenocarcinoma 
patient has an EGFR mutation as well as the specific 
subtype of the mutation.

Some researchers have reported that the SUVmax of EGFR 
mutations is significantly lower than that of the wild-type 
[29]. However, no statistical difference in the SUVmax 

was observed between EGFR mutations and wild-type 
EGFR in our study; the same was found for MTV and TLG 
in the training cohort (all p > 0.050), which is consistent 
with the findings of Chung [30]. Furthermore, Kanmaz et 
al. [31] suggested that tumors with higher SUVmax were 
more likely to have EGFR mutations. This discrepancy 
might have been caused by the sample characteristics, as 
only adenocarcinoma patients were enrolled in our study. 
Furthermore, the selection and measurement method for 
the ROI also have a certain impact. In summary, PET/CT 
metabolic parameters may be ineffective for diagnosing the 

Fig. 3. ROC curves for the PET/CT radiomics (red) and the combined model (blue) for predicting epidermal growth factor receptor 
mutation in lung adenocarcinoma.
A. ROC curve of the training cohort (AUROC: 0.853 vs. 0.882, p = 0.145). B. ROC curve of the testing cohort (AUROC: 0.804 vs. 0.837, p = 0.182). 
AUROC = area under the ROC curve, ROC = receiver operating characteristic
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Table 3. Characteristics of 19 del and 21 L858R Subsample

Characteristics 
Training Cohort (n = 69)

P
Testing Cohort (n = 30)

P
19 del (n = 32) 21 L858R (n = 37) 19 del (n = 14) 21 L858R (n = 16)

Age, year 59.09 ± 9.47 62.97 ± 9.02 0.086 60.00 ± 11.31 60.44 ± 6.46 0.896
Sex 0.497 0.442

Male   8 12 6   4
Female 24 25 8 12

Smoking history 0.980 0.072
Never 25 29 9 15
Ever or current   7   8 5   1

Diameter, cm 3.00 (1.99, 3.67) 2.60 (1.97, 4.06) 0.764 2.65 (1.80, 3.21) 2.30 (1.65, 3.10) 0.442
SUVmax 11.06 (7.82, 13.33) 11.45 (7.65, 14.27) 0.773 11.73 ± 6.38 9.44 ± 4.48 0.272
SUVmean 6.70 (4.59, 8.09) 7.17 (4.73, 8.92) 0.764 7.27 ± 4.09 5.64 ± 2.59 0.212
MTV 5.28 (2.56, 10.57) 5.17 (1.87, 12.52) 0.691 4.89 (2.63, 10.89) 3.30 (1.69, 6.92) 0.360
TLG 30.75 (14.18, 94.79) 37.78 (9.23, 91.02) 0.718 29.21 (13.55, 80.90) 13.22 (7.78, 46.19) 0.280

Data are mean ± standard deviation or median (interquartile range) for continuous variables and patient numbers for categorical 
variables. MTV = metabolic tumor volume, SUVmax = maximum standardized uptake value, SUVmean = mean standardized uptake value, 
TLG = total lesion glycolysis, 19 del = 19 deletion, 21 L858R = 21 L858R missense



927

PET/CT Radiomics in Lung Adenocarcinoma

https://doi.org/10.3348/kjr.2022.0295kjronline.org

EGFR mutation status. Therefore, we attempted to construct 
diagnostic models based on PET/CT radiomic features.

The radiomic features of PET/CT can reflect the 
distribution characteristics of the tumor pixel grayscale 
and reveal the heterogeneity of the spatial distribution of 
18F-FDG within the tumor [32]. In our study, the rad-score 
was constructed based on the six PET/CT radiomics features. 
Patients with EGFR wild-type had lower rad-score than those 
with EGFR mutations in the training and testing cohorts (both 
p < 0.001), which agrees with two other studies [33,34]. 
Therefore, the rad-score was feasible as a predictor of EGFR 
mutational status. Furthermore, we found that the CT-glszm 
of EGFR-mutant tumors was higher (p = 0.001), indicating 
a higher heterogeneity between regional size volumes in 
images. Zhang et al. [34] also reported that tumors with 
EGFR mutations were more heterogeneous. Furthermore, 
comparing the three radiomics models, the PET/CT 
radiomics model might have been the best, with AUROCs 
and accuracies of 0.853 and 0.804, and 78.4% and 74.1% 
in the training and testing cohorts, respectively, although 
further confirmation in a larger sample is needed. This was 
consistent with the results reported by Li et al. [20]. 

The identification of EGFR mutation status using radiomics 
features alone is one-sided. A previous study showed that 
female and non-smokers were more likely to have EGFR 
mutations [35], which is consistent with our results. 
Moreover, Chang et al. [36] stated that tumors with EGFR 
mutations were shorter and smaller than those with wild-
type EGFR. Therefore, we constructed a combined model by 

incorporating the rad-score, sex, smoking history, and tumor 
diameter. Although there was no statistical difference in the 
AUROCs between the combined and PET/CT radiomics model 
in both the training and testing cohorts (0.853 vs. 0.882, 
p = 0.145; 0.804 vs. 0.837, p = 0.182, respectively). The 
sensitivity of the training and testing cohorts increased to 
90.4% and 78.1%, respectively, and the accuracy improved 
to 81.6% in the training cohort. Zhang et al. [33] also 
proved that the combined model was superior to the PET/CT 
radiomics model; the AUROC and accuracy of the combined 
model were 0.86 and 80.0% in the training cohort, and 0.87 
and 80.8% in the testing cohort, respectively. In another 
study, Chang et al. [36] demonstrated that an integrated 
model based on PET/CT radiomics and CT morphological 
features was better than the PET/CT radiomics model 
(AUROC, 0.84 vs. 0.76; AUROC, 0.81 vs. 0.75, respectively). 
However, the identification of morphological features relies 
on the subjective experience of physicians, which is time 
consuming and less reproducible. Therefore, we believe 
that it is feasible and reproducible to identify the EGFR 
mutational status by combining PET/CT radiomics and 
clinical features.

The preferred targeting agents for patients with 
19 del and 21 L858R mutations differ, in addition to 
their therapeutic efficacy [37]. We found no statistical 
differences in sex, smoking history, tumor diameter, 
SUVmax, SUVmean, MTV, and TLG (all p > 0.050) between 
the 19 del and 21 L858R cohorts, which is consistent with 
the results of Liu et al. [38]. Therefore, distinguish between 

Fig. 4. ROC curves for the PET/CT radiomics model for distinguishing epidermal growth factor receptor mutation subtypes.
A. ROC curve of the training cohort (AUROC: 0.708). B. ROC curve of the testing cohort (AUROC: 0.652). AUROC = area under the ROC curve,  
ROC = receiver operating characteristic
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these two subtypes may be difficult using metabolic or 
clinical parameters. Liu et al. [38] constructed models 
based on PET/CT radiomics features to identify wild-type 
EGFR and 19 del (AUROC, 0.77), and wild-type EGFR and 
21 L858R (AUROC, 0.92). However, the authors did not 
directly compare any difference in PET/CT radiomic features 
between the two subtypes. Zhang et al. [34] attempted 
to distinguish 19 del and 21 L858R directly using PET/
CT radiomics features, and the data showed that only one 
feature could be identified with an AUROC and an accuracy 
of 0.661 and 43.1%, respectively. In our study, we built 
an EGFR mutational subtype identification model based on 
PET/CT radiomics with an AUROC and accuracy of 0.708 and 
66.7% in the training cohort and 0.652 and 56.7% in the 
testing cohort, respectively. The performance of the model 
was poor, implying that it may be difficult to distinguish 
mutant subtypes directly using PET/CT radiomics. However, 
the sample size in this study was small, making it difficult 
to evaluate the usefulness of PET/CT radiomics.

Our study had some limitations. First, in the manual and 
semi-automatic outlining approaches artificial mistakes 
are difficult to avoid and are less repeatable compared to 
fully automatic outlining. Second, external data validation 
was not performed. Finally, the sample size was small, and 
a multicenter study with a large sample size is required to 
further investigate the stability and usefulness of the joint 
model.

In conclusion, the combined clinical and PET/CT radiomics 
model constructed by integrating radiomics and clinical 
features could identify the EGFR mutational status in lung 
adenocarcinoma with moderate accuracy, which may help 
non-invasively screen high-risk groups for EGFR mutations 
in clinical practice. However, it is more challenging to 
further distinguish EGFR mutational subtypes using PET/CT 
radiomics.
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