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ABSTRACT: Surface of polyhydroxyalkanoate (PHA) films of
varying monomer compositions are analyzed using atomic force
microscopy (AFM) and unsupervised machine learning (ML)
algorithms to investigate and classify films based on global attributes
such as the scan size, film thickness, and monomer type. The
experiment provides benchmarked results for 12 of the most widely
used clustering algorithms via a hybrid investigation approach while
highlighting the impact of using the Fourier transform (FT) on high-
dimensional vectorized data for classification on various pools of
data. Our findings indicate that the use of a one-dimensional (1D)
FT of vectorized data produces the most accurate outcome. The
experiment also provides insights into case-by-case investigations of
algorithm performances and the impact of various data pools. Lastly,
we show an early version of our tool aimed at investigating surfaces using ML approaches and discuss the results of our current
experiment to configure future improvements.

■ INTRODUCTION
Polymers have a multitude of uses in the modern era. From
prosthetics to drug delivery systems and from general-purpose
applications to industrial-grade equipment, they are used in
many sectors that serve to improve human life. Polymer
compounds are principally differentiated by their chemical and
structural composition while commonly being grouped as
thermoplastics, elastomers, and thermosets, with each group
having its dedicated uses.1 Thermoplastics can be termed the
most widely used group of polymers that have been integrated
into daily life. Biron2 elaborates on the practical benefits and
economic aspects of using thermoplastics in a wide range of
applications.
The discovery of polyhydroxyalkanoates (PHAs), microbial

polymers that are thermoplastic, biodegradable, and biocompat-
ible, marked a significant milestone in the development of novel
materials.3−5 PHAs possess remarkable qualities such as
resistance to ultraviolet (UV) radiation, stability in liquid
environments, and versatility in processing techniques, includ-
ing solution, emulsion, powder, and melt methods.6 PHAs hold
the greatest promise for developing biomedical products and
devices, including nonwoven and disposable products, sutures
and wound dressings, controlled drug delivery systems, scaffolds
for tissue engineering, and components for reconstructive
surgery and implantation.7,8 They offer immense potential for
regenerating damaged skin, repairing defects in soft tissues, bone

engineering, and cardiovascular applications including con-
structing blood vessels and heart valves.9

When aiming to use PHA polymers for distinct applications,
researchers need to go beyond the chemical structure to analyze
other descriptive characteristics such as physical, mechanical,
surface, and electrical properties, etc. Each attribute has a
specific relevance to the final application. Poly-3-hydroxybuty-
rate (P3HB) and its copolymer, poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) (P3HB-co-3HV), are garnering attention in
biomaterials for their biocompatibility, with applications in
medicine and agriculture for eco-friendly mulches and fertilizers.
In manufacturing, they offer alternatives to conventional
plastics, supporting sustainability by reducing plastic waste
and pollution, especially in packaging and three-dimensional
(3D) printing.
P3HB is a homopolymer known for its high biocompatibility,

attributed to the natural occurrence of hydroxybutyric acid in
cells and tissues of higher animals and humans.10 However, its
utility is limited by its high degree of crystallinity, resulting in
rigid products prone to physical aging.11 To overcome these
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limitations, researchers have explored copolymers such as
P3HB-co-3HV. This copolymer introduces 3HV monomer
units alongside 3HB, offering improved properties such as
reduced crystallinity, increased flexibility, and enhanced impact
strength without a marked decrease in biocompatibility.11−13

Atomic force microscopy (AFM) has played a crucial role as a
tool to investigate surfaces at the micro- and nanoscales.14 The
AFM produces high-resolution images of the scanned surface as
a collection of height measurements over a selected area. When
employed to investigate polymer surfaces, the scanning of
surfaces is performed only after the chemical compound is
synthesized into films, i.e., the chemical properties of the
compounds are usually already known to the researcher by the
time of scanning. Nevertheless, when investigating finer details
or comparing with other compounds, the amount of time and
data demanded by traditional techniques and supervised
algorithms is huge. Hence, by employing unsupervised machine
learning (ML) algorithms, we can explore and investigate
surfaces to obtain standardized results as well as insights that
may not be obtained by traditional approaches. In many cases,
traditional approaches require meticulous iterations of analysis
to identify a unique behavior, while unsupervised approaches
can highlight specific behaviors with better efficiency and
effectiveness.15

AFM has been a crucial tool that has aided researchers in
analyzing the surface and morphological properties of polymers
without the need to perform in-the-field experiments to

understand the details of the polymer’s physical properties.
AFM allows users to image surfaces down to 10−9 m (1 nm)
resolution, which provides precise information about the surface
texture itself. Using this data, more information can be extracted
that can improve understanding of the descriptive properties of
the polymer, such as Young’s modulus, surface roughness,
etc.16,17 Thus, Zhukov et al.18 analyzed atomic force microscopy
scans of brass samples to study surface properties and have
followed up with this approach to analyze the roughness of
polyelectrolyte samples using machine learning methods to
define possible correlations between surface roughness with the
number of layers of polyelectrolytes.19 A handful of related
works describe the usage of ML and deep learning in various
scenarios,20 including several exemplar applications of using
image analysis in combination with advanced computing
methodologies to generate results. For example, Bolshakova et
al.21 described the basis of using AFM as a tool to explore the
properties of bacterial surfaces, while Aldritt et al.22 used AFM to
discover the organic structure of camphor molecules via a deep
learning approach. Several works report analysis during and after
the scanning process18,19,21−25 that focus on investigating
specific compounds using selective methods. When investigat-
ing surfaces, minor changes to the chemical composition can
lead to significantly different outcomes of the sample’s surface
characteristics, therefore altering properties such as friction,
adhesion, biocompatibility, etc.26−29

Figure 1. Schematic of the benchmarking experiment: (a) synthesis of PHA films, (b) generation of surface scans using AFM, (c) processing and
vectorization of scanned data for algorithms, (d) classification of data using clustering algorithms and validation of results using the hybrid approach,
(e) generation of performance statistics and metrics from results generated via the algorithm setup, and (f) visualization and extraction of
benchmarking results.
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In the present work, we will compare the results of using
unsupervised ML algorithms to characterize multicomponent
PHA films using data acquired from AFM because the
biocompatibility of this class of biopolymers depends on certain
monomer inclusions and surface properties. We will classify
images of scanned surfaces for their properties, such as the scan
area, film thickness, and monomer type. We will compare the
benchmarked performance of clustering algorithms when
surface data are used for classification and evaluate the results
using our own hybrid approach. The paper is divided as follows:
Experimental Section consists of the methodology and
implementation of our benchmarking setup. Results Section
dives into the obtained results after classification. Discussion
Section is the conclusion and outline of future work.

■ EXPERIMENTAL SECTION
The workflow of this study is outlined in Figure 1. This section
elaborates on the procedure of synthesizing PHA films and the
setup to acquire surface scans via atomic force microscopy. It is
followed by a description of postprocessing operations to
prepare the data for benchmarking.
Polymer Film Production and AFMOperation.We used

PHA films in our experiment. PHA is a biodegradable polymer
derived from Cupriavidus necator B-10646 strain.30 This
microorganism was employed for synthesizing PHA polymers
in high yields, through which the resulting composition of
homopolymers, namely, P3HB [100%] and copolymers poly-3-
hydroxybutyrate and poly-3-hydroxyvalearte (P3HB-co-3HV
[90:10%]), was obtained. The culture medium and cultivation
conditions for synthesizing PHA copolymers were meticulously
controlled. Glucose served as the main carbon source in the
Schlegel medium,34 supplemented with precursors such as 1,4-
butanediol and salts of valeric acids. These precursor substrates
were added incrementally to mitigate their toxic effects on the
cell culture. The pH of the medium was maintained between 7.0
and 7.2, and cells were grown in the batch culture mode.
Inoculum preparation involved resuspending the stock culture
grown in mineral solution, with glucose concentrations ranging
from 5 to 10 g/L.31 Cell growth occurred in two distinct phases:
Phase 1 involved growth in the Schlegel medium with a limited
nitrogen supply, followed by Phase 2 in a nitrogen-free medium
for the same duration to activate the polymer accumulation
process. Cultivation parameters were optimized based on the
physiological effects of precursor substrates and their concen-
trations on cell growth and PHA yield. The bacterial culture
synthesis of PHA copolymers operated as a multifactorial
system, with excess carbon source, limited nitrogen supply, and
controlled concentrations of toxic precursor substrates.32

PHA recovery from the cell biomass involved a two-stage
process. First, lipids and fatty acids were removed by using
ethanol, followed by polymer extraction with dichloromethane.
The extracted polymer was then precipitated with hexane, and
its content was determined by using gas chromatography.
Further purification steps included redissolving the polymer in
chloroform and precipitating it with isopropanol or hexane
before drying at 40 °C.
The chemical composition of PHA was determined by

chromatography of the methyl esters of fatty acids after the
methanolysis of cell biomass. Similarly, the purity and
composition of the polymer were analyzed by chromatography
of methyl esters of fatty acids after the methanolysis of purified
polymer samples. Methanolysis involved boiling the polymer
sample with chloroform, methanol, and concentrated sulfuric

acid under reflux condensers for 160min, followed by analysis of
the chloroform layer.33

The set of solutions was prepared and filtered and then
poured onto Petri dishes ensuring consistent distribution, after
which they were left undisturbed in controlled settings for
solvent evaporation, therefore creating films of varying
thicknesses corresponding to the initial polymer concentrations.
The thicknesses of each film are measured using a digital
micrometer (Legioner EDM-25-0.001) and their respective
measurements are presented in Table S1.
Imaging of the PHA films was performed using the NT-MDT

AFM. The scanning of films was conducted in semicontact
mode, which allows for high-resolution imaging while
minimizing potential damage to the sample surface. The
instrument was set to a high-signal-height mode to ensure
accurate measurements and operated at a resolution of 512
pixels per image side to capture intricate surface details. Before
scanning, the AFM probe was calibrated to guarantee precise
and reliable results, and the scanning process was carried out at a
controlled room temperature to mitigate environmental effects
on the measurements. The raw scanned data was processed
using the Gwyddion toolkit,35 where four correction operations
were carried out to enhance the overall quality and eliminate
possible errors on the surface. The operations were performed
on all scanned samples and are as following.

1. Plane leveling: This operation performs uniform leveling
of the scanned image by subtracting a collectively
calculated plane from the image. It is aimed at fixing the
degree of curvature that occurs during the scanning
process.

2. Face leveling: An enhanced version of plane leveling that
performs uniform leveling of the surface to obtain the best
possible horizontal plane when there are large objects
present on the surface. Themain difference between plane
leveling and face leveling is the sensitivity to height
differences. Face leveling is not suitable when applied to
images that have noise, random artifacts, or height
differences of many magnitude orders within the same
space.

3. Alignment of Rows: The operation minimizes line
differences (i.e., remaining horizontal lines after plane
correction) based on a function that gives more weight to
flat areas than areas with large slopes, thereby making the
surface uniform without horizontal lines.

4. Removal of Scars: This operation fixes line defects
occurring due to scanning and scratching from the
cantilever. The scratches are removed by compensating
for the gaps with neighboring lines, thereby providing a
clear and uniform surface.

Upon the completion of preprocessing, the data was exported
to the dimensions of 512× 512 where each point corresponds to
the height data of the sample. The next stage involves the
transformation of the data into a vector form and performing
one-dimensional and two-dimensional Fourier transformations
specific to each case of clustering.
Implementation.We studied 52 AFM scan samples of both

P3HB and P3HB-co-3HV polymers, respectively (a total of 104
scan samples). These polymers were scanned at a resolution of
512 × 512 pixels (length × width) in scan dimensions of 5 μm ×
5 μm, 10 μm × 10 μm, and 30 μm × 30 μm. After processing
with the Gwyddion toolkit, the scans were exported in.txt format
and further used within our benchmarking experiment for
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simulations. Figure 2 shows the basic flow of the data
vectorization. To validate and verify the results of our
experiments, we have implemented a hybrid analysis approach
that utilizes prior knowledge of the scans and their respective
properties (i.e., type of polymer, size of scan, etc.) as a reference
to validate the generated results. From a total of 104 AFM scans,
our data is factually classified based on the following.

• Two polymers (P3HB and P3HB-CO-3HV)�implying
two clusters.

• Three sizes of scans (5, 10, and 30 μm)�implying three
clusters.

• Six thicknesses of films�implying six clusters.
Our toolkit MicroClust1 is aimed at aiding researchers in

analyzing small-scale surfaces by extracting and investigating
possible relations existing within the data usingmachine learning
algorithms. In the current release of our toolkit, we have created
a criterion that requires all preprocessed AFM scan data to have
homogeneous dimensions (i.e., length and width must be the
same for all input samples). Upon fulfillment of this condition,
the transformation and clustering operations commence.
Transformation of the processed data is the first operation
performed within the toolkit, where the data is restructured into
a single vector such that it can be accepted into the clustering
algorithms as single entities (i.e., vector form rather than 2D data
types). In future versions of our toolkit, we plan to extend and
modify this approach by allowing resizing of scans and usage of
heterogeneous scan data for classification. There are three
transformations of data that we have performed:

1. Vectorized data (VD),
2. One-dimensional discrete fast Fourier transform of
Vectorized Data (1D-FFT),

3. Two-dimensional discrete fast Fourier transform of
Vectorized Data (2D-FFT).

The data acquired after processing via Gwyddion is
reformatted into a vector array by concatenating each row of
scan data consecutively after the other in the dimension of the
scan size (i.e., for scan data with dimensions 512 × 512, the
resulting vector will be the product of the length of the rows and
columns; therefore, 262,144 is the length of the vector). Within
our work, the transformed data without any modifications are

termed Vectorized Data (VD). For the one-dimensional fast
Fourier transform (1D-FFT), we extract height values from the
Vectorized Data (VD) in the orientations of rows and columns
individually. Fourier transform and logarithmic conversion are
applied individually for either vector of data. The two-
dimensional fast Fourier transform (2D-FFT) follows a different
approach in which the transform of VD is directly applied to the
source scan data. After this, the transformed data is extracted in
the same format as VD and 1D-FFT. We have addressed the
rationale of using the Fourier transform and the observations of
using data in the orientation of rows and columns in the
Discussion and Results Sections, respectively. The data acquired
after transformations are fed as input for the clustering
algorithms.
We chose Python as the primary platform to implement our

toolkit and perform benchmarking of clustering algorithms. The
clustering environment used in our tool is constructed using the
Scikit-learn library.36 We have implemented 12 of the most
widely used clustering algorithms, and we use common metrics
that match our application.37,38 Despite the unsupervised
learning nature of the algorithms, a handful of them still require
partial tuning to achieve relevant results as per the application
(i.e., they require parameters and boundary conditions to be
provided by the user to produce meaningful results, e.g.,
minimum distance between clusters and centroid distances). As
this work aims to showcase the benchmarked performance
statistics of the algorithms, we have explicitly tuned the
clustering algorithms to obtain a maximally broad insight
without redundancies in its design approaches. However, in
future versions of our tool, we aim to produce clustering results
without the need for user input by introducing investigative
architectures that explore the input data and metrics to find
feasible explanations for the results. Following are the algorithms
that have been used in this experiment and descriptions of their
working principle.

1. K-means algorithm39 clusters elements based on calculat-
ing the distance from each data point to the centroid and
assigning it to a cluster based on the respective distance. It
is one of the most widely used algorithms in the field for
various applications. It is crucial to observe its perform-

Figure 2. Schematic describing transformation of AFM scans into vectors for classification (i.e., Vectorized Data (VD)): (a) processed AFM scan
surface, (b) numeric representation of the AFM scan describing each height point, and (c) transformed height data to be fed to the clustering
algorithms.
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ance in situations where the data points might not have
convex cluster shapes. K-means algorithm is differentiated
by its approach to clustering where cluster centers in the
algorithm are randomly assigned and then converge to the
local minima, thereby generating the results: this makes
the final results dependent on the initialization of the
centroids.

2. K-means++ algorithm40 works on the same principle of K-
means and is an extension where it improves the selection
of centroids by using a calculated approach for the
selection of cluster centers. It follows the greedy approach
by selecting the initial cluster centroids based on the
probability distribution of the points that contribute to
the overall inertia. Hence, this algorithm takes more trials
to identify the best centroid over random selection unlike
in K-means.

3. Bisect K-means algorithm41 is another variant of K-means
that works by selecting centroids based on progressive
steps resulting from previously identified clusters. It uses a
top-down approach where a huge cluster is split into
smaller clusters and iterates until the target number of
clusters is reached. We performed our experiments using
the “biggest inertia” method that creates clusters based on
similar cluster sizes.

4. Hierarchy algorithm36 works by grouping elements using
a linkage criterion. The linkage criterion is a method to
measure the distance between elements of a cluster
(within the cluster and between clusters): this method is
also known as agglomerative clustering. We have used the
bottom-up approach to obtain clustering results, where
initially each element is considered unique after which
they are merged based on the linkage criteria. The results
of this algorithm are represented using a dendrogram. We
have implemented this algorithm using four types of
linkage metrics as below.

• Ward: Merges elements into a single cluster based
on theminimized sum of squared differences within
all clusters.

• Maximum linkage: Merges elements based on the
maximum distance between pairs of clusters.

• Average linkage: Merges elements based on the
average distance between all observations.

• Single linkage:Merges elements based on the closest
observations between pairs of clusters.

During our simulations, we selected the ward method
of linkage as the high dimensionality of our data produced
ambiguous results for other methods.

5 Fuzzy C-means42 algorithm works by grouping elements
based on similarity. It is distinctive as it allows for
elements to belong to more than one cluster, which are
then grouped over iterations. The current implementa-
tion uses the least-squares function to calculate the
distance between each element and the cluster center to
find the ideal grouping for the elements.

6 Spectral algorithm43 functions by analyzing the mutual
similarities of the samples by generating eigenvectors
from the affinity matrix of the samples. It reduces the data
into lower dimensions to make sure that weak variance
points (present in high-dimensional data and images) do
not have a significant impact on the final clustering results.

7 DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) algorithm44 works based on the concept
of partitioning areas of high-density elements apart from

areas of low element density. The algorithm allows for the
analysis and creation of clusters that can take up shapes
other than convex. The algorithm requires two parame-
ters: minimum number of samples (minimum number of
samples in the neighborhood to be considered a cluster center)
and epsilon (maximum distance between two samples to
be considered within the neighborhood of the other).
When using this algorithm, there are exceptional
situations when parameters are unbalanced that return
clustering results that consist of either a single cluster with
all elements within or all elements designated as noise.
Hence, we have implemented two versions of the
DBSCAN algorithm that allow us to analyze a partially
automated clustering approach and a completely manual
approach.

• Automated where the epsilon value is determined
by finding the distance between elements using the
K nearest-neighbors, followed by extracting the
knee point of the data (elbow method) using the
sorted distances, while the minimum number of
samples is provided by the user, we followed the
implementation by Rahman and Sitanggang45

• Manual where the epsilon value and the minimum
number of samples are both provided by the user.

8 HDBSCAN (Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise) algorithm46 extends
DBSCAN and finds an optimal distribution when clusters
of varying densities exist. The algorithm requires us to
provide the minimum cluster size, the minimum number
of samples for core point existence, and epsilon�a
distance threshold below which clusters will be merged
into a single unit. This approach works based on
generating a mutual reachability matrix by using the
core distance of a sample and the distance to nth nearest
sample, where smaller distances lesser than the threshold
are treated as noise.

9 Mean Shif t algorithm47 follows the K-means algorithm
technique of centroid-based clustering, i.e., defining
cluster elements based on the central points. The
algorithm works by selecting the centroids for each
given region based on the mean of elements present
within the same region. The ideal centroid is found by
iteratively varying the possible positions by finding the
local maximum of the estimated probability density. The
parameter to be fixed here is the bandwidth, which
controls the shift of the area of coverage into a higher-
density region until convergence and determination of the
cluster centers.

10 OPTICS (Ordering Points To Identif y Clustering
Structure) algorithm48 works similarly to DBSCAN
where high-density core samples are found and newer
members are added. It requires us to provide the
minimum number of samples to be considered a core
point of the cluster and the maximum epsilon (i.e., the
maximum distance between two samples to be considered
in the neighborhood of the other). Here, the addition of
new elements into a cluster is based on the calculated
reachability distance and a ranking spot based on the same
distance. The main difference between OPTICS and
DBSCAN is the usage of reachability distances, therefore
allowing more elements to be considered within the
cluster than noise.
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11 Aff inity Propagation algorithm49 approaches clustering
from the perspective of measuring the distance between
mutual samples. An exemplar set of samples is selected,
and a message (ping) is sent toward all other samples.
Based on the response obtained, a consensus is created in
the form of a similarity matrix that selects the ideal point
that has the best response of ping from all elements to be
clustered. The parameter to be provided here is the
damping factor that varies the sensitivity of the receiving
point.

12 BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) algorithm50 works on the basis of the
data reductionmethod. It creates a feature tree with nodes
and leaves, where each element is initially a leaf, and the
cluster centroids are selected from one of the leaves. This
is followed by iteratively constructing the whole tree.
Optionally, there are two parameters that can be varied,
cluster merger threshold and the branching factor that sets
the maximum number of nodes after which the node is
split into two. Our current implementation had fixed
iterations of 150, a fuzzy partition component of 2.0, and a
tolerance criterion of 10−5.

Within our implementation of the toolbox, we have fixed the
random seed state for all algorithms to a specific value to ensure
that consistent results are obtained on every run. We confirmed
this by performing a single test run of clustering polymers by size
using 21 different random seed values and calculating the
standard deviation for all trials. The calculated standard
deviation was in the range of 0.59−3.01%; hence, a fixed value
of random seeds was selected.
The algorithms in this benchmarking experiment require a

minimum of one criterion (i.e., the number of clusters
demanded) and up to three hyperparameters for a few of
them. To obtain maximal insight from our benchmarking
experiment, we split the clustering operations into two formats.
This is done to verify whether the algorithms can distinguish the
data as per our existing conditions (i.e., differentiable by polymer
type, size of scan, or film thickness) and study other resulting
behavior. The two formats are as follows.

1. One-step Clustering (F1): In this format of clustering, a
single iteration of grouping is performed with exclusive
cluster thresholds of either 2, 3, or 6, demanded from the
algorithms (i.e., the algorithms are required to group the
elements into the specified clusters based on the
properties of the data given).

2. Iterative Clustering (F2): Also termed as divisive
clustering, this format classifies the data in iterative cycles
based on the results generated at each wave (i.e., a group
of elements is successively clustered into superclusters
until a saturation point is reached). In our case, the
saturation point was defined as the stage when the
number of required clusters is greater than the number of
data samples remaining for classification.

Upon completion, the algorithms return a vector of labels with
numbers [0, 1, 2,···, N − 1], where N is the desired number of
clusters, denoting which cluster each element belongs to. To
evaluate the accuracy of the results, the generated labels and the
source data are fed to the algorithms separated into two groups:
implicitly and explicitly tuned algorithms corresponding to the
input required for classification. Implicitly tuned algorithms are
those that require only the number of clusters to be provided as
input, while explicitly tuned algorithms require more than one
parameter to be optimized. Further, the results from the
algorithms are validated using two types of metrics as below.

1. Ground truth-based metrics (M1). These metrics
require prior knowledge about the data to verify the results
generated by the algorithms. We have used this category
of metrics to verify the results obtained and as a way to
measure the performance of the algorithms. However, in
real-world practical applications, the ground truth
information may be unavailable. Unsupervised clustering
is often implemented to discover the possible ground
truth; hence, the usage of these metrics is specific to
investigating the benchmarking results and may be
considered as an optional feature for the toolkit.

2. Self-evaluation metrics (M2). These are metrics that
evaluate the result using the data provided as input and

Table 1. Clustering Results Analysis Metrics and Their Derived Significance

# Type Name of metric Definition/significance Bounds Ideally expected result

1. Ground truth-based
metrics (M1)

Rand index Measures similarity using labels [0.0,
1.0]

1.0 = perfect match

2. adjusted Rand index measures similarity using labels (considering
permutations)

[−0.5,
1.0]

−0.5 to 0.0 = poor prediction
1.0 = perfect prediction

3. adjusted mutual
information score

measures similarity using labels (considering a
balanced distribution of clusters)

[−∞,
1.0]

1.0 = perfect prediction
[−∞, 0.0] = random labeling/no
agreement

4. homogeneity measures if all clusters have elements belonging to a
single class

[0.0,
1.0]

1.0 = homogeneous prediction

5. completeness measures if all elements of a class belong to the same
cluster

[0.0,
1.0]

1.0 = complete prediction

6. V-measure harmonic mean of homogeneity and completeness [0.0,
1.0]

1.0 = homogeneous and complete
prediction

7. Fowlkes Mallows score measures similarity of clusters using geometric mean
of precision and recall

[0.0,
1.0]

0.0 = random labeling; 1.0 = perfect
similarity between clusters

8. self-evaluation metrics
(M2)

Silhouette coefficient evaluates the structure of clustering [−1.0,
1.0]

−1 = incorrect prediction
0 = overlapping clusters
1 = best prediction

9. Calinski−Harabasz
index

evaluates the ratio of cluster variance [0, ∞] higher values indicate well-separated
clusters

10. Davies Bouldin index evaluates the similarity/separation of the clusters [0.0, ∞] 0.0 = best clustering

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02502
ACS Omega 2024, 9, 21595−21611

21600

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the clustering model itself, without the requirement of
ground truth knowledge.

There aremanymetrics available in the literature that describe
the internal and external qualities of clustering via mathemati-
cally derived solutions51 (e.g., scatter criteria, Pearson
correlation measure). As our aim is to create an open-source
toolkit, the results from our first iteration were resolved to draw
conclusions via metrics; hence, we have selected broad metrics
that can be directly correlated with rational definitions such as
similarity, variance, completeness of clusters, etc. In future
versions of our tool, we aim to address and implement other
metrics for analysis. Table 1 provides a simplified understanding
of the implemented metrics, their significance, bounds of scores,
and the interpretation of the expected results to measure
performance.
Rand Index (RI), Adjusted Rand Index (ARI), and Adjusted

Mutual Information Score (AMI).52,53 These are metrics that
analyze and measure the similarity of the expected results versus
the generated results. Where the Rand Index directly measures
the similarity using the predicted data and the expected data, the
Adjusted Rand Index measures similarity by considering the
possibility that the clustering might have occurred due to
chance. The Mutual Information score analyzes the result using
the distribution of clusters and elements within.

Homogeneity (H), Completeness (C), and V-Measure (V-
M).54 These are metrics that analyze and measure the similarity
of the clustering results based on conditional entropies of the
generated results against expected results. The homogeneity
measure is used to analyze if clusters exclusively contain data
points that are members of a single class, and the Completeness
measures if the data points of a given class are elements
belonging to the same cluster. The V-measure is the harmonic
mean generated from the Homogeneity and Completeness
metrics.
Fowlkes Mallows Score is the Geometric Mean of Precision

and Recall (GM). This is used to measure the similarity of
clusters obtained by calculating the TP, FP, TN, and FN values
as per the labels provided and generated. Unlike other metrics,
this approach does not consider the cluster structure during
computation and is a viable option when comparing clustering
algorithms such as k-means, which assumes isotropic blob
shapes with algorithms that produce results in various folded
shapes such as the spectral algorithm.
Silhouette Score (SS).36 It is a metric that evaluates the

structure of clustering (i.e., assigns a score based on the
appropriate clustering concentration, higher scores for well-
defined clusters). Dense clustering is indicated by +1, incorrect
clustering is indicated by −1, and values close to 0 indicate

Figure 3. Schematic flowchart describing the hybrid approach to evaluate clustering results using self-evaluationmetricsM2 and ground truth dataM1.
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overlapping clusters. Well-separated and dense clusters give
better scores.
Calinski−Harabasz Index (CHI).36 It measures the variance

of the clusters to check if they are well-defined and well-
separated. It analyzes the ratio of (sum of intercluster
dispersion) divided by the (sum of intracluster dispersion). A
good score indicates well-defined clusters that are well-
separated, and a higher score is better.
Davies Bouldin Index (DBI).36 It measures the separation

between the clusters. It indicates the average similarity between
clusters by measuring the distance between clusters against the
size of the respective clusters. The score is calculated based on
quantities and features.
Using the AFM data, algorithms, and metrics, we bench-

marked the transformed data in F1 and F2 approaches and
evaluated them using M1 and M2 metrics to validate the
generated results. To investigate the results in greater detail, we
used our own hybrid approach to analyze the results and further
explore results using different tuning conditions.
Evaluation Metrics. This section elaborates the methods of

benchmarking the clustering algorithms and their evaluations
based on the metrics described above. The flowchart depicted in
Figure 3 explains our approach at analyzing the results obtained
from the clustering algorithms. We split the analysis of results
into four phases as below.
Phase 1. The results obtained from the clustering algorithms

are formatted into an array of labels for analysis using both M1
andM2metrics. Further, the ground truth of the present data for
classification is established and fed into the M1 metrics.
Phase 2. At this stage, the results obtained from the

algorithms are analyzed using the metrics of M2 where the
expected result is considered as a criterion and compared against
the generated results individually per metric.
Followed by individual analysis of M1 metrics. The M1 group

of metrics is used to validate and cross-verify the results
generated from the M2 metrics and the algorithms themselves.
Despite each algorithm generating metrics M1 and M2, we have
performed an independent investigation in Phase 3 in order to
make sure that we do not overlook the performance of individual
algorithms. Upon generation of M1 and M2 groups of metrics,
we aim to check if both groups of metrics follow the same trend,

i.e., if the scores match the behavior indicated in M1 as in M2. If
the condition is true, the analysis moves into Phase 3.
Otherwise, a deeper analysis is conducted to investigate
instances in which the results are more varied than usual.
Phase 3. At this phase, individual algorithms under each type

of input data are scrutinized to find algorithms with good, poor,
and consistent performance.
Phase 4. The final phase dives into analyzing the obtained

results of M1 and M2 metrics across cases (i.e., comparing the
results of using VD, 1D-FFT, 2D-FFT, several thresholds). The
cases here also depict the type of information used (i.e., the
results of using only P3HB data vs using both P3HB and P3HB-
co-3HV data together).

■ RESULTS
To obtain the best results with broad outreach, we have divided
the simulations into three cases (signifying the properties of scan
size, monomer type, and film thickness). In certain cases, we
have subdivided the data into smaller pools to understand the
behavior of algorithms and its results when using categorical
data. The simulations of our experiment can be found at
Github.2

Case 1: Classification by Size (Threshold = 3). The
expected results in this case are three clusters consisting of AFM
scans classified by their size of scanned area (i.e., 5, 10, and 30
μm). Figure 4 shows the results of the K-means++ algorithm
when clustering a combined pool of data. As clustering
multidimensional data has its own complexities (curse of
dimensionality), we created three pools of data to maximize our
insight. Pools A and B consist of exclusively P3HB and P3HB-co-
3HV data, respectively, while pool C is a combination of the two.
Initially, we tuned the algorithms to a uniform set of
hyperparameters; however, the results generated with such a
setup were not accurate or meaningful (i.e., the results did not
produce the required number of clusters or did not converge);
hence, we recalibrated the hyperparameters for each data pool
such that the desired number of clusters can be obtained. To
ease notations, we have designated algorithms 1−6 and 7−12 as
implicitly and explicitly tuned with reference to the
implementation section, where implicitly tuned algorithms
require the total number of clusters to be provided as input,

Figure 4. Visualized results of K-means++ algorithm when clustering P3BH and P3HB-CO-P3HV data according to their scan size. When visualized,
there are notable features that differentiate 30 μm scans against the 10 and 5 μm scans.
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whereas explicitly tuned algorithms require more than 1
hyperparameter to be tuned. On analyzing M2 metrics for all
three pools of data, we found that 1D-FFT data had the most
well-separated clusters with the least intercluster overlapping.
We contrasted the results of self-evaluation metrics with that

of ground truth-based metrics and observed the same behavior
where a higher similarity score could be correlated with that of
the cluster structure and similarity extracted via the self-
evaluation metrics. Across all three data pools, we found 1D-
FFT to have the highest average accuracy for all algorithms at
75.29% followed by 71.2% of 2D-FFT, and VD had the lowest
accuracy at 54.3%: this can be observed in Figures 5, S1, and S2.
On analyzing individually, we also found that the magnitude of
self-evaluation metrics (M2) was higher for pool C over the
remaining: this can be attributed to the difference in the
magnitude of the scanned samples (i.e., the height of scans).
Regardless, the behavior was verified by M1 metrics. Table 2
shows the benchmarked performance metrics of data pool C,
whereas the benchmarked performance of data pools A and B
are shown in Tables S2 and S3.
Upon scrutinizing individual algorithms, we observed that

explicitly tuned algorithms were more prone to have errors such
as nonconvergence or bulk outliers. The DBSCAN automated
algorithm had the lowest score and is a factor of many samples
being considered as noise despite lowering the threshold to the
smallest level possible. Similarly, the OPTICS algorithm had
instances where the data were sparse and the algorithm could
not converge despite having the lowest logical threshold set 5.
Within our analysis, we also observed that most of the errors in
the classification occurred when differentiating data of 5 and 10
μm sizes: this could be verified by the silhouette score when
nearing zero, indicating overlapping clusters. Implicitly tuned
algorithms had consistent performance in contrast to those that
required tuning.
Case 2: Classification by Polymer Type (Threshold = 2).

The expected results in this case are two clusters relative to the
type of polymers, P3HB and P3HB-CO-3HV. In case 1, we
observed the behavior of the algorithms when data are separated

by the polymer type; in this case, we created data pools
consisting of both polymers distinguished by their scan area.
Pool A consists of all scan sizes (5, 10and 30 μm), while pool B
consists of exclusively 30 μm scan data. In this case, the
probability of a sample being classified versus assigned by chance
is at 50% as there are only two possible clusters present.
In either data pool, the self-evaluation metrics indicate the

clusters to be separated with a moderate amount of variance
between each other, and this is shown in Tables 3 and S4.
However, the accuracy produced from data pool A across all
three data transformations is lower than that of pool B. We
observed an increase in the accuracy of 14.61% for processed
data (VD), 16.63% for 1D-FFT, and 5.98% for 2D-FFT. Pool B
produced a significantly more accurate result than Pool A, and
this is shown in Figure 6, where despite using films of a single
scan size, there exist errors within the clusters. On scrutinizing
individual algorithms and data transforms, we found that
overlapping of results was less likely to occur when using VD
over 1D-FFT and 2D-FFT in this case, we assume this may be
due to the difference of scaling occurring after Fourier
transformation. To test this, we increased the required number
of clusters to investigate the results statistically and visually. On
demanding up to five clusters using VD, the resulting clusters
had less variance of elements over 1D-FFT and 2D-FFT data
(i.e., the data is grouped into smaller chunks of clusters rather
than being divided individually). This provided the final metric
results with clusters that are different from each other. This was
also observed visually, where data from within either polymer
were subdivided within.
We also paid attention to clustering by chance, as there are

only two states for final prediction. There are instances when
algorithms group the majority of elements into a single cluster
while leaving very few elements as the rest; on one hand, this
guarantees a good score for one type of polymer but completely
ignores the other (i.e., algorithms classify the majority of
elements into a single cluster and label the rest as noise, thereby
achieving around 50% of accuracy while the rest is deemed not
fit). This is accurately depicted in Figures 7 and S2 with the

Figure 5.Graphical representation of prediction similarity (Rand Index) for a data pool consisting exclusively of P3HB data when classified by the scan
size (Case 1-A). The dotted line at 33.3% denotes the similarity index of random (chance) clustering.
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Optics algorithm using VD data, which classified P3HB-co-3HV
samples into a single cluster but ignored the majority of P3HB as
noise, thereby generating a high score.
Further, in this case, we did not observe differences between

algorithms based on their type of tuning. This is largely
attributed to demanding only two clusters as a result, which
increases the chances of creating clusters by chance or noise over
actual classification.

Case 3: Classification by Thickness (Threshold = 6).
The expected results in this case are six clusters differentiated by
their corresponding film thicknesses, as mentioned in Table S1.
We created four data pools to maximize our insight into the
classification of films based on their thicknesses attributed to
varying the concentration of polymer powder during fabrication.
Data pool A consisted of combined P3HB and P3HB-co-3HV of
all scan sizes, pool B consisted of exclusively P3HB-co-3HV data
of films 1 and 6, pool C consisted of P3HB data of scan size 30

Figure 6.Results of clustering polyhydroxyalkanoate films by their type (P3HB and P3HB-co-3HV)when using data of a single scan size. Each image is
30 μm × 30 μm.

Figure 7. A graphical representation of prediction similarity (Rand Index) for a data pool consisting exclusively of 30 μm scan samples of P3HB and
P3HB-co-3HV data when classified by the polymer type (case 2-B). The dotted line at 50% denotes the probability of a sample being assigned to a
cluster by chance and the similarity index for such random clustering.
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μm from films 1, 3, and 6, last, pool D consisted of P3HB data of
all sizes and film thicknesses.
On clustering and analyzing, there were instances when

explicitly tuned algorithms such as Mean Shift, DBSCAN, and
HDBSCAN did not converge to 6 clusters and produced 4−5
clusters as the resulting output. On observing M2 metrics, the
overall mean variance between clusters was relatively high across
all algorithms; however, the overlapping of elements between
clusters was most observable in explicitly tuned algorithms. We
compared M1 metrics to those of M2 and found that the
accuracy of similarity (Rand Index) was unusually high
compared to the remaining cases, and an example is shown in
Table 4.
Despite the ground truth being vastly different from the

prediction, the Rand Index score was high due to the
permutation of pairs that are identical between the result and
the ground truth, hence causing a disproportionately high score.
To resolve this, we analyzed the M1 metrics via the Adjusted
Rand Index that accounts for the possible permutations in the
results, hereby showing prediction by chance within the score
itself. The same was overlooked for prior cases (1 and 2) where
we confirmed that the Adjusted Rand Index accepted the
behavior indicated by M2 metrics.
In data pools A, B, and D, the Adjusted Rand Index ranged

between negative values and 3, and this indicates a poor
prediction of results when contrasted against the ground truth
data.
Pool B showcases an example where the samples have been

grouped according to their scan sizes of 5 and 10 μm in one
cluster and 30 μm in another. Pool C consists of nine samples
that were clustered similarly (i.e., based on their scan area over
film thickness) shown in Figure 8. This was also visually
observed in the prior data pools of A and D, where the samples
were clustered according to their heights and surface features
over thicknesses. The M2metrics can be concluded as a positive
outlook if deduced based on the classification done internally
rather than by their thicknesses.
Case 4: Iterative Classification. In this case, the cluster

threshold (the expected number of clusters) is set to reflect a
sequence of specific features, such as the scan resolution,
polymer type, or film thickness. Unlike previous cases where the
clustering operation is performed on a pool of data only once,
here upon completion of an iteration, the resulting elements are
successively classified as per the following threshold creating
subclusters. Based on the results from prior cases, we selected
the iterative hierarchy as 3−2−6 related to the size of the
scanned area and the type of polymer followed by the film
thickness; Figure S3 provides an overview of the process. The
data used in this case is a combined pool of both P3HB and
P3HB-co-3HV of all scan sizes. In the first iteration, the clusters
were differentiated from each other as per their scan area (5, 10,
and 30 μm), the behavior and calculated metrics are as observed
in Case 1 using data pool C. M2metrics agreed with those ofM1
in this iteration. Figure 9 shows the results of the hierarchy
algorithm when clustering the data in the first iteration (by the
size of the scanned area). The following iteration attempts to
classify the elements of each subcluster as per their polymer type.
Within all three clusters, we observed an imbalance where
subcluster 1 had most elements in a single group and subcluster
2 had elements that did not fit within the latter, and this was
observed in the Adjusted Rand Index score. The remaining
elements in both subclusters were further classified into six
groups attributed to the film thickness. On completing the T
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iteration, the M2 metrics indicated a high level of intercluster
separation (variance between clusters) but the Adjusted Rand
Index score was rather low. We investigated the results visually
and observed that the elements were classified based on their
surface resemblance, height differences, or underlying patterns
over film thicknesses. An exceptional case was observed when
trying to classify subcluster 2 of the 5 μm cluster. After the
completion of the second iteration, the remaining number of

elements was 5, whereas the designated threshold was 6; we
reduced the threshold tomatch the thickness of the existing films
(i.e., three clusters) to investigate the results and find the
resulting elements to be grouped into individual clusters with
high M2 metric scores indicating well-separated clusters. Figure
S3 shows the results of the Fuzzy C-means algorithm when
performing iterative clustering in the hierarchy of 3−2−6.
Overall, by simulating Cases 1−4, we observed 1D-FFT

Figure 8. Visualized results of clustering a data pool consisting exclusively of P3HB-co-3HV films of thicknesses 1 and 6 of all sizes (5, 10, and 30 μm).
The results show cluster 1 comprising scan data of sizes 5 and 10 μm, while cluster 2 comprises scan data of size 30 μm instead of being clustered by
their film thicknesses.

Figure 9.Graphical visualization of the distribution of elements when using 1D-FFT data via the Hierarchical clustering algorithm to classify elements
based on their size of scanned area.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02502
ACS Omega 2024, 9, 21595−21611

21607

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02502/suppl_file/ao4c02502_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02502/suppl_file/ao4c02502_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02502?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02502?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


transform to have an improved performance compared to 2D-
FFT and processed data (VD) across all algorithms collectively.
The most accurate prediction was obtained when the elements
were classified according to their scan area. Centroid-based
algorithms had steady performance compared to density-based
algorithms, which tended to classify a portion of elements as
noise rather than into a cluster, thereby impacting the overall
performance metrics, and this can be resolved by using adjusted
metrics that consider the permutations of chances. Peculiar
behavior was observed in the BIRCH algorithm, which had
similar scores for all types of data transforms, and the DBSCAN
automated algorithm had numerous instances where it did not
converge to the required number of clusters, thereby producing
low scores due to nonalignment of predicted and truth data.
OPTICS had high scores in case 2 when using Processed data
(VD), and this is mainly attributed to producing one well-
defined cluster while labeling the rest as noise. In cases where
self-evaluation metrics did not agree with the selected ground
truth metrics (e.g., high Rand Index despite low silhouette
score), we had to select adjusted metrics to analyze the results
based on actual classification over clustering by chance. This
approach was vital in drawing conclusions for case 3. We also
observed that when the scores of the Rand Index were lower
than the cutoff threshold by more than 5%, the clusters were
overlapping.
Across all cases, we observed close accuracy variation between

1D-FFT and 2D-FFT relative to the algorithm being used. We
found this to be attributed to the architecture of the algorithm
used (i.e., centroid and density-based), while tuning of certain
algorithms played a key role in shaping the outcome.
Nevertheless, when attributed to the type of data used, 1D-
FFT brings a layer of duality in the relative dimension (i.e.,
orientation by rows and columns), whereas data from 2D-FFT
are resolved into a single component. For future full-scale
unsupervised classification tasks, we believe the use of 2D-FFT
can be a better choice over 1D-FFT as it overlooks the need for
directional alignment at the cost of computational power and
time. However, the algorithms used also play a key role in
defining the self-evaluation criteria and variation of the accuracy.
For example, when using 1D-FFT, using incorrect orientation
(across the scan direction instead of along the scan direction)
produces a significantly observable metric score (namely, a
negative silhouette score and a low adjusted Rand index). In our
cases of application, the overall difference between 1D-FFT vs
2D-FFT is marginal for most algorithms (not very significant +
−5%), except in spectral. Spectral algorithm generates an affinity
matrix across samples, with both orientations and height
component being included, and the similarities across samples
can coincide, making the affinity matrix saturated over being
differentiable, therefore leading to a low score for 2D-FFT over
1D-FFT. We found 2D-FFT to be a more effective choice when
using implicitly tuned algorithms and 1D-FFT marginally better
than the latter for explicitly tuned algorithms except for
DBSCAN and Mean shift algorithms, where the latter follows
a top-down approach of splitting into samples. This way, 1D-
FFT allows better differentiation in contrast to 2D-FFT that is
based on combining either orientation.Mean shift follows the K-
means approach of centroid-based clustering by assembling
clusters around a heavy mean point; a similar relevance is
observed as in 1D-FFT for DBSCAN.

■ DISCUSSION
From our benchmarking experiment, we concluded the
performance of clustering algorithms, evaluation metrics, and
the impact of using frequency domain data over applying
clustering algorithms directly to the AFM data. In this section,
we address topics that were encountered during our experiment
and are to be considered in future works.
Frequency Domain of an Image. The Fourier theory

states that a signal can be expressed as an infinite sum of sine
waves. Discrete Fourier Transform involves a truncation of this
infinite series. For images, the brightness level across the image
can be considered as the signal. A single Fourier term encodes
the spatial frequency, magnitude, and phase. Images obtained by
the microscope are represented in the spatial domain, and the
Fourier transformation converts the signal to the frequency
domain.
An image normally consists of a 2D array of pixels. AFM data

can be considered grayscale images with only one value per pixel
or one channel. The image is defined by the intensity values at
each spatial position. In the frequency domain, each image
channel is represented in terms of sinusoidal waves: amplitude
values that are stored in locations based not on X- and Y-spatial
coordinates, but on X- and Y-frequencies. Since this is a digital
representation, the values are discrete, the frequencies are
multiples of the smallest or unit frequency, and the pixel
coordinates represent the indices or integer multiples of this unit
frequency.
Direction of Scan and 1D-FFT.When performing 1D-FFT,

we extracted the scanned data in the orientations of the rows and
columns. Within our experiment, we ultimately used the data
extracted in the orientation of rows, whichmatches the direction
of the actual AFM scan because the data extracted by columns
produced results that were less accurate and, in some cases,
produced vague results (i.e., the cluster elements seemed to be
classified randomly). On investigating, we found that by
matching the scan direction to the orientation of the
transformed scan data, the results of clustering were positively
impacted. Within 2D-FFT, the orientation is internally resolved
when performing FFT, thereby interpreting the image as a 2D
matrix over a line-by-line resolution as in 1D-FFT.However, this
means that we treat the data as isotropic 2D images and ignore
the scan direction, which may cause problems if some of the
images in the data set have different orientations. Most AFM
data, however, have the scan direction in the rows unless it is
manually rotated after acquisition.
Performance of Cluster Architecture on High-Dimen-

sional Data. Initially, it was assumed that centroid-based
algorithms might perform poorly compared to density-based
algorithms considering the multidimensional nature of the data,
yet the performance was the opposite. Due to the fragile
balancing of hyperparameters required for density-based
algorithms, minute chances had huge effects on the resulting
classification (e.g., considering all samples as noise or majority
elements being grouped into a single cluster). We aim to extend
and analyze the results of using multivariate data of small−
medium dimensional nature on either group of algorithms in our
future works.
Describing a Cluster without Descriptive Features.

During our hybrid analysis of the results, we were able to observe
many occurrences when certain AFM scans were classified into
clusters incorrectly as per our truth data; however, when
visualized, we found certain surface features that were common
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within cluster elements (e.g., texture of certain samples,
occurrence of physical features (for example crests or troughs)).
From our simulated cases and investigation, we found the
silhouette score and the Calinski−Harabasz index to have
mutually agreeing scores and provide maximal insight into the
structure of clusters, thereby aiding in differentiating variations
within the data. In Case 1�Data Pool C andCase 2�Data Pool
A, we observe distinct performance of the Silhouette score and
the Calinski−Harabasz index, allowing differentiation between
size (30 μm) scans against the rest and a P3HB against P3HB-co-
3HV, respectively. This provides a crucial first-layer classi-
fication step that allows for the sectioning of the majority of
elements from the rest and the performance of further
operations as needed. This approach can be a viable choice
when classifying huge polymer data sets that have a variety of
polymer compounds with significant underlying patterns and
correlations. We believe that there are underlying patterns that
can be explored to reveal details that may have been overlooked
during our current approach to classification. In our future work,
we aim to incorporate descriptive and characteristic features
during the clustering process, thereby boosting the overall
accuracy of the results and the possibility to draw further
conclusions.

■ CONCLUSIONS
The benchmarked performance of the clustering algorithms
provides insight into the use of high-dimensional data for
clustering and showcases the impact of using various data
transformations to classify surface scans of polyhydroxyalka-
noate films. The accuracy of classification is measured using
ground truth and self-evaluation metrics. Our results indicate
that when using a vectorized approach to classify scan data, the
best-performing results were produced by applying the 1D
Fourier transform on the data, which produced an overall
accuracy of 75.29% across all algorithms and data pools when
classifying by the size of the scanned area. The K-means, K-
means++, Hierarchy, and Fuzzy C-means algorithms had similar
performance, with instances of K-means bisect having slightly
lower accuracy compared to the rest. However, explicitly tuned
algorithms were prone to designating elements as noise over
clusters, and this was attributed to sensitive tuning at high
dimensionality. The DBSCAN automated algorithm had the
lowest score due to nonconvergence similarly observed in
HDBSCAN.
Our hybrid approach can be validated when investigating the

results of clustering for benchmarking; we were able to relate
self-evaluation metrics with the ground truth metrics and have
highlighted the usage of permutation-adjusted metrics in certain
cases. We highlight the relevance and effectiveness of using 1D
and 2D Fourier transforms relative to the architectural type of
algorithms, with 2D Fourier transformed data being more
suitable for centroid-based algorithms and 1D Fourier transform
being an effective choice for explicitly tuned algorithms. The
results of this study and the developed toolkit are publicly
available on GitHub, and the annotated data set used for
benchmarking is available on Zenodo database. In future works,
we aim to extend our toolkit and improve our existing case of
clustering AFM polymer scans by including in-depth character-
istic information that provides better individuality to the data
(e.g., Roughness, Young’s modulus, etc.) and therefore improve
the overall results of classification and investigation.
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