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Quasi steady-state enzyme kinetic models are increasingly used in systems modelling. The Michaelis
Menten model is popular due to its reduced parameter dimensionality, but its low-enzyme and
irreversibility assumption may not always be valid in the in vivo context. Whilst the total quasi-
steady state assumption (tQSSA) model eliminates the reactant stationary assumptions, its mathe-
matical complexity is increased. Here, we propose the differential quasi-steady state approximation
(dQSSA) kinetic model, which expresses the differential equations as a linear algebraic equation. It
eliminates the reactant stationary assumptions of the Michaelis Menten model without increasing
model dimensionality. The dQSSA was found to be easily adaptable for reversible enzyme kinetic
systems with complex topologies and to predict behaviour consistent with mass action kinetics in
silico. Additionally, the dQSSA was able to predict coenzyme inhibition in the reversible lactate
dehydrogenase enzyme, which the Michaelis Menten model failed to do. Whilst the dQSSA does
not account for the physical and thermodynamic interactions of all intermediate enzyme-substrate
complex states, it is proposed to be suitable for modelling complex enzyme mediated biochemical
systems. This is due to its simpler application, reduced parameter dimensionality and improved
accuracy.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Systems modelling of intracellular biochemical processes can
provide quantitative insight into a cell’s response to stimuli and
perturbations [1]. If the model is mechanistic, it has the power to
both infer molecular mechanisms and predict biological responses
[2]. This requires the simulation of biochemical reaction kinetics
typically described using ordinary differential equations (ODEs).
Modelling enzymatic cascade networks, however, requires the
simulation of multiple reactions. This inevitably increases the com-
plexity of the ODE model, which increases the number of free
kinetic parameters. It then becomes more difficult to constrain
all parameters simultaneously using a limited amount of available
experimental data [3]. This can result in the derivation of multiple
well fitting models with limited predictive power because of their
non-uniqueness. Thus, an optimum parameter dimensionality
should be selected to reduce non-uniqueness without reducing
the topological complexity required to capture key kinetic features
in the system [4].

Of the biochemical processes that need to be modelled, many
are enzyme reactions [5]. Enzymatic cascades are based on enzyme
kinetics within which additional interactions such as inhibition
and allosteric effects can be included using mass action kinetics
[6]. Basic enzyme kinetics is modelled using the following series
of reactions:

Sþ E �
ka

f

kd
f

ES �
kc

r

kc
f

EP �
kd

r

ka
r

P þ E ð1Þ

where S, E, ES, EP and P denote the substrate, enzyme, enzyme-
substrate complex, enzyme-product complex and product, respectively.
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List of abbreviations

Model names
ODE ordinary differential equation
tQSSA total quasi-steady state assumption
dQSSA differential quasi-steady state assumption
SBML Systems Biology Markup Language

Chemical species
ATP adenosine triphosphate
NAD+ nicotinamide adenine dinucleotide
NADH reduced nicotinamide adenine dinucleotide
LDH lactate dehydrogenase

Modelling states and parameters
SF free substrate
EF free enzyme
ST total substrate (sum of bound and free)
ET total enzyme (sum of bound and free)
ES enzyme-substrate complex
EP enzyme-product complex
PF free product
PT free product (sum of bound and free)
k rate parameter
Km Michaelis constant
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The full mass action description of this reaction requires six kinetic
parameters: ka

f , kd
f and kc

f are the forward association, dissociation
and catalytic rate parameters, respectively, and ka

r , kd
r and kc

r are
the corresponding reaction rate parameters in the reverse direction.

Many models of biochemical systems use the simplified irrever-
sible form of the reaction (Fig. 1d), which only requires three
kinetic parameters [5,7–15]. Whilst this is an approximation of real
enzyme action, in vitro spectroscopic studies of single molecule
enzyme kinetics have shown that this approximation is sufficient
in experiments where there is no product inhibition [16,17].
Further simplifications have led to other enzyme kinetic models
Fig. 1. Various models of enzyme kinetics in a cyclic reaction system. (a) Shows the
simple reaction cycle which interconverts a substrate and product involving an
enzyme reaction and a backward decay reaction. (b) Shows the mechanism of the
reversible enzyme kinetic model, (c) shows the coupled irreversible enzyme kinetic
model, (d) shows the irreversible enzyme kinetic model, which includes the
Michaelis Menten model and tQSSA model.
such as the Michaelis–Menten model and the Tzafriri total quasi-
steady state assumption (tQSSA) model [7,9,18–21]. Whilst the
Michaelis–Menten model is more widely used, it is strictly accu-
rate at low enzyme concentrations. Since this may not be true
under in vivo conditions, unrealistic conclusions may be drawn
from models using the Michaelis–Menten equation [18,22–24].
The tQSSA is not subject to the same limitation, but it has a more
complex mathematical form that requires reanalysis for each dis-
tinct network to which it is applied [24]. Currently, systems mod-
ellers must choose between complex enzyme models with high
parameter dimensionality, or simpler models at the cost of
accuracy.

A further compounding factor is that in vitro investigations of
enzyme action are generally performed in closed thermodynamic
systems which achieve thermodynamic equilibrium, as reflected
in the model described by Eq. (1). Cellular systems, however, are
not thermodynamically closed, and so achieve only homeostatic
equilibrium. This is achieved by constant energy inflow through
coenzymes such as ATP which allows the network to form cyclic
reactions made of counteracting enzymatic reaction pairs which
maintain and regulate this equilibrium. Examples of cyclic reac-
tions are the cyclic interconversion of nicotinamide adenine dinu-
cleotide (NAD+) and nicotinamide adenine dinucleotide phosphate
(NADP+), mediated by NAD kinase and NADP+ phosphatase in
metabolism, and the cyclic interconversion of phosphatidylinositol
(4,5)-bisphosphate to (3,4,5)-triphosphate, mediated by PI3K
kinase and PTEN phosphatase in insulin and cancer signalling
[25–27]. Thus, models of cellular systems need to account for the
continual energy consumption in these cyclic reactions.
Conventionally, the global coenzyme concentration is not the focus
of study, hence systems models implicitly account for the effects of
coenzyme concentration [CoE] by asserting that k0c � kc½CoE� and
then directly varying the catalytic rate k0c to vary energy input rate.
This allows the thermodynamically closed enzyme kinetic model
to be used in a thermodynamically open context [4].

To address these issues, we have developed a generalised
enzyme kinetic model that retains its mathematical form for sys-
tems with multiple enzymes, whilst minimising the number of
simplifying assumptions and parameters needed to characterise
the system. This enables more accurate simulation of the bio-
chemical mechanisms involved.

2. Theoretical background

As enzymes form the basis of many biochemical processes, mod-
els of enzyme kinetics are fundamental components of mathemati-
cal models of biochemical networks. The difficulty in implementing
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enzyme kinetic models lies in its variety in the literature. In this
section, we demonstrate and compare the limits of various sim-
plifications of enzyme kinetic model, beginning with the more com-
plex mass action based reversible enzyme kinetic model in a
reaction cycle. The reaction cycle will involve an enzymatic reaction
that favours substrate to product formation, coupled with an irre-
versible decay reaction of the product back to substrate (Fig. 1).

Whilst the overall goal of this work is to achieve an optimally
accurate dynamic model, in this section, we focus on the product
concentration at homeostatic equilibrium, or complete steady state
as the standard of comparison. This is because the homeostatic,
product concentration is easier to compare analytically than the
full temporal behaviour, but an incorrect homeostatic equilibrium
state implies the kinetic behaviour of the model is incorrect.

The following notations are used throughout:

(i) Species names enclosed in square brackets implies their con-
centration, e.g. [SF] is the concentration of SF.

(ii) Overhead dots of state variables indicate the total time
derivative. e.g. ½ _SF � ¼ d½SF �=dt .

(iii) Subscript T of states variables indicate total (free and in
complex) concentrations of the parent species e.g.
½ST � ¼ ½SF � þ ½ES�.

(iv) Subscript 0 of state variables indicates initial concentrations
of the parent species e.g. ½SFðt ¼ 0Þ� ¼ ½SF �0.

(v) Subscript1 of state variables indicates steady state concen-
trations of the parent species e.g. ½SFðt ¼ 1Þ� ¼ ½SF �1.

(vi) Numerical subscript of rate parameters indicates the reac-
tion number it belongs to; additional subscripts such as f
or r indicate the rate parameter in the forward or reverse
direction of the enzyme reaction, or other labels for other
types of rate parameters. Superscript a, d, or c on a rate
parameter indicates the association, dissociation and cat-
alytic rates of the enzyme reaction and direction given by
the subscript respectively e.g. kc

1f indicates the catalytic rate
parameter for reaction 1 in the forward direction.

(vii) Parameters in bold font denote tensors and their numerical
subscripts indicate their indices.

2.1. Reversible enzyme kinetic model in a cyclic reaction system

For the reversible cyclic reaction shown in Fig. 1b, the mass
action model can be expressed minimally as [6,28]:

½ES
�
� ¼ ka

1f ½SF �½EF � þ kc
1r½EP� � ðkd

1f þ kc
1f Þ½ES� ð2Þ

½EP
�
� ¼ ka

1r½PF �½EF � þ kc
1f ½ES� � ðkd

1r þ kc
1rÞ½EP� ð3Þ

½PF

�
� ¼ �ka

1r½PF �½EF � þ kd
1r ½PE� � k2½PF � ð4Þ

½ST �0 ¼ ½SF � þ ½PF � þ ½ES� þ ½EP� ð5Þ

½ET �0 ¼ ½EF � þ ½ES� þ ½EP� ð6Þ

Setting all derivatives to zero, solving Eqs. (2) and (3)
simultaneously, and then substituting the result into Eq. (4), leads
to the following expression for the free product concentration at
complete steady state:

½PF �1 ¼
1
k2

kc
f br

½EF �1½SF �1
KmS

ð1� af arÞ � kc
rbf

½EF �1½PF �1
KmP

ð1� af arÞ
ðbr þ bf arÞðbf þ braf Þ

ð7Þ

where

ai ¼
kc

i

kc
i þ kd

i

�����bi ¼
kd

i

kc
i þ kd

i

ð8Þ
and

Km
i ¼

kc
i þ kd

i

ka
i

ð9Þ

is the conventional Michaelis constant and i indicates whether the
constant is associated with the forward or reverse reaction. Note that
this expression for the equilibrium product concentration is different
from the result from conventional derivations as we have retained
the use of the free enzyme concentration as our variable and have
applied an additional unimolecular decay reaction from product to
substrate, which modifies the resulting expression (see Doc S1 for
results obtained using conventional methods). We also note that this
model creates eight coefficients; therefore all six kinetic parameters
are needed to fully define the coefficients and the model.

2.2. Irreversible enzyme kinetic models in cyclic reactions

The coupled irreversible cyclic reaction shown in Fig. 1c is simi-
lar to the full reversible system with a subtle difference. The cataly-
sis step of both the forward and reverse reactions immediately
dissociate into their respective end species and free enzyme. The
purpose of making this subtle change is to make the reversible
reaction appear like two coupled irreversible enzyme reactions,
which can be expressed minimally as:

½ES�
�
¼ ka

1f ½EF �½SF � � ðkc
1f þ kd

1f Þ½ES� ð10Þ

½EP�
�
¼ ka

1r ½EF �½PF � � ðkc
1r þ kd

1rÞ½EP� ð11Þ

½ _PF � ¼ �ka
1r ½PF �½EF � þ kd

1r ½EP� þ kc
1f ½ES� � k2½PF � ð12Þ

½ST �0 ¼ ½SF � þ ½PF � þ ½ES� þ ½EP� ð13Þ

½ET �0 ¼ ½EF � þ ½ES� þ ½EP� ð14Þ

Again, setting all derivatives to zero and substituting Eq. (10)
and (11) into Eq. (12), leads to the following expression for the free
product concentration at complete steady state of the coupled irre-
versible system.

½PF �1 ¼
1
k2

kc
1f ½SF �1½EF �1

Km
S

� kc
1r½PF �1½EF �1

Km
P

 !
ð15Þ

where Km
S and Km

P are the Michaelis constants for the forward
and reverse reactions respectively. This is similar to the analogous
expression for the fully reversible system (Eq. (7)) under the condi-

tions kd
1f � kc

1f and kd
1r � kc

1r which causes af ;ar � 0, and bf ; br � 1,
which is required for Eq. (7) to become identical to Eq. (15). This
implies that under the ‘‘rapid equilibrium’’ condition (where free
enzymes and substrates rapidly equilibrate with their complexed
forms) the reversible enzyme kinetic system can be modelled as
two opposing irreversible enzyme kinetic systems losing mechanis-
tic detail. This assumption is identical to the original quasi-steady
state assumption made by Michaelis and Menten [29].

For the reaction to be completely irreversible (Fig. 1d), we sim-
ply set kc

r ¼ 0. This leads to the following result for the product
concentration at complete steady state:

½PF �1 ¼
kc

1f

k2

½SF �1½EF �1
Km

S

ð16Þ

This model is now less realistic as enzymes do not behave irre-
versibly under physiological conditions. A significant consequence
is that this model no longer includes product inhibition since no
enzyme-product complex exists. For the purpose of comparison,
however, we will require this result for the following sections.
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2.3. The Michaelis–Menten model in cyclic reactions

Whilst the Michaelis–Menten (and Briggs–Haldane) model is a
subset of the irreversible enzyme kinetic model, it is worthy of a
standalone analysis as it is widely used in models of biochemical
systems. Since the topology of reaction networks can itself be com-
plicated, this model is often used to simplify the mathematics of
the network model [5,8–12]. However, the mechanistic accuracy
of the Michaelis–Menten model can break down under physiologi-
cal conditions, such as for protein phosphorylation networks.

The Michaelis–Menten model adopts the quasi-steady state
assumption, where the enzyme-substrate complex [ES] is set to

be constant over small time scales (½ _ES� ¼ 0 in Eq. (10)). This leads
to the following expression for the enzyme-substrate complex:

½ES� ¼ ½SF �½EF �
Km

S

ð17Þ

The state variable used is total enzyme concentration rather
than free enzyme using the following substitution [7]:

½ET �0 ¼ ½EF � þ ½ES� ð18Þ

Combining Eqs. (16)–(18) leads to the following expression for
the enzyme reaction rate v is then:

v ¼ kc
1f
½ET �0½SF �

Km þ ½SF �
ð19Þ

And the resulting kinetic equations for our cyclic reaction sys-
tem using this enzyme kinetic model can be expressed as [9]:

½ _SF � ¼ �
kc

1f ½ET �0½SF �
Km

S þ ½SF �
þ k2½PF � ð20Þ

½ _PF � ¼
kc

1f ½ET �0½SF �
Km

S þ ½SF �
� k2½PF � ð21Þ

½ST �0 ¼ ½SF � þ ½ES� þ ½PF � ð22Þ

The product concentration at complete steady state is thus:

½PF �1 ¼
kc

1f

k2

½SF �1½ET �0
Km

S þ ½SF �1
ð23Þ

This is similar to Eq. (16) expressed in terms of ½ET �0 by substi-
tuting in Eqs. (17) and (18). So in principle the Michaelis–Menten
model is consistent with the mass action based irreversible
enzyme kinetics model. In practice, however, this is not the case
because it is commonly assumed that:

½SF � � ½ST � ð24Þ

This implies that the ES complex must have a negligible
concentration:

½ES� � 0 ð25Þ

This is known as the reactant stationary assumption and is the
origin of the low enzyme assumption implicit in the Michaelis–
Menten model [9,23,30–32]. The condition required for this
assumption to hold true is given by [18,32]:

½ET �0 < Km
S þ ½ST �0 ð26Þ

This does not strictly require that ½ET �0 << ½ST �0 but in the situa-
tion where ½ET �0 P ½ST �0, a low enzyme-substrate affinity associated
with a large Km

S is instead required for condition Eq. (25) to hold
[32,33]. The tQSSA proposed by Tzafriri avoids this limitation by
implicitly accounting for the enzyme-complex concentration by
re-expressing the series of equations in terms of the total substrate
concentration ½ST � [18].
Despite this, there is a second way both models can further lose
accuracy. In a system where an enzyme has multiple targets (e.g.
Akt), the substitution in Eq. (18) is no longer valid [34]. This causes
both the Michaelis–Menten and tQSSA models to break down as
they both rely on this conservation law. Hence, the rate equations
for these quasi-steady state models need to be rederived for each
distinct biochemical network. As shown in other studies involving
analysis using the tQSSA, this can become impractical as the net-
works become complex enough that the ensuing simultaneous
equations become analytically intractable [24].
3. Results

We have established that reversible enzyme kinetics can be
approximated as two opposing irreversible enzyme reactions
under rapid equilibrium conditions. We also showed that the
Michaelis–Menten quasi-steady state assumption fails to accu-
rately reflect the mass action irreversible enzyme reaction since
the enzyme-substrate concentration is not properly accounted
for as a result of the reactant stationary assumption. If the quasi-
steady state complex concentration can be dynamically calculated
using a generalised method, the reactant stationary assumption
would no longer be needed. Thus the rapid equilibrium assumption
would be the only assumption made which will increase model
accuracy (see Doc S1 for justification of why this cannot be
achieved with the fully reversible model). Our approach proposes
to achieve this by linearising the quasi-steady state model such
that the complex state (made implicit by the quasi-steady state
assumption) can be explicitly calculated at each integration step.
This approach is henceforth referred to as the differential quasi-
steady state assumption (dQSSA).

In this section, we first describe the mathematics behind the
dQSSA model. Next we validate the model in silico and demonstrate
its application by applying it to a complex hypothetical network
and comparing its predicted time course to that achieved by the
mass action and Michaelis–Menten models. Finally, we experimen-
tally validate the dQSSA by applying it to the interconversion of
pyruvate and lactate by lactate dehydrogenase (LDH) in the pres-
ence of different concentrations of coenzyme and enzyme. This will
demonstrate the performance of this model and its ability to
mechanistically predict the behaviour of a realistic biochemical
system under physiological conditions.

3.1. Development of the dQSSA

The primary challenges the dQSSA must meet are threefold:

(1) Calculation of state variables in a complex enzyme kinetic
system without solving any simultaneous equations;

(2) Retain the accuracy and parameter reduction on par with the
tQSSA irreversible enzyme kinetic model;

(3) Simplify the conversion between network topology into a
dynamic equation.

Starting with the quasi-steady state assumption of Eq. (17), we
note that the act of taking the quasi-steady state forces the ES com-
plex concentration to only be a function of the enzyme and sub-
strate concentrations, i.e. @C=@t ¼ 0 (see Doc S2). Note that, in
general, the enzyme and substrate concentrations (both free and
total) are themselves functions of time. Thus, the total time deriva-
tive of the complex concentration (i.e. of Eq. (10)) is not always
zero. In fact, it is:

½ES
�
� ¼ ½SF �

Km
S

½EF

�
� þ ½EF �

Km
S

½SF

�
� ð27Þ
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Now differentiating the conservation laws for the enzyme and
substrate states by time produces the following differential equa-
tions for the free enzyme and substrates:

½Ef

�
� ¼ �½ES

�
� ð28Þ

½SF

�
� ¼ �½PF

�
� � ½ES

�
� ð29Þ

Substituting the differential equation for the ES complex (Eq.
(27)) into Eqs. (28) and (29) leads to the quasi-steady state
assumption for the four state variables of the system in differential
form.

½ _PF � ¼ kc½ES� ð30Þ

½ _SF � ¼ �kc½ES� � ½SF �
Km

S

½ _EF � �
½EF �
Km

S

½ _SF � ð31Þ

½ _EF � ¼ �
½SF �
Km

S

½ _EF � �
½EF �
Km

S

½ _SF � ð32Þ

½ES
�
� ¼ ½SF �

Km
S

½EF

�
� þ ½EF �

Km
S

½SF

�
� ð33Þ

Unfortunately, this series of equations are implicit because the
derivatives are now mixed. Further manipulation into an explicit
form requires re-expressing the linear system of differential equa-
tions as a vector x of state variables. Using the indices:

(1) Substrate
(2) Enzyme
(3) Product
(4) ES complex

and isolating all derivatives to the left hand side leads to:

1þ x2

Km
S

� �
_x1 þ

x1

Km
S

_x2 ¼ �kcx4 ð34Þ

x2

Km
S

_x1 þ
x2

Km
S

1þ x1

Km
S

� �
_x2 ¼ 0 ð35Þ

_x3 ¼ kcx4 ð36Þ

� x2

Km
S

_x1 �
x1

Km
S

_x2 þ _x4 ¼ 0 ð37Þ

which can then be linearised as:

ðdij þ GijkxkÞ _xj ¼Wijxj ð38Þ

where dij is the Kronecker delta, and

Gijk ¼
1=Km

S

�1=Km
S

0

8><
>:

if ½i; j; k� ¼ ½1;1;2�; ½1;2;1�; ½2;1;2�; ½2;2;1�
if ½i; j; k� ¼ ½4;1;2�; ½4;2;1�

Else
ð39Þ

Wij ¼
�kc

kc

0

8><
>:

if ½i; j� ¼ ½1;4�
if ½i; j� ¼ ½3;4�

Else
ð40Þ

The derivative terms can then be isolated from the non-deriva-
tive terms, leading to:

_xk ¼ ðdij þ GijkxkÞ�1Wijxj ð41Þ

Multiple enzymatic reactions can be modelled simultaneously
by adding the differential equation for each enzyme’s ES complex
into the differential equation for their corresponding enzyme and
substrate (i.e. Eqs. (28) and (29) respectively). For example, an
enzyme that targets two substrates will be governed by the follow-
ing dynamic equation:

½ _EF � ¼ �
½EF �
Km

1
½ _SF1� �

½EF �
Km

2
½ _SF2� �

½SF1�
Km

1
½ _EF � �

½SF2�
Km

2
½ _EF � ð42Þ

This additional process can be implemented directly through
the tensors. For n number of reactions within a network, the global
dynamic equation is simply constructed by performing element by
element summation of corresponding tensors from each individual
enzymatic reaction r:

GðGlobalÞ
ijk ¼

Xn

r

GðrÞijk ð43Þ

WðGlobalÞ
ij ¼

Xn

r

WðrÞ
ij ð44Þ

The dynamic equation can also be generalised to include other
reactions. Fundamental unimolecular and bimolecular reactions,
if included, would appear as an additional sum on the right hand
side of Eq. (41). An external input can be implemented as an arbi-
trary function of the time and state variables, which appears on the
right hand side of the equation. Thus, the fully generalised equa-
tion, which includes other reactions, is:

_xk ¼ ðdij þ GijkxkÞ�1½Vijkxixj þWijxþ riðtÞ þ f iðt;~xÞ� ð45Þ

where Vijk is a three dimensional tensor containing bimolecular rate
constants, Wij is a two dimensional tensor containing unimolecular
rate constants, ri is a one dimensional tensor containing synthesis
type rate parameters and f iðt;~xÞ is a vector of arbitrary functions
of external inputs or other kinetic models. We refer to Eq. (45) as
the dQSSA. By expressing the kinetic equation in this way, the
model topology is now captured by the location and value of non-
zero tensor elements.

What remains is a method for calculating the initial conditions
for the quasi-steady state system. As the equation uses free and
bound forms as state variables, it is initially unknown how much
of the system’s reactants are bound within the complex for exam-
ple. What is known instead is the total concentration of each spe-
cies. Thus distribution of the total concentration into free and
bound parts can be determined by simulating the addition of the
total concentrations into an empty system using the dynamic
equation (Eq. (45)). If the addition is made much faster than the
reactions in the system, then the complex formation can be sepa-
rated from the system’s evolution. As an in silico system, it is pos-
sible to simulate an infinitely fast addition. This is done by setting
all terms within the square brackets of Eq. (45) to zero, which stops
all non complex formation reactions from taking place. The sys-
tem’s transient initial concentrations can then be ‘‘injected’’ into
the system through the f iðt;~xÞ parameter using an injection profile
qssaðtÞ (i.e. qssaðtÞ ¼ f iðt;~xÞ). This is the only term within the square
bracket that will be non-zero. The idea is the initial total concen-
trations are injected into the system which is allowed to equili-
brate into its quasi-steady state without the transient non-quasi-
static reactions explicitly running.

The only requirement for the input profile qssaðtÞ, is thatR tend
0 qssaðtÞdt ¼ x0 where tend is the end time of the additional sim-

ulation. This requirement states that the integrated rate of addition
equals the total initial concentration. In practice, a Gaussian profile
achieves the most accurate result due to its initially slow increase
which minimises numerical error. The resulting steady state from
this simulation defines the quasi-steady state initial concentra-
tions of the kinetic simulation.



Fig. 2. The hypothetical network constructed for in silico model validation. Network
is illustrated in accordance for the Systems Biology Graphical Notation (SBGN) [45].
(A, B) and (C, D) Belong to two different pathways which cross-talk when I (circular
species) is added. This activates shaded reactions and enables formation of shaded
species. The numbers in parentheses next to the species refer to their indices in the
model equations in the computational program (Doc S5).
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3.2. In silico validation

Whilst one of the goals of the dQSSA is to maximise the mecha-
nistic accuracy of individual enzymatic reactions, this is secondary
to the primary goal of achieving reliable predictions of the beha-
viour of arbitrarily large enzyme networks. This was verified by
benchmarking the dQSSA against the predictions made by the
mass action implementation of the same network. As the mass
action model is mathematically verbose, this presents a practical
limit on the size of the network that can be conveniently tested.
Thus, a hypothetical small but complex network was designed
such that it can be practically implemented whilst achieving the
two verification goals.

The network was designed with an activator I which flips the
network between two regimes (Fig. 2). The first regime (the I-off
network), is designed to satisfy the simpler secondary goal of
mechanistic accuracy. The only active reactions are unimolecular,
bimolecular and a reversible enzyme reaction (the reverse reaction
for reaction 10 is technically active in the I-off network, but as it is
unfavoured, its effects are mostly negligible). This allows us to iso-
late the performance of the dQSSA within a controlled enzymatic
system. A separate arm also tests the dQSSA’s ability to model
fundamental reactions. The second regime (the I-on network),
opens the network to topological complexity which allows us to
assess the ability of the dQSSA to handle networks with complex
coupling between reactions. The following coupling mechanisms
were tested:

� An enzyme with two substrate targets.
� A substrate that is targeted by two enzymes.
� A substrate that is itself an enzyme.

The kinetic parameters for the reactions in this hypothetical
model were mostly randomly generated, with the exception of
the following:

� The catalytic rate of the enzymatic reaction designated as the
‘‘forward reaction’’ is always larger than the direction desig-
nated as the ‘‘reverse reaction’’.
� The rapid equilibrium condition is enforced by setting the two

dissociation rate constants of an enzymatic reaction to be one
hundred times larger than the two catalytic rates of the reversi-
ble enzyme reaction.
� So as to not unnecessarily bias the Michaelis constants of the

reaction, the two randomly generated enzyme-substrate
association rate constants are also made one hundred times lar-
ger than their randomised values.

This was done in order to benchmark the models in a parameter
independent way.

In the one thousand randomly generated parameter sets, the
dQSSA model closely matched the time course of the mass action
models, both in the I-off network and I-on network. At equilibrium,
the average percentage difference between the two models was
0.5% over 1000 simulations (Fig. 4a, representative time courses
shown in Doc S3) This I-off network verified that the dQSSA can
replicate the mass action based reversible enzyme model whilst
the I-on network showed that the dQSSA can accurately model
the system behaviour with complex couplings in the network. We
also investigated the performance of the Michaelis–Menten model
in this scenario. We found that in many cases, the Michaelis–
Menten model was inconsistent with the mass action and dQSSA
model results, with an average difference of 9.7% over 1000 sim-
ulations (Fig. 4b, representative time courses shown in Doc S3).

As seen in the theoretical analysis, this is most likely due to a
violation of the low enzyme assumption of Eq. (26). Therefore,
we further investigated whether this inconsistency requires the
low enzyme assumption to be violated throughout the whole net-
work, or whether a single instance is sufficient to cause inaccura-
cies in the whole network. To investigate this, we tested
parameters such that the low enzyme assumption in all reactions
except the forward direction of reaction 9. As such, the
Michaelis–Menten model should be consistent with the other
two models during the I-off phase but inconsistent in the I-on
phase. The parameters used are given in Table 1. We found that
all three models were consistent during the I-off phase (Fig. 3).
However, in the I-on phase, the dQSSA and mass action model
remained consistent with each other whilst the Michaelis–
Menten model became inconsistent and varied between 7% and
45% consistency at equilibrium. The A and pA states had a differ-
ence of approximately 20% even though these are not directly
related to the species involved with the high enzyme concentration
reaction. Hence, this result demonstrates that violation of the low
enzyme assumption even in just one reaction can lead to non-triv-
ial discrepancies in the Michaelis–Menten model’s predictions.

Whilst the dQSSA was found to be significantly better than the
Michaelis–Menten model at matching the mass action model’s pre-
dictions, the linearisation of the dynamic equation and the inclu-
sion of a matrix inversion increases the model’s computational
cost. For example, in our hypothetical network, we found that the



Table 1
Parameters of the in silico system. Parameters used for the in silico validation result shown in Fig. 3.

Mass Ac�on dQSSA and Michaelis-Menten

ka1f 5 ka5r 0.1 kd9f 100 Km9f 0.2

kd1f 1000 kd5r 100 kc9f 1 Km1f 202 Km5r 1001 kc9f 1 

kc1f 10 kc5r 0.1 ka9r 0.5 kc1f 10 kc5r 0.1

ka1r 0.5 k6 0.4 kd9r 1000 k6 0.4 Km9r 2001

kd1r 1000 ka7f 5 kc9r 0.5 Km1r 2001 kc9r 0.5

kc1r 0.5 kd7f 1000 ka10f 5 kc1r 0.5 Km7f 202

k2 0.02 kc7f 10 kd10f 1000 k2 0.02 kc7f 10 Km10f 202

k3 0.05 ka7r 0.5 kc10f 10 k3 0.05 kc10f 10

k4 0.05 kd7r 1000 ka10r 0.5 k4 0.05 Km7r 2001

ka5f 1 kc7r 0.5 kd10r 1000 kc7r 0.5 Km10r 2001

kd5f 100 k8 0.02 kc10r 0.5 Km5f 100.5 k8 0.02 kc10r 0.5

kc5f 10 ka9f 1000 k11 0.5 kc5f 10 k11 0.5

Concentra�ons

[A]0 [B]0 [C]0 [D]0 [I]0

1.0 1.0 1.0 1.1 10.0
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dQSSA model (including solving for the initial conditions) required
approximately 3 times longer to solve when compared to the mass
action model (Fig. 4c). The accuracy of the dQSSA for estimating
kinetic parameters was also tested by fitting the dQSSA model to
the mass action generated time course with artificial noise with sig-
nal to noise ratio of 5 was added. It was found that fitted parameters
are at most different by an average of 20% and the uncertainty of the
fitted parameters covers the true parameter value (see Doc S3). This
demonstrates that the dQSSA is useful in parameter estimation
against experimental time course data.

3.3. Experimental validation

Thus far, the in silico validation demonstrated good agreement
between the mass action model and the dQSSA whilst highlighting
the deficiency in the Michaelis–Menten model. To determine its
practical significance, we extended our comparison to an in vitro
setting, modelling the action of LDH.

LDH is a well-characterised enzyme which reversibly converts
pyruvate and reduced nicotinamide adenine dinucleotide (NADH)
to lactate and NAD+. The reaction mechanism for LDH (Fig. 5)
involves the ordered binding of the coenzymes (NADH or NAD+)
to LDH followed by the subsequent binding of its corresponding
substrate (pyruvate or lactate, respectively) [35]. The transfer of
an electron between the coenzyme and the substrate then reversi-
bly occurs in the ternary complex as part of the catalytic process.
As LDH appears to be an enzyme that satisfies the ‘‘rapid equi-
librium’’ assumption, this reversible catalysis can be viewed as
two distinct reactions as described in Section 2.2 [36]. Thus, it is
ideal for verifying whether the in silico difference found between
the dQSSA model and the Michaelis–Menten model seen in
Section 3.2 translates in vitro.

As this is a real system, the first step involved characterising the
kinetic constants in both directions. The reactions were run in the
irreversible regime by adding equimolar concentrations of the
reactant and coenzyme of the relevant reaction direction. The con-
stants were then obtained by least squares fitting of the initial con-
centration and reaction velocity using a Lineweaver Burk plot
(Fig. 6a and b). The time course of the reaction was run with a
low time resolution to smooth out the kinetics of the transient
phase, and the reaction velocity was calculated using the first 5
time points to smooth out other experimental noise that can skew
this parameter The dissociation constants of the coenzymes were
then determined by fitting the predicted time course with the
experimental time course, which describes the kinetics of the sys-
tem when all four reactants are present. Four representative fits
are shown in Fig. 6c–f (see Doc S4 for the full set of data used).
This approach was taken as the progression of the reaction caused
all four reactants to become present. We reasoned that this causes
the effect of coenzyme competition for the LDH to become present,
which can be used to determine the dissociation constants. The
resulting parameters are shown in Table 2 and were found to be
in good agreement with that found in the literature [37,38].

At this point, it was necessary to verify the generated model. It
is expected that when a reaction is initiated in a single direction,
the presence of the opposing coenzyme will cause inhibition as
some enzyme is bound with the wrong coenzyme. Given the quan-
titative nature of the dQSSA model, the degree of inhibition should
be correctly predicted by the two models. As such, prediction of the
change in initial reaction velocity of the pyruvate to lactate reac-
tion, under varying concentration of NAD+ was used as the validat-
ing experiment. A good agreement was found between the dQSSA
model’s prediction and the observed result (Fig. 7). On the other
hand, the Michaelis–Menten model gave a different prediction
from the dQSSA model which was a poorer fit to the experimental
results (Fig. 7). Using an odds ratio quantification of the goodness
of fit, the dQSSA is the better model with an odds ratio
O = 2.3�1028 in favour of the dQSSA model. This shows that the
dQSSA is able to make accurate temporal conditions for enzyme
reactions under physiological conditions, and that the Michaelis–
Menten model is inaccurate in a non-trivial way.

4. Discussion

The motivation behind this study was to resolve the conflicting
goals of model simplicity (both mathematical and dimensional)
and model accuracy when choosing an enzyme kinetic model to
use in simulating biochemical networks. As we demonstrated in



Fig. 3. In the hypothetical network, the dQSSA is consistent with mass action
kinetics whilst the Michaeli–Menten model is not. Time courses of the network
simulation were predicted by the mass action model (crosses), Michaelis–Menten
model (pluses) and dQSSA model (crosses). The total (i.e. free and in complex)
concentration of each species are shown to enable a fair comparison between
models (a–c). I is only added at t = 10 s (d).

Fig. 4. Average error and computing times over multiple in silico runs. Histograms
showing the (a) average fraction error between the dQSSA and mass action models,
(b) average error between the Michaelis–Menten and mass action models, (c)
spread of dQSSA compute time over mass action compute time, across 1000
computation runs. For (a) and (b), larger values are worse as they indicate a larger
average difference between model predictions. For (c), smaller values are better as
this indicates a better computational efficiency in simulating the system.
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the theoretical section, the most realistic model of enzyme
kinetics, the fully reversible enzyme kinetic model, requires six
rate parameters. The simplest model, the Michaelis–Menten
model, only requires two. Each step of simplification, however,
requires increasingly restrictive assumptions, some of which are
not necessarily true in physiological conditions, such as the reac-
tant stationary assumption in the Michaelis–Menten model. The
resulting model, the dQSSA, aims to resolve this by retaining the
reduced number of defining parameters of the simplest model
whilst retaining the accuracy of the most complex model possible.
When the dQSSA was tested, it was found to computationally
match the accuracy of the fully reversible enzyme kinetic model
both in a single cyclic reaction, and in a multienzyme complex net-
work. Whilst these were promising results, the dQSSA is more
computationally expensive, requiring more computing time to
solve. This was, however, justified as the Michaelis–Menten
prediction was significantly different from the dQSSA and mass
action predictions when any reactions violated the low enzyme
limit. This improved accuracy was found to also apply to an
in vitro scenario, with the dQSSA model predicting the kinetic
behaviour of LDH under a condition of coenzyme induced
inhibition.

These results have shown that it is possible to resolve the conflict
between model accuracy and complexity, with the dQSSA model
being able to achieve the accuracy of the reversible enzyme kinetic
model, and achieve the parameter reduction of the Michaelis–
Menten and tQSSA models. This enables improved uniqueness in fit-
ted models, whilst the mechanistic accuracy improves predictive
reliability of the model. This is especially important in large net-
works which have large parameter dimensionalities and limited
kinetic data [3,39–41]. Ultimately, this can also help to shift the
analysis of models from parameter analysis (such as parameter
range, parameter sensitivity) to model topology (such as the interac-
tion between species and their mechanisms) when understanding



Fig. 5. The model mechanism of LDH binding. Network is illustrated in accordance for the SBGN. The numbers denote the species ID in the mathematical model. The light
grey and dark grey regions make up the enzymatic reactions that are abstracted by the dQSSA and Michaeli–Menten models. The kinetic parameters associated with them are
shown in the shaded region. The remaining reactions adapted from [35].

Fig. 6. Derivation of the LDH kinetic parameters. The Lineweaver–Burk plot for the (a) pyruvate to lactate reaction and (b) lactate-to-pyruvate reaction, with the best fit line
used to determine Km and kc (Table 2). (c)–(f) Representative time courses used for fitting the Ki for coenzymes. The remaining time courses used are presented in Figs. S1–4.
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discrepancies between the model and the data [4]. This also helps
reduce the practical problem of computational burden during
parameter fitting, which increases exponentially with parameter
number, far exceeding the three fold increase in computational time
associated with solving the dQSSA [42].
Table 2
Parameters and residuals of LDH system. Parameters used for the in vitro LDH system
shown in Fig. 6 and the residuals for the best fit used to obtain them.

Michaelis–Menten dQSSA (value)

Value Residual Value Residual

NADH Ki
NHð Þ (M) 9.23 � 10�9 4.2 � 104 9.83 � 10�9 3.0 � 104

NAD+ Ki
NHþð Þ (M) 3.79 � 10�7 N/A 3.79 � 10�7 N/A

Km
Pyð Þ (mM) 1.25 � 10�4 9.5 � 105 1.27 � 10�4 9.5 � 105

kc
Pyð Þ (s�1) 78.9 79.3

Km
Lacð Þ (mM) 1.30 � 10�2 2.0 � 106 1.35 � 10�2 2.0 � 106

kc
Lacð Þ (s�1) 62.8 63.3
Whilst the model does not account for all physical mechanisms
involved in the interchange between intermediate complexes, its
focus is on the general existence of intermediate complexes and
simulating conditions that more closely resemble the in vivo con-
text. Although the initial quantity of the intermediate complex can-
not be measured in vitro using steady state techniques in our in vitro
assay, it can be achieved using high-throughput, highly-sensitive
spectrometric techniques [43]. The excellent agreement between
our model prediction and in vitro experimental data in the LDH
example, even using a predicted rather than measured initial [ES],
shows that indeed this additional detail can greatly improve the
dQSSA’s performance as compared to the Michaelis–Menten model,
which justifies its use in modelling physiological systems.

There are other advantages in using the dQSSA. As mentioned in
the introduction, systems modellers must currently choose from a
plethora of enzyme kinetic models of different complexities, such
as the inclusion of product inhibition. As the dQSSA was derived



Fig. 7. The dQSSA model predicts coenzyme competition better than the Michaelis–
Menten model. The pyruvate-to-lactate reaction was conducted in the presence of
increasing concentrations of the opposing coenzyme, NAD+ (see Section 6). The
initial velocity of these reactions (Vi) was then normalised to the initial velocity
without NAD+ (Vi0). Data shown are mean ± SEM from six experiments performed
with four replicate wells per condition.
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using only the rapid equilibrium assumption, it retains most fea-
tures of the mass action based model, encompassing all simplified
models of the reversible enzyme kinetic model. Thus, the dQSSA is
able to model a wide variety of enzyme mediated biological pro-
cesses from post translational modifications in signalling, to meta-
bolic processes. A drawback of our model is that it models a single
substrate process whilst most biological enzyme processes are two
substrate processes, which includes a coenzyme. Two substrate
processes are beyond the scope of this paper, but they, along with
other network complexities, can be incorporated into the current
model using mass action as we did in our in vitro LDH model.
Nonetheless, coenzyme levels are rarely a focus of current systems
models. As such, unlike our approach using the in vitro model, the
coenzyme concentration could be implicitly included in the cat-
alytic rate of a single substrate reaction as is done conventionally
[4]. For this purpose the dQSSA could be implemented without
any additional mechanisms.

Overall, we have shown that the dQSSA can act as a faithful sub-
stitute for the reversible enzyme kinetic model in cases where the
rapid equilibrium assumption is valid, and allow all single sub-
strate enzyme kinetic models to be collapsed into a single model.
It should be noted that the dQSSA requires the rapid equilibrium
assumption to be satisfied to produce accurate predictions. That
is the dissociation rate for enzymatic reactions must be con-
siderably larger than the catalytic rate. Thus this model would be
less accurate for modelling enzymes which do not satisfy rapid
equilibrium, such as carbonic anhydrase or acetylcholinesterase,
meaning the full mass action model would be required.
Nonetheless, the addition of a quasi-steady state model for rever-
sible enzyme reaction has the additional benefit of merging the
enzymology understanding of enzyme kinetics, which is based on
the reversible enzyme kinetics model, and the systems biology
application of enzyme kinetics, which has typically been based
on irreversible Michaelis–Menten kinetics.

The dQSSA model can also improve the way models are con-
structed and communicated. Conventionally, systems models are
constructed and communicated using non-linearised rate equa-
tions. Whilst this is an unambiguous way of describing a model,
it can become verbose for large models – it is not uncommon to
find equations spanning over many pages [9]. In the case of the
dQSSA, the rate equation remains in the same form regardless of
the system studied. Instead, the model topology is changed by
varying the element values within the tensors in the rate equation.
Whilst the population of the dQSSA tensors elements is complex
and unintuitive, this can be automated using computer algorithms
by creating rules relevant to different reaction schemes. The shift
in focus from rate equation to topology in describing biochemical
models has some support in the literature, with the Systems
Biology Markup Language (SBML) project attempting to overcome
model ambiguity and verbosity in a similar way [44,45]. The dQSSA
is well suited to the SBML approach since the rules governing how
reactions are implemented are independent of the topology of the
network and hence universal. As such, topology can be easily cre-
ated using the dQSSA’s framework.

Conversely, the model topology of a dQSSA model can in princi-
ple be inferred from the tensor elements, which means dQSSA
models can be communicated by providing the tensor structures.
This also enables system topology to be inferred by fitting tensor
values to experimental time courses and dose response data. In
practice, this is not currently possible as the size of the tensor
scales as n3 for n number of species in the model. Nonetheless, with
continued improvements in computational software (e.g. optimi-
sation techniques) and hardware (e.g. memory), there remains
potential for this approach to become practical in the future.
5. Conclusion

A linear algebraic equation describing the kinetics of enzyme
reactions under the quasi-steady state assumption has been
derived in a fully generalised differential form. The resulting
dQSSA model can describe reversible enzyme reactions using only
four parameters and can be approximated into irreversible form
using only two parameters. The model is consistent with the mass
action equivalent and does not require reanalysis when applied to
enzymes that have multiple substrate targets and substrates that
have multiple targeting enzymes, thus being particularly well sui-
ted to modelling complex biochemical systems. Finally, the model
can faithfully simulate the underlying biochemical mechanism of
enzyme action as verified by its ability to replicate the kinetic
behaviour of LDH. Since the dQSSA is an enzyme kinetic model
with lower dimensionality than the mass action model, it can
reduce complexity of systems models of enzymatic reaction net-
works such as cell signalling pathways and metabolic networks,
in turn improving the quality of model predictions and inferences
of key biological processes.

6. Materials and methods

6.1. In silico validation

To satisfy the design requirements of the in silico validation, a
hypothetical complex network was constructed with:

� Unidirectional reactions (reaction 2, 4, 6, 8, 11).
� A bimolecular binding reaction (reaction 3).
� Some enzyme reactions (reaction 1, 5, 7, 9, 10).
� A single substrate enzyme (species I).
� A multiple substrate enzyme (species p1B, pCD).
� A single enzyme substrate (species CD).
� A multiple enzyme substrate (species B).
� A substrate that is itself an enzyme for a different species (spe-

cies A).

All species in the network start at a concentration of zero except
the species A, B, C and D. I is added to the system with an input
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velocity profile given by a Gaussian function with peak at t1/2 and
width tw:

IðtÞ ¼ I0
1

0:2
ffiffiffiffiffiffiffi
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p exp �1

2
ðt � t1=2Þ2

t2
w

 !
ð46Þ

The network was adapted into three models: a mass action
model, a Michaelis–Menten model and a dQSSA model. The mass
action model was constructed using mass action kinetics for
fundamental reactions, and the full mass action form of enzyme
kinetic reactions given by Eqs. (2)–(4). Each enzymatic reaction
contains 6 rate parameters. All other reactions contain one. As
such, this model required 41 parameters in total: 36 rate parame-
ters and 5 concentration parameters. Equations for this model can
be found in the computer code in Doc S5.

For the dQSSA and Michaelis–Menten models, the 6 enzyme
reaction parameters are simplified into 4 as per the quasi-steady
state assumption. This resulted in 31 parameters: 26 rate parame-
ters and 5 concentration parameters. The dQSSA model was con-
structed as given in Eq. (45). The tensors were assigned as per
the rules given in Eqs. (20) and (21).

The 41 parameters for the mass action model were generated
using Eq. (47). The probability generating function was chosen
such that their logarithm is uniformly distributed between [�1,1].

log ð/Þ ¼ rand ½�1;1� ð47Þ

The parameter modifications described in Section 3.2 for
satisfying rapid equilibrium were then applied to the generated
parameter set.

The resulting network was simulated using Matlab’s ode15s
function, with a relative tolerance of 1� 10�5 in the following way:

(1) For the dQSSA model, the initial conditions were found by
solving Eq. (45) with tensors V and W set to zero only at this
step and with rðtÞ set to add the transient initial concentra-
tions of A, B, C and D with a Gaussian time profile centred at
t = 0.5 s and width = 0.01 s to the system. The time course
was solved for t = [0,1]s.

(2) The mass action, Michaelis–Menten and dQSSA models were
then solved for t = [0, t1/2 � 10tw]s. The Gaussian input for I
was included in this simulation.

(3) The three models were then solved for t = [t1/2 � 10tw,
t1/2 + 10tw]s, using the final concentration from the previous
run as the initial condition.

(4) The three models were then solved for t = [t1/2 + 10tw, tend]s,
using the final concentration from the previous run as the
initial condition.

(5) The results were then stitched together.

Simulations were performed in three stages because of lim-
itations involved with the ODE15s routine.

Average error and average computing time was calculated over
1000 iterations. The average computing time was determined
using the ‘‘tic’’ and ‘‘toc’’ function in Matlab, with the total time
summed from the simulation time of each phase. The average error
for the dQSSA was calculated using all free and complex states
compared to their mass action counterpart at equilibrium. For
the Michaelis–Menten model, the error was compared to the
equivalent state in the mass action model after all complexes are
dissociated (e.g. [A]tot = [A] + [A � B] + [A � p1B]) again at equi-
librium. The following equation was then applied.

erri ¼
0 if ½dQSSAi� ¼ ½MAi�

log 10 dQSSAi½ ��MAi½ �j j
min dQSSAi½ �; MAi½ �ð Þ

� �
else

8<
: ð48Þ
errortot ¼ 10

Xn

i¼1

erri

n ð49Þ

where i is the model states to be summed over, excluding states
where [dQSSAi] = [MAi]. This gives a rough measure of the scale of
the difference, rather than the absolute differences, which can
become dominated by states with large concentrations.

6.2. In vitro validation

6.2.1. Experimental materials
Rabbit muscle L-LDH with a concentration of 5 mg/mL

(10127876001) was purchased from Roche Diagnostics. NADH
(43420), NAD+ (N0632), sodium pyruvate (P4562), sodium lactate
(L7022) and Corning polystyrene black-bottom microtitre plates
(3915) were purchased from Sigma–Aldrich. Phosphate buffered
solution (PBS) was used as the buffer due to its activating effects
on LDH [46]. It was made internally using 0.36 (w/v)% Na2HPO4,
0.02 (w/v)% KCl, 0.024 (w/v)% KH2PO4 and 0.8 (w/v)% NaCl.

6.2.2. In vitro experiments
To derive the kinetic constants, equimolar solutions of sub-

strate and cofactor (NADH and pyruvate, NAD+ and lactate) were
prepared in PBS. 50 lL of each solution was added to the 96 well
plate in 4 replicates. LDH solution (4 U/L, 100 nM) was similarly
prepared in PBS diluted and 50 lL injected into each well.
Experiments were run in polystyrene black flat bottom 96 well
plates (Corning 3915). Enzyme kinetics were measured by the
fluorescence of NADH in a Fluostar Omega plate reader
(kEx = 355 nm, kEx = 450 nm, 5 flashes per well), with 250 reads
per well recorded over 300 s. The gain was calibrated using an
NADH standard curve (in PBS, without other substrates or LDH),
which was prepared in each experiments in 4 replicates from 0
to 5 mM (100 lL total volume). It was also found that presence
of NAD+ significantly reduced the fluorescence of the NADH.
This decay was measured using a standard curve of 0–50 mM
of NAD+ in the presence of 0.3 mM of pyruvate and NADH. The
observed fraction drop in fluorescence is then fitted to an
exponential decay to model the absorbance of NAD+. The result-
ing model is shown in Doc S4. Acquired fluorescence were con-
verted to [NADH] using this standard curve and model of
absorbance by [NAD+].

The initial velocity was calculated by fitting a straight line
through the first 5 linear points of each time course, averaged over
each technical replicate. We assume that the products of the reac-
tion (or the reactants of the reverse reaction) are negligible at this
time, allowing us to analyse each half reaction individually. The
kinetic parameters, Km and kc , were determined by fitting the ini-
tial reaction velocities to the initial concentrations on a
Lineweaver–Burk plot. The NADH and LDH dissociation constant
and NAD+ and LDH dissociation constants were the parameters
remaining to be determined. Since these are quick processes, the
dissociation rate was fixed at 1000 s�1. From there it was found
that, given the fast rate of association and dissociation between
the enzyme and the coenzymes, the important parameter deter-
mine how NADH and NAD+ competes for binding with LDH was
in fact the ratio between the NADH–LDH dissociation constant
and the NAD+–LDH dissociation constant. As such, the NAD+ and
LDH dissociation constant was fixed at 4.0 � 10�7 M based on
literature [37]. From there the NADH–LDH dissociation constant
was identified using the full time course of the reactions used to
identify the enzymatic rate parameters. We did this by taking
advantage of the fact that the four reactants become present at
the reactions evolve beyond the initial regime where only two
reactants are present.
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To investigate the inhibitory effects of NAD+ on the pyruvate to
lactate reaction, the initial velocity of the reaction initiated using
100 lL solutions of pyruvate and NADH (0.3 mM) in the presence
of increasing concentrations of NAD+ (0–10 mM).
6.2.3. Design of the mathematical model
Since the Michaelis–Menten model is a single substrate

enzyme kinetic models, the ordered bi–bi nature of LDH was
separated into the enzyme and coenzyme binding step (Eqs.
(50) and (51)), followed by the enzymatic step (Eqs. (52) and
(53)). The reaction velocity in the enzymatic step is a function
of LDH-coenzyme and free substrate concentration. This reaction
velocity (Eq. (52) for the pyruvate to lactate reaction, and Eq. (53)
for the lactate to pyruvate reaction) was then subtracted from the
rate equation of both the free coenzyme (Eq. (54) for the pyru-
vate to lactate reaction and Eq. (55) for the lactate to pyruvate
reaction) and free substrate (Eq. (57) for the pyruvate to lactate
reaction and Eq. (58) for the lactate to pyruvate reaction) to
simulate the consumption of both chemical species by the
enzyme reaction (and conversely for the products). The
Michaelis–Menten model is constructed using the following
equations:

v1 ¼ 1000=Ki
NHð Þ½NADH�½LDH� � 1000½NADH—LDH� ð50Þ

v2 ¼ 1000=Ki
NHþð Þ½NADþ�½LDH� � 1000½NADþ—LDH� ð51Þ

v3 ¼ kc
Pyð Þ
½Py�½NADH—LDH�
½Py� þ Km

Pyð Þ
ð52Þ

v4 ¼ kc
Lacð Þ
½Lac�½NADþ—LDH�
½Lac� þ Km

Lacð Þ
ð53Þ

d½NADH�=dt ¼ �v1 � v3 þ v4 ð54Þ

d½NADþ�=dt ¼ �v1 � v3 þ v4 ð55Þ

d½LDH�=dt ¼ �v1 � v2 ð56Þ

d½Py�=dt ¼ �v3 þ v4 ð57Þ

d½Lac�=dt ¼ v3 � v4 ð58Þ

d½NADH—LDH�=dt ¼ v1 ð59Þ

d½NADþ—LDH�=dt ¼ v2 ð60Þ

The tensors in the dQSSA model of this system were populated
as per Eqs. (61)–(63), using the coupled irreversible enzyme reac-

tion form. The rate parameters used are the Ki (dissociation con-
stant) of LDH–NADH and LDH–NAD+ and the Km and kc of the
lactate and pyruvate reactions. The readout from the models is
the total NADH concentration (both free and bound forms).

Gijk ¼

1=Km
Pyð Þ

�1=Km
Pyð Þ

1=Km
Lacð Þ

�1=Km
Lacð Þ

0

8>>>>>>>><
>>>>>>>>:

if ½i; j; k� ¼ ½3;3;6�; ½3;6;3�; ½6;3;6�; ½6;6;3�
if ½i; j; k� ¼ ½10;3;6�; ½10;6;3�

if ½i; j; k� ¼ ½4;4;7�; ½4;7;4�; ½7;4;7�; ½7;7;4�
if ½i; j; k� ¼ ½11;4;7�; ½11;7;4�

Else

ð61Þ
Vij ¼

�1000=Ki
NHð Þ

1000=Ki
NHð Þ

�1000=Ki
NHþð Þ

1000=Ki
NHþð Þ

0

8>>>>>>>>><
>>>>>>>>>:

if ½i; j; k� ¼ ½1;1;5�; ½5;1;5�
if ½i; j; k� ¼ ½6;1;5�

if ½i; j; k� ¼ ½2;2;5�; ½5;2;5�
if ½i; j; k� ¼ ½7;2;5�

Else

ð62Þ
Wij ¼

�1000
1000
�kc

Pyð Þ

kc
Pyð Þ

�kc
Lacð Þ

kc
Lacð Þ

0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

if ½i; j� ¼ ½6;6�; ½7;7�
if ½i; j� ¼ ½1;6�; ½5;6�; ½2;7�; ½5;7�

if ½i; j� ¼ ½1;10�; ½3;10�
if ½i; j� ¼ ½2;10�; ½4;10�
if ½i; j� ¼ ½2;11�; ½4;11�
if ½i; j� ¼ ½1;11�; ½3;11�

Else

ð63Þ

Since both models contain the initial enzyme-coenzyme bind-
ing phase which we are not interested in, the simulation is run
in two phases. The first phase sets the catalytic rates for both
enzyme reactions to zero. This enables the enzyme-coenzyme
binding reactions to equilibrate before the reaction begins. The cat-
alytic rates are then reset to their required value and the time
courses captured. The simulation is then run for 10 s before deter-
mining the initial velocity, since the Michaelis–Menten system
needs to some time to settle into its new transient quasi-steady
state first, giving a more accurate representation of the predicted
initial velocity.

6.2.4. Parameterisation of the model
The first parameters to be fitted were the Km and kc of the cat-

alytic reactions. This was done by fitting the regression line of the
Lineweaver–Burk plot of the initial velocities of the reactions. The
residual e for this fitting routine is:

e ¼
X

i

ðy� liÞ
2 ð64Þ

This allows the enzymatic parameters Km and kc to be deter-

mined independently of the Ki of LDH-coenzyme formation
because the concentration of the competitive coenzyme was zero
at the beginning of the reaction. Once the enzymatic parameters

were fitted, the Ki of LDH-coenzyme formation was fitted using
the Nelder–Mead simplex method. The residual e in this case is:

e ¼
X

i

y� li

ri

� �2

ð65Þ
6.2.5. Model comparison
The odds ratio was used to compare the models in their ability

to predict the data. This was calculated using:

O ¼ PðMdQSSAjDÞ
PðMMMjDÞ

ð66Þ

where O is the odds ratio, M is the model and,

PðMijDÞ ¼ Pi exp
1
2

y� li

ri

� �2
 !

ð67Þ

where y is the model prediction, li is the mean of the experimental
data and ri is the standard deviation of the experimental data.
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