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Abstract: Quantitative real-time PCR was used to monitor the expression of 15 Verticillium dahliae’s
genes, putatively involved in pathogenicity, highly (HAV) and weakly aggressive (WAV) V. dahliae
isolates after either (i) elicitation with potato leaf, stem, or root extracts, or (ii) inoculation of potato
detached petioles. These genes, i.e., coding for Ras-GAP-like protein, serine/threonine protein
kinase, Ubiquitin-conjugating enzyme variant-MMS2, NADH-ubiquinone oxidoreductase, Thiore-
doxin, Pyruvate dehydrogenase E1 VdPDHB, myo-inositol 2-dehydrogenase, and HAD-superfamily
hydrolase, showed differential upregulation in the HAV versus WAV isolate in response to plant
extracts or after inoculation of potato leaf petioles. This suggests their potential involvement in the
observed differential aggressiveness between isolates. However, other genes like glucan endo-1,3-
alpha-glucosidase and nuc-1 negative regulatory protein VdPREG showed higher activity in the
WAV than in the HAV in response to potato extracts and/or during infection. This, in contrast, may
suggest a role in their lower aggressiveness. These findings, along with future functional analysis
of selected genes, will contribute to improving our understanding of V. dahliae’s pathogenesis. For
example, expression of VdPREG negatively regulates phosphorus-acquisition enzymes, which may
indicate a lower phosphorus acquisition activity in the WAV. Therefore, integrating the knowledge
about the activity of both genes enhancing pathogenicity and those restraining it will provide a guild
line for further functional characterization of the most critical genes, thus driving new ideas towards
better Verticillium wilt management.
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1. Introduction

Verticillium wilt, caused by V. dahliae or V. albo-atrum, is a major disease that engenders
significant yield losses in potato production, valued at millions of dollars each year [1].
Additionally, referred to as potato early dying (PED), this disease can cause 5 to 12 metric
tons of tuber yield loss per hectare, and result in up to 90% disease severity [1–4]. Previous
research showed a correlation between the density of V. albo-atrum in the soil and severity
of wilt symptoms under favorable conditions [5]. V. dahliae has a larger host range than
V. albo-atrum [1], affecting more than 200 dicotyledonous plant species including flowers,
oilseed and fiber crops, fruits, vegetables, and woody perennials [1,4].

V. dahliae produces microsclerotia that can be released in the soil and remain viable for
10 to 15 years [4,6]. Microsclerotia germinate in response to stimulation by root exudates
secreted in the rhizosphere [7] and later reach the plant roots [8]. V. dahliae can enter the
susceptible plants from the root tip, then extend to cross the endodermis and penetrate the
young xylem elements, finally reaching the vascular cylinder [9]. V. dahliae sporulates in the
vascular tissue and moves following the sap stream, but may be trapped in pit cavities [8].
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Their conidia germinate in the vessel end walls and penetrate the adjacent elements for
future propagation in the host [8].

Plants have evolved a series of defense mechanisms against V. dahliae [10]. Some plant
species such as tomato, pea, and cotton, can compromise the expansion of V. dahliae by
increasing the production of lignin-like phenolic polymers or lignin depositions in cortical
plant cell walls [11,12]. In tomato, Ve-mediated plant resistance to V. dahliae involves the
accumulation of lignin [13], which can decrease microsclerotia’s viability even in crop
residues in the soil [14]. Additionally, plants accumulate several enzymes, including perox-
idase, phenylalanine ammonia-lyase (PAL), and cinnamyl alcohol dehydrogenase, which
are involved in plant resistance to V. dahliae [11,13]. Similarly, cotton plant cells reinforce
their walls by the accumulation of polysaccharides (callose and cellulose) and release
phytoalexins (i.e., coumarins, terpenoids) in response to infection by V. dahliae [15–17].
When V. dahliae enters the xylem vessels, plant vascular cell walls may produce coating ma-
terials such as cellulose to prevent fungal horizontal spread. In addition, the neighboring
parenchyma cells produce paramural deposition such as pectin, callose, and cellulose [18].

Commonly used strategies to manage Verticillium wilt in crops include cultural
practices such as crop rotations, and sometimes the use of fumigants [19]. However, none
of these methods provide full control of the disease. Crop rotation of up to 5 years does not
suppress the disease effectively [20] due to the long-lasting survival of microsclerotia in
soil and the wide host range of V. dahliae [1,6]. Furthermore, once V. dahliae enters the plant
vascular tissues, no fungicide were shown to control it [8].

Understanding the molecular mechanism that make V. dahliae a strong pathogen,
including the identification of genes that are critical for infection [21], would set the ground
for the development of better alternative approaches to control the wilt disease it causes.
A previous proteomics study showed differential accumulation of a set of proteins in
highly aggressive versus weakly aggressive isolates of V. dahliae [22]. Another study
demonstrated differential gene expression in a highly versus weakly aggressive isolates
in response to potato root extracts [23]. One of these genes, an isochorismatase hydro-
lase, was later found to be involved in V. dahliae’s interference with potato’s SA defense
pathway [24]. The differentially expressed proteins Thioredoxin (VdTRX) (VDAG_04529),
NADH-ubiquinone oxidoreductase (VDAG_09026), Pyruvate dehydrogenase E1 compo-
nent subunit beta (VdPDHB) (VDAG_01642), Ubiquitin-conjugating enzyme variant MMS2
(VDAG_05365), HAD-superfamily hydrolase (VDAG_08490), Serine 3-dehydrogenase
(VDAG_09532), and Wos2 (VDAG_08865), were visible only in the highly aggressive
isolate’s profile [22]. Genes encoding Ras-GAP like protein (VDAG_01012), Xanthine
dehydrogenase (VDAG_07735), myo-inositol 2-dehydrogenase (VDAG_08205), and DNA-
(apurinic or apyrimidinic site) lyase (DNA AP lyase) (VDAG_02445), were also upregulated
in the highly aggressive isolate in response to root extracts from both susceptible and mod-
erately resistant potato cultivars [23]. Genes such as those coding for serine/threonine
protein kinase (VDAG_04632), glucan endo-1,3-alpha-glucosidase agn1 (VDAG_04101),
DNA repair protein RAD51 (VDAG_08796), and nuc-1 negative regulatory protein preg
(PREG) (VDAG_06766) were upregulated in both highly and weakly aggressive isolates
in response to potato root extracts [23]. The two transcriptomic and proteomic studies
by El-Bebany et al. [22,23] clearly showed the differential ability of highly versus weakly
aggressive isolates to express genes and/or proteins both constitutively in vitro, or as a
response to potato root extracts. We chose 15 most prominent of those genes and proteins
for further investigation in the current study, as they previously showed involvement in
host-pathogen interaction. For example, Agn1 codes for an important enzyme during
cytokinesis in fission-yeast. It is delivered to the interface between the cell wall and out
layer of primary septum, and then participates in cell separation [25–29]. A ubiquitin bind-
ing site of Yeast Ubiquitin E2 Variant (UEV) Protein MMS2 is essential for DNA-damage
tolerance controlled by the RAD6 pathway [30]. Serine 3-dehydrogenase is involved in the
catabolism of serine. A serine 3-dehydrogenase in mammalian fungi pathogen Paracoccid-
ioides lutzii interacts with host macrophages and may play roles in colonization and spread
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into the host [31,32]. Myo-inositol dehydrogenase is essential for inositol and inositol
phosphate metabolism in aerobacter, the ability of nitrogen fixation and nodulation for
host in Sinorhizobium fredii, and rhizopine utilization in S. meliloti [33–35]. Ras-GAP protein
and serine threonine protein kinase are involved in close-related signaling transduction,
controlling cell differentiation and proliferation. Ras protein regulates signaling trans-
duction in cell growth and differentiation in both mammals and fungi. Ras-GAP protein
inactivates Ras protein by accelerating the conversion from GTP-bound Ras active state to
GDP–bound inactive state [36,37]. Serine/threonine protein kinases play important roles in
signal transduction for fungal development and proliferation as well as in morphogenesis
changes during infection [38]. The Ras family proteins can be activated by serine/threonine
protein kinase [39]. Moreover, Ras protein can also control serine/threonine protein ki-
nase to regulate the pathogenicity in various fungi [40–42]. Wos2 is important for cell
proliferation in the yeast S. pombe [43]. Pyruvate dehydrogenase E1 component subunit
beta is required for full assembly of the Pyruvate dehydrogenase multienzyme complex
(PDHc), while full functionality of this complex is critical in catalyzing pyruvate into
acetyl-CoA [44–47]. Xanthine dehydrogenase catalyzes xanthine to uric acid and also
participated in purines and pyrimidines oxidation in various organisms including chicken
and Arabidopsis thaliana [48–52].

As the next step, the objective of this study was to assess the expression pattern of
these most prominent 15 genes, clustered in different groups according to their functions
(i) in response to elicitation with different potato extracts, and (ii) during infection of the
petiole of detached potato leaves by each of two V. dahliae isolates with contrasting levels of
aggressiveness. For this purpose, and to mimic as much as possible what happens in nature,
we first assessed the gene expression in V. dahliae in response to potato plant exudates;
then, we investigated their expression during infection of potato detached leaves. Thus
far, no studies have assessed the expression of these genes with respect to understanding
their potential involvement in pathogenicity of V. dahliae. In addition, this study provides
an integrated overview of how the most prominent genes express during two important
phases of their lifecycles: induction by plant exudates and actual tissue infection.

2. Results
2.1. Isolate Aggressiveness and Disease Assessment

The highly aggressive isolate (Vd1396-9) induced significantly more disease measured
as total AUDPC of “percentage of infection” and “disease severity” than the weakly
aggressive isolate (Vs06-07) or water control (Figure 1A,B). The plant growth rate of potato
inoculated with Vd1396-9 was significantly lower than that of the other two treatments
(Figure 1C). Potato plants inoculated with Vd1396-9 exhibited more symptoms at 5 weeks
after inoculation (WAI) than plants inoculated with Vs06-07 or water (Figure 1D). The
percentage of infection of plants inoculated with the weakly aggressive isolate was only
slightly higher than in the water control, but significantly lower than with the highly
aggressive one (Figure 2A). The plants inoculated with the weakly aggressive isolate
showed similar disease severity and plant growth rates as water controls (Figure 2B–D).
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Figure 1. Pathogenicity analysis of the highly (Vd1396-9) and weakly aggressive (Vs06-07) V. dahliae
isolates on the susceptible potato cultivar Kennebec. (A) Total AUDPC of percent infection; (B) total
AUDPC of disease severity; (C) growth rate of potato plants per week (cm); (D) potato plants infected
with WC, Weakly and Highly aggressive isolates at 5 weeks after inoculation. WC: Water control
treatment; Weakly: weakly aggressive V. dahliae isolate Vs06-07; Highly: highly aggressive V. dahliae
isolate Vd1396-9. Error bars refer to standard errors. The macro PDMIX800.sas [53], α = 0.05 was
applied to mean values separated by least squared means, and into grouped letters’ results. Values
(n = 3) with the same letters are not significantly different (p < 0.05).

2.2. Differential Fungal Gene Expression in Response to Elicitation with Potato Extracts and
Inoculation

All of the 15 genes/proteins used in this research were processed for prediction for
fungal signal peptides and effectors by machine-learning with SignalP 5.0 (http://www.cbs.
dtu.dk/services/SignalP/ (accessed on 7 March 2021)) [54] and EffectorP (http://effectorp.
csiro.au/ (accessed on 7 March 2021)) [55,56]. Glucan endo-1,3-alpha-glucosidase agn1 was
predicted as a secretory protein with a probability of 0.9129 (Supplementary Table S1 and
Figure S1). Ubiquitin-conjugating enzyme variant MMS2, Serine 3-dehydrogenase, and
myo-inositol 2-dehydrogenase were predicted as fungal effectors (Table S2).

Most of the selected investigated genes in the current study showed higher expression
in the highly aggressive isolate during infection of the detached leaves. However, the
same genes exhibited different expression patterns depending on elicitation of potato root,
stem, or leaf extracts. In this study, gene expression with fold change ≥ 2 were defined as
up-regulated, and fold change ≤ 0.5 were defined as down-regulated.

2.2.1. Genes Involved in Cell Differentiation and Proliferation

Four genes involved in cell differentiation and proliferation were assessed: Ras protein,
serine/threonine protein kinase, Wos2, and glucan endo-1,3-alpha-glucosidase. Most of
these genes were upregulated (fold change ≥ 2) in both highly and weakly aggressive iso-
lates of V. dahliae in response to elicitation with different potato extracts (Figure 2A,C,E,G).
The expression of both Ras-GAP and serine/threonine protein kinase was more noticeable
in the highly than the weakly aggressive isolate in response to the stem extracts (Figure
2A,C).

During infection of detached potato leaves, both tested isolates had increases in
transcripts of Ras-GAP, serine/threonine protein kinase, and endo-1,3-alpha-glucosidase
(Figure 2B,D,F).

http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://effectorp.csiro.au/
http://effectorp.csiro.au/
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Figure 2. Expression of genes involved in cell differential and proliferation under different treatments.
Expression of (A) Ras-GAP like protein, (C) serine/threonine protein kinases, (E) glucan endo-1,3-
alpha-glucosidase and (G) VdWos2 in the highly (Vd1396-9) and the weakly (Vs06-07) aggressive
V. dahliae isolates in response to elicitation with different potato extracts: leaf, stem, root extracts.
Expression of (B) Ras-GAP like protein, (D) serine/threonine protein kinases, (F) glucan endo-1,3-
alpha-glucosidase and (H) VdWos2 in the highly (Vd1396-9) and the weakly (Vs06-07) aggressive V.
dahliae isolates in response to infection of detached potato leaves at 1, 3, 5, and 8 DAI. WC: Water
control treatment; Weakly: weakly aggressive V. dahliae isolate Vs06-07; Highly: highly aggressive
V. dahliae isolate Vd1396-9; ND: Non-detectable. Error bars refer to standard error. The macro
PDMIX800.sas [53], α = 0.05 was applied to mean values separated by least squared means, and into
grouped letters’ results. Values (n = 3) with the same letters are not significantly different (p < 0.05).
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The accumulation of Ras-GAP transcripts was significantly higher in the highly ag-
gressive isolate than the weakly aggressive one (Figure 2B). This was evident throughout
the entire monitored period, but especially so at the early stages of infection (Figure
2B). Serine/threonine protein kinase gene reached a maximum expression in the highly
aggressive isolate from 5 to 8 DAI, which was also significantly higher than the weakly
aggressive one at 8 DAI (Figure 2D). The expression of endo-1, 3-alpha-glucosidase in the
weakly aggressive isolate peaked at 5DAI and was higher than in the highly aggressive
isolate during infection of detached leaves. In the same experiment, the expression of Wos2
was downregulated in both isolates (fold change ≤ 0.5) (Figure 2F,H).

2.2.2. Genes Involved in DNA Repair

We assessed the expression of three genes involved in DNA damage repair of post-
replicative processes. DNA-(apurinic or apyrimidinic site) lyase, ubiquitin-conjugating
enzyme variant MMS2, and DNA repair protein RAD51 had been well investigated in
yeast and mammals [57–61].

In most cases in our study, these three genes were up regulated in one or both isolates
in response to potato extracts (Figure 3A,C,E). The expression of DNA-(apurinic or apyrim-
idinic site) lyase and RAD51 coding genes were higher in the weakly aggressive isolate
following exposure to the potato root extract (Figure 3A,E). RAD51-coding gene, also
exhibited the same response to leaf extract (Figure 3E). We also noted increased expression
of RAD51-coding gene in the pre-infection stage in the weakly aggressive isolate (Figure
3E). During infection of detached leaves, only the DNA-(apurinic or apyrimidinic site)
lyase-coding gene showed an increase (fold change ≥ 2) in both V. dahliae isolates (Figure
3B). The expression of this gene also increased with root extract elicitation, suggesting its
involvement in both pre-infection and infection stages. The expression of the MMS2-coding
gene in the weakly aggressive isolate during infection was suppressed (fold change ≤ 0.5)
and significantly lower than in the highly aggressive isolate (Figure 3D). The expression of
RAD51-coding gene was opposite to MMS2, in that its expression in the highly aggressive
isolate was lower than in the weakly one at 1 and 8 DAI (Figure 3F).

2.2.3. Genes Related to ROS Production and Cleavage

Two genes related to ROS balance, thioredoxin (Trx) and NADPH ubiquinone oxidoreductase-
coding genes, were assessed. Both isolates increased their expression of Trx in response
to potato root extract elicitation and during detached leaf infection (Figure 4A,B). How-
ever, during detached leaves’ infection, in the highly aggressive isolate, Trx reached a
dramatically high level of expression at 5 DAI and then fell back down at 8 DAI (Figure 4B).
Overall, Trx expression was still higher than in the weakly aggressive isolate (Figure 4B).
The expression of NADH-ubiquinone oxidoreductase-coding gene increased in the highly
aggressive isolate in response to all three forms of potato extracts, though only the stem ex-
tract was statistically significant (Figure 4C). During detached leaf infection, its expression
in the highly aggressive isolate was only slightly increased at 8 DAI, whereas its expression
in the weakly aggressive isolate was significantly lower than in the highly aggressive isolate
from 5 DAI (Figure 4D).
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Figure 3. Expression of genes involved in DNA repair under different treatments. Expression of (A)
DNA-(apurinic or apyrimidinic site) lyase, (C) ubiquitin-conjugating enzyme variant MMS2, and (E)
DNA repair protein RAD51 in the highly (Vd1396-9) and the weakly (Vs06-07) aggressive V. dahliae
isolates in response to elicitation with different potato extracts: leaf, stem, root extracts. Expression
of (B) DNA-(apurinic or apyrimidinic site) lyase, (D) ubiquitin-conjugating enzyme variant MMS2,
and (F) DNA repair protein RAD51 in the highly (Vd1396-9) and the weakly (Vs06-07) aggressive V.
dahliae isolates in response to infection of detached potato leaves at 1, 3, 5, and 8 DAI. WC: Water
control treatment; Weakly: weakly aggressive V. dahliae isolate Vs06-07; Highly: highly aggressive
V. dahliae isolate Vd1396-9. Error bars refer to standard error. The macro PDMIX800.sas [53], α =
0.05 was applied to mean values separated by least squared means, and into grouped letters results.
Values (n = 3) with the same letters are not significantly different (p < 0.05).
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Figure 4. Expression of genes involved in ROS regulation under different treatments. Expression of
(A) Thioredoxin (Trx) and (C) NADH-ubiquinone oxidoreductase in the highly (Vd1396-9) and the
weakly (Vs06-07) aggressive V. dahliae isolates in response to elicitation with different potato extracts:
leaf, stem, root extracts. Expression of (B) Trx and (D) NADH-ubiquinone oxidoreductase in the
highly (Vd1396-9) and the weakly (Vs06-07) aggressive V. dahliae isolates in response to infection of
detached potato leaves at 1, 3, 5, and 8 DAI. WC: Water control treatment; Weakly: weakly aggressive
V. dahliae isolate Vs06-07; Highly: highly aggressive V. dahliae isolate Vd1396-9. Error bars refer to
standard error. The macro PDMIX800.sas [53], α = 0.05 was applied to mean values separated by
least squared means, and into grouped letters results. Values (n = 3) with the same letters are not
significantly different (p < 0.05).

2.2.4. Genes Related to Cellular Metabolism

Cellular metabolism includes many chemical reactions involved in maintaining nor-
mal life for an organism. The expression of Serine 3-dehydrogenase, pyruvate dehydro-
genase E1 component subunit beta, xanthine dehydrogenase, myo-inositol dehydroge-
nase, and nuc-1 negative regulatory protein VdPREG coding genes, all involved in cell
metabolism, were assessed. These genes are involved in catabolism of serine, conversion of
pyruvate to Acetyl-CoA, oxidative metabolism of purines and pyrimidines, inositol, and
inositol phosphate metabolism, and the regulation of the activity of transcription factor
NUC-1, respectively [31,35,44,46,48,51,62,63].

In general, the expression of Serine 3-dehydrogenase, pyruvate dehydrogenase E1
component subunit beta and xanthine dehydrogenase increased in both V. dahliae isolates
in response to potato extracts (Figure 5A,C,E). During infection, the expression of Serine
3-dehydrogenase and xanthine dehydrogenase was significantly up-regulated over time in
the highly aggressive V. dahliae isolate. However, the expression of these two genes in the
weakly aggressive isolate either decreased or did not change (Figure 5B,F). In addition, the
highly aggressive isolate exhibited more transcripts of serine 3-dehydrogenase in response
to root extracts (Figure 5A). This was also true for the highly aggressive isolate’s expression
during infection of detached leaves (Figure 5B). Serine 3-dehydrogenase, pyruvate dehy-
drogenase E1 component subunit beta, and xanthine dehydrogenase all exhibited higher
activities in the highly than the weakly aggressive V. dahliae isolate (Figure 5A–F).
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Figure 5. Expression of genes related to cellular metabolism under different treatments. Expression of
(A) Serine 3-dehydrogenase, (C) Pyruvate dehydrogenase E1 component subunit beta, (E) Xanthine
dehydrogenase, (G) Myo-inositol dehydrogenase, and (I) VdPREG in the highly (Vd1396-9) and the
weakly (Vs06-07) aggressive V. dahliae isolates in response to elicitation with different potato extracts:
leaf, stem, root extracts. Expression of (B) Serine 3-dehydrogenase, (D) Pyruvate dehydrogenase
E1 component subunit beta, (F) Xanthine dehydrogenase, (H) Myo-inositol dehydrogenase, and (J)
VdPREG in the highly (Vd1396-9) and the weakly (Vs06-07) aggressive V. dahliae isolates in response
to infection of detached potato leaves at 1, 3, 5, and 8 DAI. WC: Water control treatment; Weakly:
weakly aggressive V. dahliae isolate Vs06-07; Highly: highly aggressive V. dahliae isolate Vd1396-9;
ND: Non-detectable. Error bars refer to standard error. The macro PDMIX800.sas [53], α = 0.05 was
applied to mean values separated by least squared means, and into grouped letters’ results. Values
(n = 3) with the same letters are not significantly different (p < 0.05).
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The expression level of myo-inositol dehydrogenase-coding gene in the highly ag-
gressive isolate was up-regulated in response to potato extracts and during infection of
detached leaves, but we were unable to detect its expression in the weakly aggressive
isolate in any of the treatments (Figure 5G,H). The expression of nuc-1 negative regulatory
protein VdPREG in the weakly aggressive V. dahliae isolate was significantly higher than
in the highly aggressive one under all treatments, as well as during infection at 8 DAI
(Figure 5I,J).

2.2.5. Genes Related to Detoxification

HAD superfamily hydrolase constitutes the largest branch of phosphatases superfam-
ily [64,65]. In Escherichia coli and S. cerevisiae, several homologues of HAD-like hydrolase
coding gene were identified [66,67]. These homologues have a role in the detoxification of
2-deoxyglucose or phosphorylated glycerol phosphates and carbohydrates [66,67].

The expression of HAD in V. dahliae was not significantly different between the two
isolates in response to potato extracts (Figure 6A). However, during the detached leaves’
infection, HAD superfamily hydrolase transcripts accumulated more in the highly aggres-
sive isolate (Figure 6B). Following infection, there was an increasing versus decreasing
expression trends in the highly versus weakly aggressive isolates, respectively (Figure 6B).
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Figure 6. Expression of genes related to detoxification under different treatments. (A) Expression of
HAD superfamily hydrolase in the highly (Vd1396-9) and the weakly (Vs06-07) aggressive V. dahliae
isolates in response to elicitation with different potato extracts: leaf, stem, root extracts. (B) Expression
of HAD superfamily hydrolase in the highly (Vd1396-9) and the weakly (Vs06-07) aggressive V.
dahliae isolates in response to infection of detached potato leaves at 1, 3, 5, and 8 DAI. WC: Water
control treatment; Weakly: weakly aggressive V. dahliae isolate Vs06-07; Highly: highly aggressive
V. dahliae isolate Vd1396-9. Error bars refer to standard error. The macro PDMIX800.sas [53], α =
0.05 was applied to mean values separated by least squared means, and into grouped letters results.
Values (n = 3) with the same letters are not significantly different (p < 0.05).

3. Discussion

V. dahliae causes one of the most devastating potato diseases, leading to great losses
worldwide [1]. Comprehending the molecular mechanisms of infection, colonization, and
tissue damage are important tools towards the development of sustainable management
of this disease in the field [1,4]. This study provides more comparative details about the
quantitative expression of 15 genes involved in different cellular processes in two V. dahliae
isolates possessing differential levels of aggressiveness (highly aggressive Vd1396-9 versus
weakly aggressive Vs06-07). The 15 genes included in the current study showed differential
expression when comparing a highly and a weakly aggressive isolates, and in response to
potato root extracts [23]. In order to provide as complete a picture as possible, we assessed
the expression of these 15 V. dahliae genes in two different settings that would relate to two
different phases of V. dahliae’s interaction with potato in nature. Firstly, our assessment of
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gene expression in V. dahliae in response to plant exudates mimics the pre-infection phase
when the pathogen senses the presence of the host roots. Secondly, assessment of gene
expression in detached petiole/leaves mimics a phase in the host infection process.

Ras-GAP-like protein, serine/threonine protein kinase, Wos2, and glucan endo-1,3-
alpha-glucosidase are involved in regulating cell differentiation and proliferation. The
increased activity of the above mentioned genes during exposure to potato extracts, or
during infection process, shows that these genes may be involved in spore germination
and other cellular processes leading to infection by V. dahliae. This result is in line with
previous findings in Candida albicans (behaves as a pathogenic yeast in human under
specific conditions), which showed transient increases in Rho1-GAP (Rho1 belongs to
Ras family) and WOS2 during a morphogenesis switch from a less-virulent yeast to a
more-virulent filamentous form [68]. Ras-GAP’s involvement parallels findings that Ras-
GAP is important for cell differentiation, such as yeast in bud formation of Saccharomyces
cerevisiae [69] and hyphal growth, conidiation, and mitosis of Aspergillus nidulans [70].
Moreover, Rac1, another member of Ras superfamily, cooperates with p21-activated kinase
Cla4, controlling the location of ROS, then in turn impacting the polarized growth and
virulence of V. dahlia [71].

The similar expression trends of Ras-GAP and serine/threonine protein kinase during
the detached leaves’ infection mirror those from the stem extract treatment, which suggests
that Ras-GAP and serine/threonine protein kinase may work in a similar model, or even
in the same signal pathway, in V. dahliae. It has been shown in numerous studies that
Ras-GAP-related Ras is essential for virulence or infection-related structure formation in F.
graminearum, M. oryzae, and A. fumigatus [40–42], and its function involves serine/threonine
protein kinases such as MAP kinase and sometimes protein kinase A (PKA) [72,73]. This is
in support of our finding that Ras-GAP and serine/threonine protein kinase express more
in response to elicitation with stem extracts and infection of detached leaves by the highly
aggressive isolate than the weakly aggressive one. Meanwhile, a PKA catalytic subunit
gene VdPKAC1 was found to be important for conidia and microsclerotia production, as
well as pathogenicity in V. dahliae [74]. All of this indicates that the small GTPase signaling
pathway in V. dahliae, including Ras-GAP and serine/threonine protein kinase, may have
an important role in the infection and morphogenesis processes related to pathogenicity,
and may also play important roles in differential aggressiveness between isolates.

In M. oryzae, disruption of transcription factor Tup1 induced a loss of pathogenic-
ity and an increase in glucan endo-1, 3-alpha-glucosidase’s (MoAgn1) expression [75].
This indicates that a high activity of MoAgn1, controlled by the pathogenicity-related
transcription factor Tup1, may be associated with low pathogenicity. Interestingly, a β-1,6-
endoglucanase gene, VegB, involved in degrading chitin and β-glucan, was also identified
in V. dahliae. Single gene disruption did not significantly affect virulence compared to
wild-type strains [76]. However, double-disruption mutants for both VegB and VdPKAC1
in V. dahliae showed higher virulence than the single mutant VdPKAC1 [76], suggesting that
VegB may negatively regulate the PKA-related signaling pathway’s role in pathogenicity.
In our work, the expression of endo-1, 3-alpha-glucosidase in V. dahliae also exhibited a
transient increase in the weakly aggressive isolate. We hypothesized that the more aggres-
sive V. dahliae isolate may have down-regulated the activity of endo-1, 3-alpha-glucosidase
to accommodate the stress conditions in place during infection of the host.

In response to pathogen attacks, plants produce a great number of ROS that can induce
DNA damage and restrict the expansion of pathogens [77]. In S. cerevisiae, homologues of
RAD6 and RAD18 are involved in both the error-free post-replication DNA repair and the
REV3-mediated mutagenesis pathways [78–84]. MMS2 is only involved in the error-free
post-replication DNA repair mode [78]. All three genes involved in DNA repair showed
an increased expression in response to potato extracts. Based on our results, DNA repair
proteins could help V. dahliae to recover from DNA damage. This is in line with a RAD14
transient induction during transition from a less virulent to a more virulent state in C.
albicans [68]. However, RAD51 showed a higher activity in weakly aggressive isolate than
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in highly aggressive one. We speculated that this protein might be more sensitive in lower
aggressive isolates in response to DNA damage caused by plant defense mechanisms.
In Helicobacter pylori, the disruption of a homologue of DNA-(apurinic or apyrimidinic
site) lyase increased sensitivity to oxidative stress and reduced the colonization rate as
compared to the wild type [79,85]. This indicates that DNA-(apurinic or apyrimidinic site)
lyase is involved in aiding bacteria’s survival under stress conditions and plays a role
in its ability to colonize the host [85]. This is similar to our findings and indicates that
this homologue in both isolates may help V. dahliae survive stress conditions, including
DNA damage during infection. Ubiquitin-conjugating enzyme variant MMS2 transcripts
contribute more in the highly aggressive isolate during the infection process. This is also
similar to the findings on the human pathogen Paracoccidioides brasiliensis, where MMS2
was significantly elevated while infecting oral keratinocytes cell [86], indicating its function
during infection.

In fungi, ROS are critical for the control of infection morphogenesis, sexual develop-
ment, ascospore germination, and pathogenicity [87–89]. An NADPH oxidase for ROS
production, VdNoxB, and a tetraspanin VdPls1, are both important for the transcription
factor VdCrz1 activation towards penetration peg formation, then in controlling V. dahlia’s
virulence [90]. The Non-enzymatic ROS are produced in the mitochondria electron trans-
port chain [91,92]. NADH-ubiquinone oxidoreductase (complex I) is the predominant
gene responsible for the production of ROS in mitochondria of mammalian and bacterial
cells [93–96]. Homeostasis of cellular ROS is maintained by scavenging systems which
include the thioredoxin (Trx) system that consists mainly of Trx, Trx reductase (TrxR), and
peroxidase (Prx) [97]. Our findings based on Trx and NADH-ubiquinone oxidoreductase
in V. dahliae show that the ROS balance in V. dahliae responds differently in these two
isolates and when exposed to different parts of the potato plant. The dramatic increase
of TRX in the highly aggressive V. dahliae isolate, compared to the weakly aggressive
one, suggests that the Trx function in reducing ROS and maintaining ROS balance in V.
dahliae may be important for infection-related morphology and differentiation and therefore
critical during infection. Previous studies showed that the expression of Trx or TrxR in
Staphylococcus aureus, S. cerevisiae, Schizosaccharomyces pomb, C. albicans, and Cryptococcus ne-
oformans, increased in response to various stress conditions such as oxidative or nitrosative
stress [98–104]. Together, these findings suggest that the thioredoxin (Trx) ROS scavenging
system may help the highly aggressive V. dahliae to respond to oxidative stress conditions
imposed by plant defenses during colonization or at the time of infection. ROS produced
by the NADH-ubiquinone oxidoreductase-mediated non-enzymatic system may also be
involved in regulating spore germination during the pre-infection process. Therefore, ROS
regulation may be important for pathogenicity in V. dahliae and possibly for the differential
fitness of the highly aggressive isolate.

The genes involved in cellular metabolism are essential for maintaining nutrition
support and normal growth in various organisms [31,33–35,44–51,62,63,105]. In V. dahliae,
a MADS-box transcription factor VdMcm1 is critical for conidia and microsclerotia’s
formation, as well as cell-wall integrity and virulence, and its deletion also affects secondary
metabolism in V. dahliae [106]. An ubiquitin ligase (E3) enzyme controlling secondary
and lipid metabolism, named VdBre1, was identified in V. dahliae and is important for
its virulence on cotton [107]. Another V. dahliae bZIP transcription factor Atf1 was also
essential for virulence, and this protein controlled nitrogen metabolism in both V. dahliae
and F. graminearum [108]. In our study, the expression of Serine 3-dehydrogenase, pyruvate
dehydrogenase E1 component subunit beta, xanthine dehydrogenase, and myo-inositol
dehydrogenase were upregulated in V. dahliae with potato extracts elicitation and during
infection. VdPREG is a negative regulator for phosphorus acquisition, suggesting that the
phosphorus acquisition pathway may be more activated in the highly than in the weakly
aggressive V. dahliae isolate.

Several other studies show that these components of cellular metabolism are also
important for virulence. D-serine metabolism is essential for virulence and regulation of
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several virulence factors in Staphylococcus saprophyticus [109]. This supports our results in
V. dahliae that Serine 3-dehydrogenase has more activity in the highly aggressive isolate.
The importance of pyruvate dehydrogenase E1 component subunit beta in the highly
aggressive V. dahliae isolate during the pre-infection and infection stages may be suggested
by its higher expression in response to stem extracts and during infection (Figure 5C,D).
This is in line with the important role of Lipoamide dehydrogenase (Lpd), a member
of the pyruvate dehydrogenase complex family, in the pathogenesis of Mycobacterium
tuberculosis [110]. Plants produce antifungal compounds such as flavonoids to inhibit the
activity of the pathogen’s xanthine dehydrogenase in order to increase resistance to fungi
and bacteria [52,111–114]. Even though there is no direct evidence showing that xanthine
dehydrogenase is essential for pathogenicity in fungi, our results showed higher activity
of xanthine dehydrogenase in the highly aggressive isolate than the weakly aggressive
one (Figure 5E,F). This may indicate that xanthine dehydrogenase in a highly aggressive V.
dahliae may overcome these inhibitors from plants and further play a role in colonization.

Our finding on myo-inositol dehydrogenase (Figure 5G,H) also suggests that the
highly aggressive isolate utilizes this protein during the pre-infection and infection pro-
cesses. This gene may play a function in helping V. dahliae in rhizopine utilization and
viability for better colonization in the plant root, as previously shown in S. meliloti and S.
fredii [33–35]. In N. crassa, the negative regulatory factor PREG can control the activity of
transcription factor NUC-1, while NUC-1 can up-regulate the activity of the phosphorus
acquisition enzymes encoding genes during phosphorus starvation conditions [62,115,116].
Interestingly, a homolog of N. crassa NUC was identified in V. dahliae as VdNUC-2, and is
required for the pathogen’s full virulence [117]. The lower activity of PREG in the highly
aggressive V. dahliae isolate compared to the weakly aggressive one may indicate a higher
activity of the phosphorus acquisition pathway. Phosphate acquisition is important for viru-
lence in Ustilago maydis and C. neoformans and a connection was shown between phosphate
acquisition and the PKA pathway controls the fungal virulence in both pathogens [118,119].
Our findings in PREG are consistent with their research as well as our hypothesis that
a highly aggressive V. dahliae may suppress the up-regulation of PREG that is occurring
in weakly aggressive V. dahliae, in order to achieve a higher activity in NUC1 and the
phosphate acquisition pathway, as well as the serine/threonine protein kinases (such as
PKA).

Finally, HAD-like hydrolase protein can be identified in different organisms, and
studies reported their important roles in virulence in C. neoformans and in detoxification
in E. coli and in S. cerevisiae [66,67,120]. Plants produce various secondary metabolites,
proteases, and phytoalexins to ward off pathogens [121–125]. Plants also release some
endogenous peptides to induce plant defense [126]. HAD superfamily hydrolase might
help V. dahliae avoid plant toxins by detoxification and therefore play a role in virulence.
This research is in line with our findings that HAD superfamily hydrolase may have a role
to play in infection and differential pathogenic abilities of V. dahliae isolates.

4. Materials and Methods
4.1. V. dahliae Isolates

Two V. dahliae isolates, Vs06-07 and Vd1396-9, a weakly and highly aggressive isolate,
respectively [127,128], were selected for this study. Both isolates were cultured on potato
dextrose agar (PDA) 24 ± 0.5 ◦C for 14 days.

4.2. Pathogenicity Tests of V. dahliae Isolates

Kennebec, a susceptible potato cultivar to V. dahliae [127], was used for the detached
leaves inoculation and pathogenicity tests. Plants were grown in a mixture of sand, soil,
and peat moss with a ratio of 16:4:1, under a day/light temperature regimen of 22/18 ◦C
and a photoperiod of 16/8 h.

Assessment of the pathogenicity of both V. dahliae isolates was performed on potato cv.
Kennebec as described by Zhu, Soliman [24]. Briefly, three Kennebec plants (3-week-old)
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were trimmed at the root tips and placed in the conidia suspension (106 conidia/mL)
of the weakly or highly aggressive V. dahliae isolates, then planted in 6-inch pots with a
pasteurized mixture of sand, soil, and peat moss (16:4:1). The total area under disease
progress curves (AUDPC) of disease severity and percentage of infection were evaluated
as described by Zhu, Soliman [24].

4.3. Gene Selection and Primers’ Design

Fifteen genes were selected based on proteomic and subtractive hybridization/cDNA-
AFLP analyses of weakly and highly aggressive isolates in previous work [22,23]. These
include: the genes encoding Ras-GAP like protein (VDAG_01012), pyruvate dehydroge-
nase E1 component subunit beta (VdPDHB) (VDAG_01642), DNA-(apurinic or apyrim-
idinic site) lyase (DNA AP lyase) (VDAG_02445), glucan endo-1,3-alpha-glucosidase
agn1 (VDAG_04101), thioredoxin (VdTRX) (VDAG_04529), serine/threonine protein ki-
nase (VDAG_04632), ubiquitin-conjugating enzyme variant MMS2 (VDAG_05365), nuc-1
negative regulatory protein preg (VdPREG) (VDAG_06766), xanthine dehydrogenase
(VDAG_07735), myo-inositol 2-dehydrogenase (VDAG_08205), HAD-superfamily hydro-
lase (VDAG_08490), DNA repair protein RAD51 (VDAG_08796), Wos2 (VDAG_08865),
NADH-ubiquinone oxidoreductase (VDAG_09026), and serine 3-dehydrogenase (VDAG_
09532). Primer pairs for the target genes were designed based on the sequences from
Verticillium comparative genomic project available at the Broad Institute (https://www.
broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/verticillium-
comparative-genomics-pro (accessed on 7 March 2021)). The Histone H3 gene (VDAG_10035)
was used as a housekeeping gene [24] (Table 1).

Table 1. Primers used in RT-qPCR for amplifying the target genes.

Primer’s Name Primer Sequence Tm (◦C) Accession Number Amplification Length (bp)

Ras-GAP like protein-F ACGCTGTCCAACCTTCAC 53 VDAG_01012
273

Ras-GAP like protein-R GTTGATCTTGTCCCAGTCG 52.7 VDAG_01012

Pyruvate dehydrogenase E1 component subunit beta-F CTTCGGCGACAAGAGGGT 58.1 VDAG_01642
283

Pyruvate dehydrogenase E1 component subunit beta-R GGGAATGCTGCCATACCAC 58.2 VDAG_01642

DNA-(apurinic or apyrimidinic site) lyase-F CCGGCTGGGACGTTTA 55.1 VDAG_02445
152

DNA-(apurinic or apyrimidinic site) lyase-R GCGGAATCTGGTGGTTG 54.2 VDAG_02445

glucan endo-1,3-alpha-glucosidase agn1-F GCCTTCGGAAACCTCAAT 54.6 VDAG_04101
307

glucan endo-1,3-alpha-glucosidase agn1-R CTCCCATGAACTCATACGC 53.2 VDAG_04101

Thioredoxin (VdTRX)-F GCTGCTCCTGTTTATGCCTTTCCA 66.8 VDAG_04529
145

Thioredoxin (VdTRX)-R GAGGTTATGCGGCTTGTTCGT 61.8 VDAG_04529

serine/threonine protein kinase-F GGTGGGTGCGGTCAAATA 56.9 VDAG_04632
272

serine/threonine protein kinase-R AGGCATCCGTAGCACGAC 56.2 VDAG_04632

Ubiquitin-conjugating enzyme variantMMS2-F CATCCTCGGTCCTCCTCA 55.5 VDAG_05365
235

Ubiquitin-conjugating enzyme variantMMS2-R CGCCATGTACCTCCTGATC 55.6 VDAG_05365

VdPREG-F GGGAATCTGACTAGGTTTCATT 54.7 VDAG_06766
227

VdPREG-R GAGTCGGACAGACCTTTGG 54.7 VDAG_06766

Xanthine dehydrogenase-F GGCTGCTGCATGGATAAG 54.4 VDAG_07735
227

Xanthine dehydrogenase-R CCGACAAATACCGACACG 54.9 VDAG_07735

myo-inositol 2-dehydrogenase-F AGTCTGGCATCGACAATAAC 52.3 VDAG_08205
192

myo-inositol 2-dehydrogenase-R GCAGTCTCAACACGCAAA 52.6 VDAG_08205

HAD-superfamily hydrolase-F AGCCCGACCCTGCCATCTA 62.6 VDAG_08490
225

HAD-superfamily hydrolase-R GGAACTCTTGCCAGTCCTTCA 59.2 VDAG_08490

DNA repair protein RAD51-F ATGGTGAGGGCGAGATGG 58.3 VDAG_08796
153

DNA repair protein RAD51-R GGGTGTAAGCGACGGATT 55.4 VDAG_08796

VdWos2-F GTCTGCTACCAAGGCAACTCC 58.7 VDAG_08865
227

VdWos2-R TCTCCTCCGTGTCAATCTCG 58.1 VDAG_08865

https://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/verticillium-comparative-genomics-pro
https://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/verticillium-comparative-genomics-pro
https://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/verticillium-comparative-genomics-pro
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Table 1. Cont.

Primer’s Name Primer Sequence Tm (◦C) Accession Number Amplification Length (bp)

NADH-ubiquinone oxidoreductase-F ATCGGGGCGGGTCTCATT 62.1 VDAG_09026
116

NADH-ubiquinone oxidoreductase-R CCTTCGGCAGGCTTCTCC 60.3 VDAG_09026

Serine 3-dehydrogenase-F ACTTGGGCATTAAGGTGGTC 56.5 VDAG_09532
348

Serine 3-dehydrogenase-R CATCGCAGTCAGTTGTCGTAG 56.6 VDAG_09532

His3-F (Zhu et al., 2017) ATGGCTCGCACTAAGCAA 54.8 VDAG_10035
238

His3-R (Zhu et al., 2017) TGAAGTCCTGGGCAATCT 52.7 VDAG_10035

Note: The accession numbers of the genes are available in the Verticillium comparative genomic project of the Broad Institute (https://www.
broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/verticillium-comparative-genomics-pro, accessed
on 7 March 2021).

4.4. Elicitation and Inoculation Methods

The elicitation of both V. dahliae isolates with potato extracts was done following the
protocol described by Zhu, Soliman [24], and the preparation of potato extracts was done
following the protocol described by El-Bebany, Henriquez [23]. Briefly, one milliliter of 108
conidia of both isolates were added to 100 ml Czapek-Dox Broth (CDB) liquid media (Difco
Laboratories, Sparks, MD, USA) and incubated at 24 ± 0.5 ◦C for 7 days. One milliliter of
prepared potato leaf, stem, and root extracts was added into CDB medium, and mycelium
samples were harvested after 7 days of incubation in the same conditions. Three biological
replicates were prepared for each treatment.

The detached leaves infection was done using a protocol described by Zhu, Soli-
man [24]. V. dahliae isolates Vd1396-9 and Vs06-07 were grown in PDA at 24 ± 0.5 ◦C
for 21 days. Conidia were then collected and diluted in a concentration of 3 × 107 coni-
dia/mL. Clones of Potato cv. Kennebec plants were then grown in LA4 soil mix (SunGro
Horticulture, Agawam, MA 01001, USA) for 4 weeks, then one leaf was cut, placed into
1 mL of the conidia suspension, and maintained under a photoperiod of 16/8 h at 24 ◦C.
Sterilized water, was used as a control for inoculation. Four to six individual detached
leaves, each from separate plants were pooled as one sample. This was repeated three
times for each treatment at each time-point (1, 3, 5, and 8 days after inoculation (DAI)).
Samples representing the three biological replicates were immediately frozen in liquid
nitrogen and stored at −80◦C until used for RNA extraction.

4.5. RNA Extraction and RT-qPCR

Total RNA was extracted from mycelium (100 mg), and potato detached leaves
(100 mg) using the Omega Fungal RNA kit (Omega Moi-Tek, Inc., Norcross, GA, USA),
following the manufacturer’s protocol. The first strand cDNA was synthesized from 5 µg
total RNA following the manufacturer’s protocol of the Superscript first strand synthesis
kit (Life Technologies, Carlsbad, CA, USA).

Quantitative Real-Time PCR was performed for each target gene as well as for the
reference gene using SsoFast EvaGreen Super mix (Bio-Rad Lab, Hercules, PA, USA)
following the manufacturer recommendations. The 2−∆∆CT method [129] has been used to
evaluate expression of the above mentioned genes.

4.6. Statistical Analysis

Pathogenicity data and gene expression under different treatments were analyzed with
PROC MIXED in SAS Statistical Analysis Software (SAS Institute, Cary, NC, USA; release 9.1
for Windows). The normality of all data (three biological replicates, in infection experiments
each representing 4–6 leaves samples from 4–6 separate plants) was determined with PROC
UNIVARIATE, and analysis showed that data from different treatments were all qualified
for normal distribution with Shapiro–Wilk test (>0.9) and p value (>0.05), and qualified for
homogeneity based on residuals comparison to studentized residuals critical values [130].
Log10 transformation was applied to some sets of gene expression data statistical analysis.
The macro PDMIX800.sas [53], α = 0.05 was applied to mean values separated by least
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squared means, and into grouped letter results. Mean values (n = 3) with the same
letters indicate non-significant differences from each other (p < 0.05) in different sets of
experiments.

5. Conclusions

In conclusion, the expression level of most of the genes we tested increased in both
weakly and highly aggressive isolates in response to treatment with the various potato
extracts. The metabolism of pyruvate, purines and pyrimidines, inositol and inositol phos-
phate, and phosphorus acquisition may be activated more in the highly aggressive isolate
than in the weakly aggressive one in response to the various potato extracts (Figure 7).
The genes involved in ROS production (NADH-ubiquinone oxidoreductase) and small
GTPase signaling pathway (including Ras-GAP and serine/threonine protein kinase) were
also elevated in the highly aggressive isolate more than the weakly aggressive one when
exposed to potato stem extracts, suggesting a higher activity in these pathways (Figure 7).
During infection of potato detached leaves, there were more up-regulated genes in the
highly aggressive isolate than the weak aggressive one. These genes include key elements
in the small GTPase signaling pathway, which include Ras-GAP and serine/threonine
protein kinase, DNA damage repair, ROS production and cleavage, cellular metabolism,
and detoxification. These results suggest an important role for all of these pathways during
infection. This study provides a detailed follow up on the temporal expression of genes
identified in our previous studies [22,23]. Together with more recent functional analyses
of selected genes and interaction with host defense components [21,24,131], this study
provides another background to reflect on which metabolic reactions contribute to disease,
and which ones rather contribute to less disease or lack of it. The work ahead should put
emphasis on the spatiotemporal expression of these genes during these interactions in order
to fine-tune the expression map of genes that are important for the pathogen to invade its
hosts. Further functional analyses of these genes should validate their involvement in an
integrated picture of the arsenal that V. dahliae uses against its most economic hosts. This
will no doubt help us to the right direction of future management tools against Verticillium
wilt disease.
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