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An inulin (CPPF), isolated from a traditional Chinese herbal medicine Codonopsis pilosula,
was characterized and demonstrated with potential prebiotic activity in vitro before. Based
on its non-digested feature, the intestinal mucosa and microbiota modulatory effects in
vivo on immunosuppressed mice were investigated after oral administration of 200, 100
and 50mg/kg of CPPF for 7 days. It was demonstrated that the secretions of sIgA and
mucin 2 (Muc2) in ileum were improved by CPPF, and the anti-inflammatory activities in
different intestine parts were revealed. The intestine before colon could be the target active
position of CPPF. As a potential prebiotic substance, a gut microbiota restorative effect
was also presented by mainly modulating the relative abundance of Eubacteriales,
including Oscillibacter, unidentified Ruminococcus and Lachnospiraceae after high-
throughput pyrosequencing of V4 region of 16S rRNA analysis. All these results
indicated that this main bioactive ingredient inulin from C. pilosula was a medicinal
prebiotic with enhancing mucosal immune, anti-inflammatory and microbiota
modulatory activities.
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INTRODUCTION

The inulin, consisting of fructose units linked by β-(2→1) bonds and a terminal glucose by α-(1→2)
bond, remains relatively intact after transition through the digestive system (Shoaib et al., 2016). It
was demonstrated with effects of improving immune and promoting the proliferation of beneficial
bacteria, which are related with their degree of polymerization and plants species (Moreno-Vilet
et al., 2014; García Gamboa et al., 2018). All these benefits are related to body health through
positively balancing gut microbiota via increasing the abundance of beneficial bacteria and reducing
potential pathogens. The pathogens colonization were inhibited by the antagonism from organic
acids or inhibitory peptides (García Gamboa et al., 2018). Inulin is also identified with anti-obesity,
anti-diabetes, anti-inflammatory, anti-hypertension, anti-oxidative and anti-cancer activities, as well
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as exerts abilities to control inflammatory bowel disease, promote
colonic absorption of minerals and stimulate the immune system
(Karimi et al., 2015; Vogt et al., 2015; Ahmed and Rashid, 2017;
Shang HM et al., 2018; Mazraeh et al., 2019). These activities
support inulin a widely use as function foods on reducing
cardiovascular disease, lowering blood urea and uric-acid
levels (Karimi et al., 2015).

The roots of Condonopsis pilosula (Radix Codonopsis) has
been used in Traditional Chinese Medicine (TCM) for hundreds
of years. Three species of its plant sources are recorded in the
Pharmacopoeia of the People’s Republic of China, including
Codonopsis pilosula (Franch.) Nannf., C. pilosula Nannf. var.
modesta (Nannf.) L. T. Shen and C. tangshen Oliv. (Chinese
Pharmacopoeia Committee, 2020), for the treatment of
nourishing the spleen and stomach and tonifying Qi of
stomach. Modern pharmacological studies have uncovered
Radix Codonopsis with effects like immunomodulation, anti-
ulcer, lowering blood pressure, as well as intestinal flora
modulation. It has also been widely used as nutritional
supplement in China on homology as both medicine and food
(Gao et al., 2018). The polysaccharide fraction is considered as a
potential bioactive natural product possessing modulatory effect
on immunity and intestinal microbiota (Fu et al., 2018a; Peng
et al., 2018; Deng et al., 2019; Zou et al., 2019). Similar functions
of polysaccharides from C. pilosula Nannf. var.modesta (Nannf.)
L. T. Shen (CPP), have been reported in our previous studies, like
decreasing the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2),
IL-10, elevating serum ileum IgG, intestinal secretory
immunoglobulin A (sIgA), and the amount of Lactobacillus
and acetic acid content in cecum on cyclophosphamide (CY)-
induced immunosuppressed mice (Fu et al., 2018a). And inulin, a
reserve carbohydrate of Radix Codonopsis, has also been
identified with high proportion (62%, w/w) as the neutral
composition of CPP, with degree of polymerization (DP) of
2–17, and exerted underlying prebiotic activity in vitro (Fu
et al., 2018b). Therefore, we deduced that the inulin as the
main bioactive component of CPP, acts on intestinal mucosal
improvement and microbiota regulation. The active target organ
is possibly the intestine due to its non-digested property and the
conclusions in our experimental work mentioned above.
Moreover, the fermentable properties of inulin are related to
their chemical structure, especially Mw (Gibson and Delzenne,
2008). There is a possibility that certain short inulin could have
been digested completely when it arrives specific intestinal
positions, which is seldom proofed by study of inulin from
natural herbs. It is consequently of interest to figure out its
efficacy on anti-inflammation in different intestinal segments,
which could be helpful for the clinical application of inulin on
various intestinal inflammatory disease.

Therefore, in this study, the intestinal modulatory effects of
inulin from C. pilosula was evaluated from aspects of intestinal
mucosal immunity, anti-inflammatory and gut microbiota
modulatory functions on immunosuppressed mice. Among
them, a comparison of anti-inflammatory with different
intestinal segments was investigated in order to find the target
intestine location.

MATERIALS AND METHODS

Materials and Chemicals
The roots of C. pilosula Nannf. var. modesta L. T. Shen were
collected in October 2017 from Jiuzhaigou County (Tibetan
Qiang Autonomous Prefecture of Ngawa, China), and
identified by Yuan-Feng Zou, College of Veterinary Medicine,
Sichuan Agricultural University. The roots were dried and
pulverized to a fine powder, and the fructan was obtained by
DEAE-sepharose gel chromatograph, and identified as inulin-
type fructan (the fructan form C. pilosula, CPPF) (Fu et al.,
2018b).

The cyclophosphamide (CY, C8650) was obtained from
Solarbio technology Co., Ltd., (Beijing, China). The ELISA
kits, including mouse IL-1β, tumor necrosis factor-α (TNF-α),
sIgA and mucin 2 (Muc2), were purchased from Enzyme-linked
Biotechnology Co., Ltd., (Shanghai, China). The acetic acid
(71251), propionic acid (94425) and butyric acid (19215)
standards were purchased from Sigma-Aldrich (St. Louis, MO,
United States). The primeScript RT reagent kit (with gDNA
Eraser, RR047A), the TB Green Premix Ex Taq II (Tli
RNaseH Plus, RR821A) and Trizol RNA isolation reagent
were obtained from TAKARA, Japan. All other chemicals,
such as chloroform, isopropanol, etc., were of analytical grade,
obtained from the Chengdu Kelong chemical factory (Chengdu,
China).

Animal Care and Experimental Design
Sixty male specific-pathogen-free C57BL/6 mice (6–8 weeks old)
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd (Beijing China). They were maintained in
a specific pathogen-free environment, where the temperature was
25 ± 2°C, with humidity of 60%. All mice were acclimatized for
7 days with an automatically-controlled 12 h light/dark cycle and
free access to sterile food and distilled water.

Although CY is an alkylating drug used on cancer and
autoimmune disease, it has been used as an
immunosuppression-inducing agent due to its major side
effect (Wang Z et al., 2019). In this study, a stable and
classical CY-induced immunosuppression model was used to
evaluate the recovery effect of CPPF on both intestinal
immunity and microbiota modulation, according to several
previous studies (Tang et al., 2018; Zhu et al., 2018; Wang Z
et al., 2019). The mice were divided into five groups, 12 mice each.
The immunosuppressed mice (4 groups) were given 60 mg/kg
(0.1 ml/10 g body weight) CY for 3 days via intraperitoneal
injection, once a day (Fu et al., 2018a). The normal mice were
injected with 0.1 ml/10 g body weight saline as Control group.
After 3 days of CY/saline treatment, the mice were administrated
orally with freshly prepared CPPF (dissolved in saline) at dosage
of 200, 100, 50 mg/kg (dosages were set in line with that of CPP in
our previous study (Fu et al., 2018a) or saline (0.1 ml/10 g body
weight) for 7 days in succession, as CY + CPPF-H, CY + CPPF-M,
CY + CPPF-L and Control/CY groups, respectively. After 24 h of
the last administration, all mice were euthanized with carbon
dioxide followed by cervical dislocation, and the different
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segments of intestinal tissues, and the content of cecum were
separated immediately and stored at −80°C.

Determination of the Intestinal Cytokines,
sIgA and Muc 2
IL-1β and TNF-α secretions in intestine tissues (including
jejunum, ileum, and colon), and sIgA, Muc2 in ileum, were
determined using ELISA kits. The intestinal tissues were
ground in liquid nitrogen and homogenized in saline (50 mg/
ml). The supernatants after centrifugation at 2,862 g for 20 min,
4°C, were collected and determined according to the
manufacturer’s instructions.

Quantitative Real-Time PCR
RNA extraction from jejunum, ileum and colon tissues (without
content) and the quantitative real-time PCR (qRT-PCR) were
performed as previously reported (Huang et al., 2014). Briefly,
total RNA was extracted using Trizol reagent, and the quality and
nucleic acid concentration were measured using
spectrophotometer (NanoDrop 2000; Thermo Scientific,
Shanghai, China). Reverse transcription was processed
according to the manufacturer’s instructions (two-step).
Quantitative real-time PCR was performed using the Bio-Rad
CFX-96 system and TB Green Premix Ex Taq II kit. Gene
expressions were normalized related to β-Actin, with primer
sequences for SYBR Green probes of NGB obtained from
Primer Bank: β-actin (No. 6671509a1), IL-1β
(No.118130747c1) and TNF-α (No.133892368c2).

Bacteriological Analysis and the
Determination of Short-Chain Fatty Acids
The intestinal digesta of cecumwere isolated after last gavage, and
divided into two parts stored at −20°C (for SCFAs determination)
and −80°C (for the bacteriological analysis). The samples stored at
−80°C were transported to Beijing Novogene Science and
Technology Co., Ltd. under dry-ice cooling environment. The
DNA was extracted using CTAB/SDS method, and diluted to
1 ng/μL using sterile water. The V4 region of 16S rRNA was
amplified through PCR using specific primer (515F:
CCTAYGGGRBGCASCAG; 806R:
GGACTACNNGGGTATCTAAT) with the barcode, then
purified with GeneJETTM Gel Extraction Kit (Thermo
Scientific). Sequencing libraries were generated using Ion Plus
Fragment Library Kit 48 rxns (Thermo Scientific) following
manufacturer’s recommendations. The library quality was
assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific).
The library was sequenced on an Ion S5TM XL platform and
400 bp/600 bp single-end reads were generated. Sequences
analysis were performed by Uparse software (Uparse
v7.0.1001), and the analysis of diversity were calculated with
QIIME (Version1.7.0) and displayed with R software (Version
2.15.3). The concentrations of SCFAs, including acetic acid,
propionic acid and butyric acid, were detected on gas
chromatography (GC) after several procedures for
pretreatment based on the method of previous study (Fu et al.,

2018a). They were quantitated according to the standard curve
with crotonic acid as internal standard.

Statistical Analysis
The SPSS 22.0 software was used to carry out a One-way ANOVA
test, followed by LSD post-hoc test. All the experimental data
were expressed as Mean ± SD (‾x ± SD) in table andMean ± SEM
(‾x ± SEM) in figures. The p-value of 0.05 or less was considered
with statistically significance.

RESULTS

The sIgA and Muc2 Secretion Were
Promoted by CPPF
As the basic and essential immune antibody secreted in intestinal
mucosa, sIgA could be promoted by polysaccharides from plenty
of traditional medicines (Huang X et al., 2017; Sheng et al., 2017).
It was demonstrated that CPPF, in both CPPF-H and CPPF-M
groups, significantly promoted the secretion of sIgA in ileum (p >
0.05), even though it was not inhibited by CY, as shown in
Figure 1A. Mucin, one of the chemical components in intestinal
immune system, acts as the main line of defense to protect the
epithelial cells from plenty of microbiota in the gut lumen (Kim
and Ho, 2010). It was also revealed that the Muc2 secretion in
ileum was not influenced by CY, but was facilitated markedly by
CPPF in a dosage-dependent manner, as shown in Figure 1B.
These results suggested that CPPF could play a promotive effect
on intestinal mucosal immune system.

The Anti-Inflammatory Effect of CPPF in
Intestine
CY has been demonstrated with an induction of inflammatory
reaction, as well as damages on intestinal mucosa and microbiota
balance (Shang et al., 2016; Lee and Kang, 2017). While, the
biological functions of inulin have been reported through anti-
inflammation and modulation on gut microbiota as prebiotics (Li
et al., 2019). However, the degradation status of inulin in
intestinal tract is unknown so far, and whether its biological
activities would be affected is also unclear. We investigated a
polysaccharide from Ligusticum chuanxiong, the LCP-II-I, that it
only displayed antioxidant activity well before colon in vivo
(Huang C et al., 2017). Thus, the anti-inflammatory effect of
CPPF on different intestinal segments were assessed, including
jejunum, ileum and colon, in both mRNA and protein expression
aspects.

The gene expressions of IL-1β and TNF-α were significantly
increased both in jejunum and ileum after CY injection (p < 0.05)
compared with the Control group (Figures 2A,B,D,E), except
colon (p > 0.05) (Figures 2C,F). However, CPPF at high and
medium dosage inhibited these inflammatory reactions induced
by CY (p < 0.05), especially at high dosage group (p < 0.01). But,
these suppression didn’t appear in colon, as shown in Figure 2.
Given a poor expression and lower recovery effect by CPPF in
colon, the protein secretion of IL-1β and TNF-α were not
determined in further studies. Being consistent with their
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FIGURE 1 | The effect of CPPF on sIgA (A) and Muc2 (B) secretion in ileum tissue; * indicated significant difference compared with CY group, p < 0.05; ** indicated
significant difference compared with CY group, p < 0.01; # indicated significant difference compared with Control group, p < 0.05; ## indicated significant difference
compared with Control group, p < 0.01; n = 12.

FIGURE 2 | The effect of CPPF on IL-1β (A–C,G,H) and TNF-α (D–F,I,J) mRNA and protein expression in different parts of intestine tissue; * indicated significant
difference compared with CY group, p < 0.05; ** indicated significant difference compared with CY group, p < 0.01; ## indicated significant difference compared with
Control group, p < 0.01; # indicated significant difference compared with Control group, p < 0.05, n = 12.
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mRNA expression, the protein secretions of IL-1β and TNF-α in
jejunum and ileum were enhanced remarkably after CY
treatment, and were restored by CPPF (Figures 2G–J),
especially that in CPPF-H group. Hence, it was revealed that
the CPPF exerted an anti-inflammatory effect on
immunosuppressed mice, and only worked before colon.

The CPPF Modulated the Gut Microbiota
Composition
The Operational Taxonomic Units, α-Diversity and
β-Diversity Analysis
In order to study the bacterial composition of immunosuppressed
mice, theOTUs (97% consistency) were clustered on the effective tags
of all samples, and species annotation was further performed on the
representative sequences of OTUs, as shown in Figure 3. It was
classified and counted after removing low-quality sequences, and
indicated that CPPF showed a trend of increasing OTUs at different
levels comparedwithCY group (p> 0.05). Among them,OTUs value
was reduced by around 50% in CY group at species level compared
with that in Control group (p < 0.05), and was recovered after
200mg/kg CPPF administration (p < 0.05). The other two CPPF
groups also showed a recovery trend in a certain extent (p > 0.05).

All the differences and similarities of bacterial communities
between groups were revealed by the weighed UniFrac distances
at the phylum level, and displayed by PCoA analysis (Figure 4A).
Based on the reduced observed species, ACE and PD whole tree
index in α-diversity (Table 1), CY was suggested with an obvious
regulation relatively to control group (p < 0.05), and a recovery
trend by CPPF was also observed (p > 0.05). The Unweighted
Pair-Group Method with Arithmetic Mean (UPGMA) was used
to study the similarities and cluster analysis, which was showed as
a systematic clustering tree (Figure 4B). It was exhibited that the
bacteria belonging to Firmicutes were promoted after CPPF
supplement. While, the bacteria belonging to Bacteroidetes
were regulated in any group (p>0.05). The relative abundance
of other phylum, like Acidobacteria, Chloroflexi,
Gemmatimonadetes, Melainabacteria in CY treated groups,
differed with those in control group, which also demonstrated
a microbial dysbiosis affected by CY.

The Modulation of Gut Microbiota Composition by
CPPF
The relative abundance of top 10 bacteria was calculated based on
the species annotation and classification, and expressed as
histograms and heatmap both at phylum and genus levels in

FIGURE 3 | The Operational Taxonomic Units (OTUs) at Kingdom, phylum, class, order, family, genus and species levels of cecal content. * indicated significant
difference compared with CY group, p < 0.05; ** indicated significant difference compared with CY group, p < 0.01; # indicated significant difference compared with
Control group, p < 0.05; n = 7.

FIGURE 4 | PCoA (A) and UPGMA (B) analysis; C was the Control group, CPwas the CY group, CP200was the CY + CPPF-H group, CP100 was the CY + CPPF-
M group, and CP50 was the CY + CPPF-L group; n = 7.
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Figure 5. The main bacteria compositions of immunosuppressed
mice were changed, showing a remarkable lower relative
abundance of Firmicutes (like Erysipelatoclostridium,
Lachnoclostridium, Unidentified Ruminococcaceae, and
Ruminococcaceae, Supplementary Figures S1, S2),
Melainabacteria, and Actinobacteria (p > 0.05), and a higher
abundance of Bacteroidetes (like family Muribaculaceae,
Supplementary Figure S2) and Deferribacteres (p < 0.05,
Figure 6A). While the bacteria of Firmicutes phyla, such as
genus Unidentified Ruminococcaceae, Oscillibacter
(Supplementary Figures S3, S4), Lachnoclostridium,
Anaerotruncus, and Angelakisella (Supplementary Figures S4,
S5) were enhanced dramatically in mice treated with CPPF (p <
0.05), and those of Bacteroidetes were notably reduced, such as
genus Alloprevotella (Supplementary Figure S5, p < 0.05).

The difference of microbial community structure was analyzed
by the analysis of similarities (Anosim), MRPP and AMOVA (data
not shown), the species with significant change on abundance at
different levels among those five groups were found by MetaStat
method, as presented in Figure 6. It was demonstrated that CY has
led to a gut microbiota imbalance, primarily altered the bacterial

abundance of Deferribacteres (Figure 6A), Muribaculaceae
(Figure 6B), Papillibacter (Figure 6C), Lactobacillus reuteri
(Figure 6D), Mucispirillum schaedleri (Figure 6E), and
Clostridium sp ASF356 (Figure 6F). However, after
supplementation of CPPF, the abundance of bacteria of
Deferribacteres, Papillibacter and Clostridium sp ASF356, were
recovered prominently within just 7 days of treatment, compared
with CY or Control group (p < 0.05), which indicated a promising
modulatory effect of CPPF on gut bacterial community.

Moreover, in order to discover and interpret the high-
dimensional biomarkers, the LEfSe (LDA Effect Size) was used
to find the statistical differences among groups. The significantly
different species were picked out after analysis with LDA score
(above 4) and cladogram (data not shown). Muribaculaceae and
Undentified Ruminococcaceae were the two that have been
specifically modulated among such huge population, and
accordingly, a prebiotic and restorative effect against CY by
CPPF were performed (Figure 7). Briefly, the bacteria of order
Eubacteriales were mainly regulated by CPPF, including genus
Oscillibacter, Ruminococcus, Papillibacter in family
Oscillospiraceae, and Lachnospiraceae.

TABLE 1 | The statistical results of α-diversity indices.

Control CY CY +
CPPF-H

CY +
CPPF-M

CY +
CPPF-L

observed_species 498.43 ± 52.43 458.86 ± 49.54a 464.86 ± 19.66 462.57 ± 16.70 463.71 ± 29.10
ACE 536.20 ± 51.91 494.55 ± 50.42a 503.95 ± 24.95 500.60 ± 24.49 496.49 ± 33.57
PD_whole_tree 36.25 ± 4.17 31.54 ± 3.91a 32.42 ± 3.40 33.41 ± 4.48 31.02 ± 4.00a

p < 0.05; it was indicated that there was dramatically decrease of alpha diversity in CY, group compared with control group.
aIndicated significant difference compared with Control group.

FIGURE 5 | The histograms and heatmaps of bacterial composition change at phylum (A,B) and genus level (C,D); C was the Control group, CPwas the CY group,
CP200 was the CY + CPPF-H group, CP100 was the CY + CPPF-M group, and CP50 was the CY + CPPF-L group; n = 7.
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The Determination of SCFAs
It has been revealed that inulin can be metabolized into SCFAs by
microbial fermentation. The reduced gut lumen pH by SCFAs
could inhibit the proliferation of pathogenic bacteria and
stimulate intestinal peristalsis. These acids could be further
utilized by intestinal epithelial cells for protecting the integrity
of barrier function (Meijer et al., 2010). In this study, SCFAs
concentrations in the cecal content, the position rich in bacterial
community, were detected. The levels of acetic (Figure 8A) and
propionic acids (Figure 8B) were decreased significantly by CY
(p < 0.05), and the high dosage of CPPF could reverse this
reduction, even without statistical difference. The butyric acid
showed scarce change among different groups, but that in CPPF
groups displayed an underlying increase (p > 0.05), as shown in
Figure 8C.

DISCUSSION

As a common medicinal material, C. pilosula and its
polysaccharide component have presented versatile
pharmacological activities. Particularly, the polysaccharide
from C. pilosula have been evidenced possessing both prebiotic
and immunomodulatory activities in vitro or in vivo, by a range of
previous studies (Peng et al., 2018; Deng et al., 2019) and
experimental results in our group, including crude

polysaccharide CPP (Fu et al., 2018a), inulin-type fructan
CPPF (Fu et al., 2018b) and pectic polysaccharides (Zou et al.,
2019). Considering its macromolecular and non-digestible
properties in upper gastrointestinal tract, such natural
polysaccharides can reach to intestine without degradation
because of the limited hydrolysis enzymes in human (Wilson
and Whelan, 2017; García Gamboa et al., 2018). Considering the
modulation effects of Codonopsis-derived polysaccharides (Zhou
et al., 2015; Li et al., 2018; Zou et al., 2019) or inulin (Vogt et al.,
2015; Akram et al., 2019) on intestinal mucosal immune, the
intestinal mucosa and/or gut microbiota were considered as a
potential way that CPPF probably act.

Studies have demonstrated that CY destroys intestinal
mucosal system by reducing barrier function, injuring
intestinal villi and crypts, inhibiting secretion of sIgA and
damaging Peyer’s patch (Miao et al., 2015; Zhao et al., 2016;
Wang Z et al., 2019). In gastrointestinal mucosal barrier, goblet
cells continually produce mucins to replenish and maintain the
mucus barrier, where some chemical composition like sIgA is
higher concentrated (Ouwerkerk et al., 2013; Cornick et al., 2015).
The Muc2 and sIgA secretion were facilitated by CPPF, in
accordance with other inulin reported before (Ito et al., 2008;
Nagata et al., 2018). It could be directly resulted from activation of
mucosal receptors cooperated with downstream signal pathways,
or gut-associated lymphoid tissues (GALTs). Secretion cells, such
as goblet cell, Paneth cells and enteroendocrine cells could also be

FIGURE 6 | Species with significant differences at the level of class (A), family (B), genus (C), and species (D–F); * indicated that the difference between groups was
significant p < 0.05; C was the Control group, CPwas the CY group, CP200 was the CY + CPPF-H group, CP100 was the CY + CPPF-M group, and CP50 was the CY +
CPPF-L group; n = 7.
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involved (Kim and Ho, 2010; Vogt et al., 2015). It also possibly
came from the intestinal bacteria change in an indirect way (Kim
and Ho, 2010), that the abundance of certain mucus-degrading
bacteria could be reduced (Schroeder et al., 2018; van den Abbeele
et al., 2018). Thus, detailed composition changes in gut
microbiota were analyzed.

Tissues with high proliferation rate, like intestinal epithelia
cells, are vulnerable to CY because of its ability of killing dividing
cells. Those damaged cells and produced reactive oxygen species
(ROS) will induce apoptosis and up-regulate inflammatory
cytokines (Taminiau et al., 1980; Moore, 1984; Sonis, 2004).

There are numerous studies indicated that the treatment of
CY could promote inflammatory cytokine secretion like IL-1β,
TNF-α of porcine epithelial cells (Lee and Kang, 2017) or in small
intestine (Shi et al., 2017; Wang X et al., 2019). Moreover,
commercial inulin from Mexican blue agave (Agave tequilana
Weber var. azul) or Chicory have been used as nutritional
supplements with an anti-inflammatory effect in intestine
(Rivera-Huerta et al., 2017; Akram et al., 2019; Zhao et al.,
2019). However, it was very likely the first time showing the
active target location of inulin from natural medicinal plants.
Some studies indeed found an anti-inflammatory effect in

FIGURE 7 | The comparison of relative abundance of biomarkers with statistical differences between groups based on the LefSe results. The highest abundance of
each biomarker in the sample was set as 1, while the rest samples were expressed by the value of relative abundance to the highest abundance sample. The solid line
and dotted line represented the mean and median of the relative abundance of each sample respectively; C was the Control group, CP was the CY group, CP200 was
the CY + CPPF-H group, CP100 was the CY + CPPF-M group, Q18 and CP50 was the CY + CPPF-L group; n = 7.

FIGURE 8 | The effect of CPPF on the levels of SCFAs including (A) acetic acid, (B) propionic acid and (C) butyric acid in ileum tissue; C was the Control group, CP
was the CY group, CP200 was the CY + CPPF-H group, CP100 was the CY + CPPF-M group, and CP50 was the CY + CPPF-L group; N = 7.
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intestinal mucosa of polysaccharide from C. pilosula (Zhou et al.,
2015; Chen, 2016; Li et al., 2018). But no comprehensive
investigation was declared that which intestinal part it can
work on. Combing with previous studies of LCP-II-I (Huang
C et al., 2017), we now have sufficient experimental evidence
proving that these polymers could be active only before colon in
vivo, since they could already been degraded or fermented in
colon. In addition, the main factor of fermentation rate of inulin
could be the DP variation (Gibson and Delzenne, 2008). Zhao
et al. (2019) revealed that 28 days of short chain
fructooligosaccahrides (scFOS) with maximum DP of 6, could
down-regulate IL-1β expression in jejunal mucosa, but not active
in ileum. Comparatively, the DP of CPPF in our study was higher
(about 2–17) (Fu et al., 2018b), and could be degraded much
slowly and even far in intestine tract. That was probably the main
reason that CPPF displayed well on anti-inflammatory effect in
both jejunum and ileum.

Polysaccharides from marine animals, fruits, vegetables and
natural medical plants, have been found with high fermentable
andmodulatory effect by gut microbiota (Bosscher et al., 2006; Xu
et al., 2013; Shoaib et al., 2016; Shang Q et al., 2018). Although
immunosuppressed mice were treated with CPPF for only 7 days,
there was still bacterial community change observed in our
research. Some similar studies (Chen et al., 2017; Moens and
De Vuyst, 2017; Zhu et al., 2017; Hoving et al., 2018; Baxter et al.,
2019; Li et al., 2019) also manifested that the abundance of
Clostridium, Deferribacteres, Ruminococcaceae,
Lachnospiraceae or Oscillospira were regulated by several
weeks of inulin treatment. As one of probiotics,
Ruminococcceae has been well reported with a responsible
relation to polysaccharides degradation, like fucoidans and
inulin (Shang et al., 2016; Moens and De Vuyst, 2017). In this
study, a remarkable increase of unidentified Ruminococcaceae
was demonstrated by CPPF, which proved it with a prebiotic
activity. CPPF also displayed an ameliorated effect by decreasing
the amount of Mucispirillum schaedleri, which is parasitic in
intestinal mucous layer, and can easily translocate in intestinal
mucosa and activate NF-kB or PPAR-delta receptors to trigger
inflammatory response (Loy et al., 2017). The Oscillospira
recovered by CPPF is one of the butyrate-producing bacteria,
and are usually considered as protector against several pathogens
by acidifying intestinal environment. This recovery has also been
achieved by polysaccharides from purple sweet potato on
immunosuppressed mice (Tang et al., 2018). Moreover, it was
found that the Blautia in the family of Lachnospiraceae was
promoted after CPPF administration as shown in Figure 5D. It
has been proved that the relative abundance of Lachnospiraceae
has significant correlation with host physiological dysfunctions,
such as obesity, diabetes, cancer, and various inflammatory
diseases, and could be an underlying probiotic (Liu et al., 2021).

Furthermore, the relative abundance of Lactobacillus was
displayed an opposite trend with our previous results, that it
was reduced relatively in mice treated with inulin, which was also
showed in study of Hoving et al. (2018). After reviewing the
overall microflora data, we inferred that it might be due to the
different Lactobacillus species that we used in previous and
current study. And the overwhelming reduction by CY on the

abundance of other bacteria could lead to a relatively increase of
Lactobacillus. A comparatively lower abundance in CPPF groups
may therefore be observed. The dose could be another factor
leading to a lower prebiotic effect. No significant change on the
relative abundance of Bifidobacteriaceae and Lactobacillus was
observed after even above 1.25 g/kg of inulin/FOS administration
(Zhu et al., 2017).

As one of the non-digested polymers, inulin can reach to
intestine intactly, and serve as energy source for beneficial
bacteria that generate metabolites like SCFAs. The increase of
butyric acid, the main one utilized by colonocytes, was related to a
higher abundance of genera Ruminococcaceae (Biddle et al.,
2013; Fernández et al., 2016), which produces butyrate as most
abundant family in the order Clostridiales. Additionally,
Ruminococcaceae was indicated with positive correlation with
butyrate/SCFA ratio in vivo (Biddle et al., 2013). And the
Oscillibacter, Ruminococcus and Papillibacter, belonging to
family Ruminococcaceae, were all promoted by CPPF in our
study. This alteration on bacterial composition could be the main
reason of the certain high butyric acid in CPPF group compared
with CY group, similar with previous studies (Moens and De
Vuyst, 2017; Baxter et al., 2019). The acetic acid is produced by
most enteric bacteria. Its dramatically drop in cecal content could
because of the lower bacterial OTUs induced by CY. While the
less restoration in CPPF groups could be due to the lower
abundance of acetic acid-producing bacteria, like Lactobacillus
(Fernández et al., 2016) (Figure 5). The relative abundance of
genera Bacteroides, who converts sugars to beneficial metabolites,
like propionic acids (Biddle et al., 2013; Fernández et al., 2016),
were higher in CPPF-H group than CY group, and was coincident
with results of SCFAs levels. Propionic acid could be produced
mainly by ketone fermentation (e.g., fructose, arabinose and
tagatose) in vitro (Hu et al., 2013). The abundant fructose in
CPPF could be one of the reasons of its higher concentration.
Comparatively, the acetic and butyric acids are produced mainly
by aldehydes fermentation (e.g., glucose, galactose, mannose and
xylose) (Hu et al., 2013). These changes on acetic and butyric
acids are likely coming from bacteria modulated by CPPF in
current research, rather than its degradationmetabolites, as CPPF
is consisted of a lower amount of glucose relatively to fructose.
However, such advantageous SCFAs were not promoted by
CPPF. The possible reason is that the mice were not
intervened enough to show a significantly change on gut flora
and carbohydrate fermentation. And the relative abundance of
those SCFAs-producing bacteria could be influenced by
complicated micro-environment, which is also a challenge of
studies on microbiota and polysaccharide degradation.

CONCLUSION

After identification of the structural and prebiotic features, the
inulin-type fructan from Codonopsis pilosula (CPPF) was further
studied on its modulatory effect on intestinal mucosa and gut
microbiota. It was demonstrated that the intestinal mucosal
immune of CY-induced immunosuppressed mice was restored
by CPPF through promotion of Muc2 and sIgA secretions. A new
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view that the intestinal anti-inflammatory effects of CPPF only
worked before colon was also provided. The modulatory effect on
gut microbiota was also investigated, that CPPF increased the
relative abundance of Oscillibacter, unidentified Ruminococcus,
Lachnospiraceae and decreased that of Deferribacteres. It was
suggested that CPPF could be considered as the main bioactive
component of C. pilosula polysaccharide, being used as a
potential prebiotic with improving intestinal mucosal immune,
anti-inflammatory and microbiota modulation activities.
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