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Background: Although immunotherapy has achieved success in treating various refractory malignancies 
including gastric cancers (GCs) with DNA mismatch repair deficiency, only a subset of cancer patients are 
responsive to immunotherapy. Therefore, the identification of useful biomarkers or interventional targets for 
improving cancer immunotherapy response is urgently needed. 
Methods: We investigated the associations between various molecular features and immune signatures 
using three multi-omics GC datasets. These molecular features included genes, microRNAs (miRNAs), 
long non-coding RNAs (lncRNAs), proteins, and pathways, and the immune signatures included CD8+ 
T cell infiltration, immune cytolytic activity (ICA), and PD-L1 expression. Moreover, we investigated the 
association between gene mutations and survival prognosis in a gastrointestinal (GI) cancer cohort receiving 
immunotherapy and two GC cohorts not receiving such a therapy.
Results: The mutations of some important oncogenes and tumor suppressor genes were appreciably 
associated with immune signatures in GC, including PIK3CA, MTOR, RNF213, TP53, ARID1A, PTEN, 
ATM, and CDH1. Moreover, a number of genes exhibited a significant expression correlation with 
immune signatures in GC, including CXCL9, CXCL13, CXCR6, CCL5, GUCY2C, MAP3K9, NEK3, PAK6, 
STK35, and WNK2. We identified several proteins whose expression had a significant positive correlation 
with immune signatures in GC. These proteins included caspase-7, PI3K-p85, PREX1, Lck, Bcl-2, and 
transglutaminase. In contrast, acetyl-CoA carboxylase (ACC) had a significant inverse expression correlation 
with immune signatures in GC, suggesting that inhibiting ACC could enhance antitumor immunity in GC. 
Furthermore, we identified numerous miRNAs and lncRNAs with a significant expression correlation with 
GC immunity, including hsa-miR-150, 155, 142, 342, 146, 101, 511, 29, AC022706.1, LINC01871, and 
AC006033.2. We also identified numerous cancer-associated pathways whose activity was associated with GC 
immunity, including mTOR, PI3K-AKT, MAPK, HIF-1, and VEGF signaling pathways. Interestingly, we 
found seven genes (ARID1A, BCOR, MTOR, CREBBP, SPEN, NOTCH4, and TET1) whose mutations were 
associated with better OS in GI cancer patients receiving anti-PD-1/PD-L1 immunotherapy but were not 
associated with OS in GC patients without immunotherapy. 
Conclusions: The molecular features significantly associated with GC immunity could be useful 
biomarkers for stratifying GC patients responsive to immunotherapy or intervention targets for promoting 
antitumor immunity and immunotherapy response in GC.
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Introduction

Gastric cancer (GC) is the second leading cause of cancer 
deaths in the world and particularly prevails in Asian 
countries (1). Traditional therapeutic strategies (surgery, 
chemotherapy, radiotherapy, and targeted therapy) 
often have limited efficacy against advanced GCs (2). 
Recently, with the advance of immunotherapy in treating 
various advanced malignancies including the cancers 
with mismatch repair deficiency (3-7), immunotherapy is 
becoming a potentially promising treatment strategy for 
GC, as evidenced by that pembrolizumab and nivolumab 
(immune checkpoint inhibitors) are being clinically 
used to treat microsatellite-instable gastrointestinal (GI)  
cancers (7). However, currently, immunotherapeutic 
strategies are beneficial to only a subset of cancer patients, 
with a large proportion of patients failing to respond to 
such therapies (8). To this end, certain genetic or genomic 
features have been identified that are associated with cancer 
immunotherapy response, such as PD-L1 expression 
(9), tumor mutation burden (TMB) (10), deficient 
mismatch repair (dMMR) (11), and TP53 mutations (12). 
In addition, it has been shown that the tumor immune 
microenvironment (TIME) plays a crucial role in 
determining the cancer immunotherapy response (13). The 
“hot” tumors with dense T cell infiltration in TIME are 
more likely to respond to immunotherapy than the “cold” 
tumors lack of immune cell infiltration (14). To improve 
the cancer therapy response, the combination of different 
immunotherapeutic strategies and the combination of 
immunotherapy with traditional therapeutic methods have 
been widely investigated (15-19).

Benef i t  f rom the  rap id  advances  in  genomics 
technologies, many  cancer genomics data are publicly 
available, such as TCGA (https://portal.gdc.cancer.gov/) and 
ICGC (https://dcc.icgc.org/). Several studies have explored 
tumor immunity in GC using publicly available cancer 
genomic datasets (20-22). Zeng et al. identified three GC 
subtypes based on the tumor microenvironment (TME) cell 
infiltration patterns (20). Our previous study revealed that 
the TP53 mutation contributed to an immune-suppressive 
TME in GC (21). Park et al. classified GC patients into 
three subtypes with significant prognostic differences and 
found that the GC subtype with the best clinical outcome 
was enriched in the PD-L1 signaling pathway (22).

Despi te  these  pr ior  explorat ions  (20-22) ,  the 
identification of genetic and genomic features significantly 
correlating with GC immunity and immunotherapy 

response is worth further investigation. For example, 
although the Epstein-Barr virus positive (EBV+) and the 
microsatellite instability (MSI) are associated with a high 
GC immunity and an active immunotherapy response, 
many EBV- and microsatellite-stable (MSS) GCs equally 
exhibit highly enriched immune signatures and favorable 
immunotherapy response (21,22). This suggests that 
there are other factors correlating with GC immunity 
and immunotherapy response. In this study, we aimed to 
explore the associations of various molecular features with 
GC immunity based on multi-omics datasets from the 
TCGA GC cohort (23) and the Asian Cancer Research 
Group (ACRG) GC cohort (24). These molecular features 
included genes, microRNAs (miRNAs), long non-coding 
RNAs (lncRNAs), proteins, and pathways. We identified 
the molecular features that were significantly associated 
with GC immunity and immunotherapy response. These 
molecular features may have clinical implications for 
GC immunotherapy. We present the following article in 
accordance with the MDAR reporting checklist (available at 
http://dx.doi.org/10.21037/atm-20-922).

Methods

Datasets

We obtained multi-omics (gene somatic mutation, gene 
expression, protein expression, miRNA expression, and 
lncRNA expression) and clinical data for the TCGA GC 
cohort from the GDC data portal (https://portal.gdc.cancer.
gov/). The multi-omics (gene somatic mutation and gene 
expression) and clinical data for the ACRG GC cohort were 
from the associated publication by ACRG (24). The gene 
somatic mutation and clinical data for a GI cancer cohort 
[Samstein cohort (25)] with immunotherapy were from the 
associated publication (25). In addition, we obtained cancer-
associated pathways and their gene sets from KEGG (26). 

Quantification of immune signature enrichment levels in 
GC samples 

We analyzed three immune signatures, including CD8+ 
T cells, immune cytolytic activity (ICA), and PD-L1 
expression. The enrichment level of an immune signature 
in a GC sample was quantified as the mean expression level 
of immune signature marker genes. The marker genes of 
three immune signatures included CD8A for CD8+ T cells, 
GZMA and PRF1 for ICA, and PD-L1 for PD-L1. 

http://dx.doi.org/10.21037/atm-20-922
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Associations of immune signature enrichment levels with 
various molecular features in GC

We identified the genes whose mutations were significantly 
associated with immune signature enrichment levels 
(ISELs) using the Mann-Whitney U test and the genes, 
proteins, miRNAs, and lncRNAs whose expression 
levels were significantly correlated with ISELs using the 
Pearson’s correlation test. We quantified the activity of 
a pathway in a GC sample by the single-sample gene-set 
enrichment analysis (ssGSEA) (27) score of the gene set in 
the pathway and identified the cancer-associated pathways 
whose activity was significantly associated with ISELs using 
the Spearman’s correlation test. The false discovery rate  
(FDR) (28) was used to adjust for multiple tests. 

For each GC sample, we defined its TMB as the total 
somatic mutation count in the sample and its tumor 
aneuploidy level (TAL) as the tumor ploidy score calculated 
by ABSOLUTE (29). We divided all GC samples into the 
high-TMB/TAL (> median) group and the low-TMB/
TAL (< median) group and compared their ISELs using the 
Mann-Whitney U test. 

Gene-set enrichment analysis

We used GSEA (30) to identify the KEGG (26) pathways 
that were significantly associated with the genes having 
an important expression correlation with ISELs using a 
threshold of FDR <0.05.

Survival analysis

We compared the overall survival (OS) between gene-
mutated and gene-wildtype cancers in the three cohorts 
(TCGA-GC, ACRG-GC, and Samstein). We used Kaplan-
Meier survival curves to show the survival time differences 
and the log-rank test to assess the significance of survival 
time differences. 

Results

Identification of genes whose mutations are associated with 
antitumor immune response in GC

Based on TCGA-GC cohort, we identified eight genes 
whose mutations were significantly associated with 
heightened CD8+ T cell infiltration levels in GC (Mann-
Whitney U test, FDR <0.05) (Figure 1A). The eight 
genes included PIK3CA, ABCB4, SOGA2, ARID1B, 

CDH1, ABCA12, TENM2, and YLPM1. In contrast, 
TP53 mutations were associated with reduced CD8+ 
T cell infiltration levels in GC (Mann-Whitney U test, 
FDR =0.042). This is consistent with our previous study 
showing that TP53 mutations inhibited GC immunity (21). 
Moreover, we identified 106 genes whose mutations were 
associated with elevated immune cytolytic activity (ICA) in 
GC and one gene (TP53) whose mutations were associated 
with reduced ICA (Mann-Whitney U test, FDR <0.05) 
(https://cdn.amegroups.cn/static/application/3378c85657f
e63fe5b598b068b3f0bbb/10.21037atm-20-922-1.pdf). The 
106 genes included the aforementioned eight genes whose 
mutations were positively associated with CD8+ T cell 
infiltration levels in GC. Notably, some well-recognized 
cancer-associated genes were presented in the list of 106 
genes, including tumor suppressor genes ARID1A, ATM, 
CDH1, FBXW7, and PTEN, oncogenes CIC, CREBBP, 
MLL, NUP98, PIK3CA, and RNF213, and protein kinase 
encoding genes ERBB3, MTOR, and WNK1. These results 
indicate that the mutations in a wide range of genes are 
associated with the enhanced antitumor immunity in GC. 
However, the mutation of TP53, one of the most important 
tumor suppressor genes, appears to suppress antitumor 
immunity in GC. The associations between the mutations 
of genes (ARID1A, PIK3CA, and TP53) and GC immunity 
were confirmed to be significant in ACRG-GC cohort 
(Mann-Whitney U test, FDR <0.05).

We identified 180 genes whose mutations were associated 
with elevated PD-L1 expression in GC (https://cdn.
amegroups.cn/static/application/3378c85657fe63fe5b598
b068b3f0bbb/10.21037atm-20-922-1.pdf). Interestingly, a 
large proportion (86%) of the genes whose mutations were 
associated with elevated ICA were contained in the set of 
180 genes. This indicates that the mutations in many genes 
may result in increased antitumor immune response and 
enhanced protumor immunosuppression simultaneously. 

We further explored the associations between the 
mutations of these genes and OS in TCGA-GC, ACRG-
GC, and Samstein cohorts. We found that the mutations of 
MLL3, FAT2, FAT3, ARID2, and CSMD1 were consistently 
associated with better OS in ACRG-GC cohort (log-
rank test, P<0.05) (Figure S1A). In TCGA-GC cohort, 
the mutations of 18 genes were associated with better 
OS (Figure S1B). The positive associations between the 
mutations of these genes and OS could be attributed to the 
elevated antitumor immune activity in the GCs harboring 
these mutations. Interestingly, we found seven genes 
(ARID1A, BCOR, MTOR, CREBBP, SPEN, NOTCH4, and 

_ENREF_21
https://cdn.amegroups.cn/static/application/3378c85657fe63fe5b598b068b3f0bbb/10.21037atm-20-922-1.pd
https://cdn.amegroups.cn/static/application/3378c85657fe63fe5b598b068b3f0bbb/10.21037atm-20-922-1.pd
https://cdn.amegroups.cn/static/application/3378c85657fe63fe5b598b068b3f0bbb/10.21037atm-20-922-1.pd
https://cdn.amegroups.cn/static/application/3378c85657fe63fe5b598b068b3f0bbb/10.21037atm-20-922-1.pd
https://cdn.amegroups.cn/static/application/3378c85657fe63fe5b598b068b3f0bbb/10.21037atm-20-922-1.pd
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Figure 1 Associations of gene mutations with antitumor immune response and immunotherapy response in GC. (A) Eight genes whose 
mutations are associated with the elevated CD8+ T cell infiltration levels in TCGA-GC cohort (Mann-Whitney U test, FDR <0.05). (B) 
Kaplan-Meier survival curves show that the mutations of seven genes are associated with better overall survival (OS) in Samstein cohort with 
anti-PD-1/PD-L1 immunotherapy while they showed no a significant correlation with OS in either of TCGA- and ACRG-GC cohorts not 
receiving such a therapy (log-rank test, P<0.05). (C) The mutations of seven genes are consistently associated with the elevated expression of 
PD-L1 in TCGA-GC cohort (Student’s t test, FDR <0.05). (D) TP53-mutated gastrointestinal (GI) cancer patients have significantly worse 
OS than TP53-wildtype patients in Samstein cohort (log-rank test, P<0.05) while the TP53 mutation has no a significant correlation with 
OS in either of TCGA- and ACRG-GC cohorts, and the TP53 mutation is associated with reduced PD-L1 expression in GC. *, FDR <0.05; 
**, FDR <0.01; ***, FDR <0.001. FDR, false discovery rate. They also apply to following figures.
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TET1) whose mutations were associated with better OS in 
Samstein cohort but did not show a significant correlation 
with OS in either of TCGA- and ACRG-GC cohorts  
(Figure 1B and Figure S1C). A possible explanation of this 
disparity could be that the GI cancer patients with the 
mutations of these genes were more responsive to anti-
PD-1/PD-L1 immunotherapy than those without such 
mutations. This explanation was bolstered by the fact that 
the mutations of these genes were consistently associated 
with the elevated expression of PD-L1 in TCGA-GC 
cohort (Figure 1C). Interestingly, the TP53-mutated GI 
cancer patients had a significantly worse OS than the 
TP53-wildtype patients in Samstein cohort while the TP53 
mutation had no a significant correlation with OS in either 
TCGA- or ACRG-GC cohort (Figure 1D). Again, this 
could be attributed to the more active response to anti-
PD-1/PD-L1 immunotherapy in TP53-wildtype GI cancer 
patients since the TP53 mutation was associated with 
reduced PD-L1 expression in GC (Figure 1D).

Therefore, the identification of genes whose mutations 
were significantly associated with tumor immune signatures 
may provide predictive biomarkers for immunotherapy 
response in GC. 

Identification of genes whose expression levels are associated 
with antitumor immune response in GC

We found 136 and 123 genes whose expression levels 
exhibited a strong positive correlation with CD8+ T cell 
enrichment levels in TCGA-GC cohort and ACRG-GC 
cohort, respectively (Pearson correlation coefficient r>0.7) 
(https://cdn.amegroups.cn/static/application/4b0111ff02
b66c45bc28328104e88994/10.21037atm-20-922-2.pdf). 
A total of 76 genes showed a strong positive expression 
correlation with CD8+ T cell enrichment levels in both 
cohorts (https://cdn.amegroups.cn/static/application/4b01
11ff02b66c45bc28328104e88994/10.21037atm-20-922-2.
pdf), most of which were immune relevant, such as three 
granzyme genes (GZMA, GZMH, and GZMK), and 
numerous cytokine and cytokine receptor genes, including 
CXCL9, CXCL13, CXCR6, CCL5, IL2RB, IL10RA, and 
IL21R. GSEA (30) identified 12 KEGG (26) pathways 
significantly associated with the 76 genes, including 
cytokine-cytokine receptor interaction, natural killer cell 
mediated cytotoxicity, chemokine signaling, T cell receptor 
signaling, graft-versus-host disease, cell adhesion molecules, 
Jak-STAT signaling, hematopoietic cell lineage, primary 
immunodeficiency, prion diseases, allograft rejection, and 

type I diabetes mellitus (Figure 2A). Evidently, all these 
pathways are immune relevant. 

We identified 146, 734, and 83 genes whose expression 
levels had a significant inverse correlation with CD8+ T 
cell enrichment levels in TCGA-GC cohort, ACRG-GC 
cohort, and both cohorts, respectively (r<−0.3) (https://cdn.
amegroups.cn/static/application/4b0111ff02b66c45bc283
28104e88994/10.21037atm-20-922-2.pdf). Among the 83 
genes, six (GUCY2C, MAP3K9, NEK3, PAK6, STK35, and 
WNK2) encodes protein kinases. Considering that kinase 
inhibitors are a class of intensively investigated anticancer 
drugs that have been widely used in clinics or clinical  
trials (31), these protein kinases could be potentially useful 
targets for cancer therapy in that inhibiting them may 
promote antitumor immune response. GSEA identified 
one KEGG pathway (steroid biosynthesis) significantly 
associated with the 83 genes, suggesting that the steroid 
biosynthesis pathway activity may have an inverse 
correlation with antitumor immune response in GC.

Likewise, we found 59 and 57 genes having a strong 
positive and a significant inverse expression correlation 
with ICA in both cohorts, respectively, and identified 16 
immune-related pathways associated with the 59 genes 
(https://cdn.amegroups.cn/static/application/4b0111ff02
b66c45bc28328104e88994/10.21037atm-20-922-2.pdf). 
Furthermore, we found four genes (GBP1, GBP5, IDO1, 
and WARS) whose expression levels exhibited a strong 
positive correlation with PD-L1 expression levels (Figure 2B).  
The associations of these genes with PD-L1 and GC 
immunity have been investigated (32). In addition, we 
identified 80 genes whose expression levels had a significant 
negative correlation with PD-L1 expression levels (https://
cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28
328104e88994/10.21037atm-20-922-2.pdf). GSEA revealed 
that the 80 genes were significantly associated with three 
KEGG pathways, including drug metabolism-cytochrome 
P450, peroxisome, and terpenoid backbone biosynthesis. 

Collectively, the identification of genes with a significant 
expression correlation with antitumor immune response 
or protumor immunosuppression may provide useful 
intervention targets for promoting antitumor immunity and 
immunotherapy response in GC. 

Identification of proteins whose expression levels are 
associated with antitumor immune response in GC

Based on TCGA-GC cohort, we identified six proteins 
(Caspase-7 ,  PI3K-p85,  PREX1,  Lck,  Bcl-2 ,  and 

https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
https://cdn.amegroups.cn/static/application/4b0111ff02b66c45bc28328104e88994/10.21037atm-20-922-2.pd
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transglutaminase) whose expression levels exhibited a 
significant positive correlation with the enrichment levels 
of CD8+ T cells in GC (r>0.3) (Figure 3). Notably, both 
Caspase-7 (33) and Bcl-2 (34) are involved in the apoptosis 
pathway which has been positively associated with antitumor 

immune signatures in cancer (35). Transglutaminase 
has been associated with tumor development and tumor 
immunity (36). The associations of PI3K-p85 (37),  
PREX1 (38), and Lck (39) with tumor immunity have been 
explored. In addition, we found that the expression levels 
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of acetyl-CoA carboxylase (ACC) showed a significant 
inverse correlation with CD8+ T cell enrichment levels  
(r=−0.3). Previous studies have shown that ACC was 
essential for cancer cell survival and was an important target 
for cancer therapy (40,41). Our result suggests that ACC 
may promote cancer development by inhibiting antitumor 
immune response. Moreover, we found that ACC showed 
a significant inverse expression correlation with ICA in 
GC (r=−0.33), bolstering the notion that ACC suppresses 
antitumor immunity.

Furthermore, we found six proteins (Caspase-7, PREX1, 
Lck, transglutaminase, Bax, and MEK1) whose expression 
levels had a significant positive correlation with PD-L1 
expression levels in GC (r>0.3) (Figure 3). Among them, 
the elevated expression of Caspase-7, PREX1, Lck, and 
transglutaminase was also significantly associated with 
highly enriched CD8+ T cells and ICA in GC. The positive 
correlation between the expression of these proteins 
and PD-L1 expression indicates that their upregulation 
could be a predictor for the active response to anti-PD-1/
PD-L1 immunotherapy in GC since PD-L1 expression 
is a biomarker for predicting the anti-PD-1/PD-L1 
immunotherapy response in cancer (42).

All together, the identification of proteins significantly 
correlating with antitumor immune signatures may provide 
predictive biomarkers or intervention targets for improving 
GC immunotherapy. 

Identification of miRNAs whose expression levels are 
associated with antitumor immune response in GC

Based on TCGA-GC cohort, we identified 19 and  
8 miRNAs whose expression levels had a significant positive 

and negative correlation with the enrichment levels of 
CD8+ T cells in GC, respectively (|r|≥0.3) (Figure 4). 
14 out of the 19 miRNAs also had a significant positive 
expression correlation with ICA in GC (r≥0.3) (https://
cdn.amegroups.cn/static/application/a7d3d9d3c316a9cc22
78b8b6881156f4/10.21037atm-20-922-3.pdf). A literature 
review showed that many of these miRNAs were associated 
with tumor immune response, such as hsa-miR-150, 155, 
142, 342, 146, 101, 511, 29 (43). Notably, hsa-miR-155-5p 
expression levels were significantly associated with CD8+ T 
cell infiltration levels and ICA in GC (r>0.5). The positive 
association between hsa-miR-155 expression and tumor 
immunity has been confirmed in a recent study (44). The 
hsa-miR-150 genes hsa-miR-150-5p and hsa-miR-150-
3p exhibited a significant positive expression correlation 
with CD8+ T cell infiltration levels and ICA in GC (r>0.5). 
Previous studies have shown that hsa-miR-150 played a 
key role in tumor pathogenesis and tumor immunity (45).  
hsa-miR-342 was importantly associated with tumor  
immunity (46). Our data showed that the expression levels 
of hsa-miR-342 had a significant positive correlation with 
CD8+ T cell enrichment levels and ICA in GC (r>0.5). 

We found 15 miRNAs whose expression levels were 
significantly and positively associated with PD-L1 expression 
levels in GC (r≥0.3). The 15 miRNAs included hsa-let-7i-3p, 
hsa-let-7i-5p, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-
146b-3p, hsa-miR-146b-5p, hsa-miR-150-3p, hsa-miR-155-
3p, hsa-miR-155-5p, hsa-miR-342-3p, hsa-miR-342-5p, hsa-
miR-4772-3p, hsa-miR-4772-5p, hsa-miR-511-5p, and hsa-
miR-7702 (https://cdn.amegroups.cn/static/application/a7d
3d9d3c316a9cc2278b8b6881156f4/10.21037atm-20-922-3.
pdf). Previous studies have shown that many of these 
miRNAs regulated PD-L1 expression on tumor cells (47). 

Collectively, the identification of miRNAs correlating with 
antitumor immune signatures or tumor immunosuppressive 
signatures may provide potential miRNA biomarkers for GC 
immunotherapy. 

Identification of LncRNAs whose expression levels are 
associated with antitumor immune response in GC

LncRNAs play important roles in immune regulation and 
tumor immunity (48-50). Based on TCGA-GC cohort, we 
identified 107 and 19 lncRNAs with a significant positive 
and negative expression correlation with the enrichment 
levels of CD8+ T cells in GC, respectively (|r|≥0.3) 
(https://cdn.amegroups.cn/static/application/98131ec
a64c3c7dbb54af3a6732c4f4b/10.21037atm-20-922-4.
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Figure 3 Correlation of protein expression levels with CD8+ 
T cell enrichment levels, immune cytolytic activity, and PD-L1 
expression levels in TCGA-GC cohort. The Pearson correlation 
coefficients are shown.
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Figure 4 19 and 8 miRNAs whose expression levels show a significant positive and negative correlation with CD8+ T cell enrichment levels 
in TCGA-GC cohort, respectively (|r|≥0.3). 

pdf). Notably, AC022706.1 had the strongest expression 
correlation with CD8+ T cell enrichment levels in GC  
(r=0.64) (Figure 5). It also had a strong expression 
correlation with ICA in GC (r=0.58) (Figure 5). LINC01871 
had the second strongest expression correlation with 
CD8+ T cell enrichment levels (r=0.63) and the strongest 
expression correlation with ICA in GC (r=0.71) (Figure 5). 
The expression levels of LINC01871 were also significantly 
correlated with PD-L1 expression levels in a positive 
direction in GC (r=0.59) (Figure 5). AC006033.2 had the 
third strongest expression correlation with CD8+ T cell 
enrichment levels (r=0.60), the second strongest expression 
correlation with ICA in GC (r=0.59), and the third 
strongest expression correlation with PD-L1 expression in 
GC (r=0.54) (Figure 5).

We identified 58 and 79 lncRNAs with a significant 
positive and negative expression correlation with ICA in GC, 

respectively (|r|≥0.3) (https://cdn.amegroups.cn/static/ap
plication/98131eca64c3c7dbb54af3a6732c4f4b/10.21037a
tm-20-922-4.pdf). Moreover, we found 58 and 17 lncRNAs 
whose expression levels were positively and negatively 
associated with PD-L1 expression levels in GC, respectively 
(|r|≥0.3) (https://cdn.amegroups.cn/static/application/98131
eca64c3c7dbb54af3a6732c4f4b/10.21037atm-20-922-4.pdf).

Because the associations between lncRNAs and 
tumor immunity have not been sufficiently explored, 
the identification of lncRNAs associated with antitumor 
immune signatures may provide useful lncRNA candidates 
for furthering such exploration. 

Identification of cancer-associated pathways whose activity 
is associated with antitumor immune response in GC

Based on TCGA-GC cohort, we identified nine cancer-

https://cdn.amegroups.cn/static/application/98131eca64c3c7dbb54af3a6732c4f4b/10.21037atm-20-922-4.pd
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https://cdn.amegroups.cn/static/application/98131eca64c3c7dbb54af3a6732c4f4b/10.21037atm-20-922-4.pd
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Figure 5 Three long non-coding RNAs (lncRNAs) AC022706.1, LINC01871, and AC006033.2 whose expression levels exhibit a significant 
positive correlation with CD8+ T cell enrichment levels, immune cytolytic activity, and PD-L1 expression levels in TCGA-GC cohort. 
Pearson’s correlation test P values and correlation coefficients are shown. 
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Figure 6 Nine cancer-associated pathways whose activity is positively associated with CD8+ T cell infiltration levels in TCGA-GC cohort 
[Spearman correlation coefficient (ρ) ≥0.3].
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associated pathways whose activity was positively correlated 
with CD8+ T cell infiltration levels in GC [Spearman 
correlation coefficient (ρ) ≥0.3] (Figure 6). The nine 
pathways included focal adhesion, mTOR signaling, PI3K-
AKT signaling, MAPK signaling, HIF-1 signaling, VEGF 
signaling, apoptosis, Jak-STAT signaling, and cytokine-
cytokine receptor interaction. The positive association 
between a majority of these pathways (such as focal 
adhesion, MAPK signaling, VEGF signaling, apoptosis, and 
Jak-STAT signaling) and GC immunity has been revealed 
in our previous study (21). The HIF-1 signaling pathway 
is hyperactivated in various cancers and is associated with 
the activation of tumor‐associated immune signatures (51). 
This is consistent with our result that there was a significant 
positive correlation between this pathway and CD8+ T 
cell infiltration in GC. Moreover, our previous study (35) 
showed that tumor glycolysis had a significant positive 
association with immune signatures in a wide variety 
of cancers. This is consistent with that the glycolysis-
stimulating HIF-1 signaling was positively associated with 
immune signatures in GC. In addition, our results showed 
that the mTOR signaling pathway was associated with 
CD8+ T cell infiltration levels in GC. This is in line with 
previous studies showing that mTOR signaling played a 
significant role in regulating tumor microenvironment, 
thereby affecting tumor immunity (52). We further 
identified a number of cancer-associated pathways which 
had a positive correlation with ICA and PD-L1 expression 
levels in TCGA- and ACRG-GC cohorts, including p53 
signaling, HIF-1 signaling, apoptosis, Jak-STAT signaling, 
and cytokine-cytokine receptor interaction (https://cdn.
amegroups.cn/static/application/a41ae079640a0bc9bd35cf8
8aec82e8d/10.21037atm-20-922-5.pdf). 

Collectively, the identification of antitumor immunity-
associated pathways provided potential intervention targets 
for promoting antitumor immunity and immunotherapy 
response in GC. 

Discussion

Our bioinformatics analysis identified a number of genes, 
miRNAs, lncRNAs, proteins, and pathways whose mutations, 
expression, or activity were significantly associated with 
antitumor immunity in GC. Of note, we found some 
important oncogenes and tumor suppressor genes whose 
mutations were appreciably associated with antitumor 
immunity in GC, including PIK3CA, MTOR, RNF213, 
TP53, ARID1A, PTEN, ATM, and CDH1. These significant 

associations may partially explain why the mutations of some 
of these genes were associated with OS in GC. Interestingly, 
we found seven genes (ARID1A, BCOR, MTOR, CREBBP, 
SPEN, NOTCH4, and TET1) whose mutations were 
associated with better OS in GI cancer patients receiving 
anti-PD-1/PD-L1 immunotherapy but were not associated 
with OS in GC patients not receiving such a therapy  
(Figure 1B). A potential mechanism underlying this difference 
is the elevated expression of PD-L1 in the cancer patients 
with the mutation of these genes. To date, many studies have 
revealed that PD-L1 expression is a predictive biomarker 
for anti-PD-1/PD-L1 immunotherapy in GC patients 
(53,54). A clinical trial study (KEYNOTE-059) revealed that 
pembrolizumab, an anti-PD-1 monoclonal antibody, had 
encouraging antitumor activity in PD-L1-positive advanced 
gastric/gastroesophageal cancer patients (53). Jin et al. 
reported that a PD-L1-positive unresectable locally advanced 
GC with MSI exhibited pathological complete response to 
a single dose of anti-PD-1 immunotherapy in combination 
with chemotherapy (54). Hence, the identification of gene 
mutations associated with tumor immunity may furnish 
biomarkers for the optimal stratification of GC patients 
responsive to immunotherapy. Likewise, we identified some 
important genes and proteins whose expression levels were 
significantly associated with antitumor immunity in GC 
and thus may serve as biomarkers or intervention targets 
for promoting GC immunotherapy. For example, ACC 
exhibited a significant inverse expression correlation with 
CD8+ T cell infiltration levels and ICA in GC, suggesting 
that inhibiting ACC could enhance antitumor immunity 
in GC. Furthermore, we identified a number of miRNAs 
and lncRNAs having a significant expression correlation 
with GC immunity, such as the miRNAs hsa-miR-150, 155, 
142, 342, 146, 101, 511, 29 and the lncRNAs AC022706.1, 
LINC01871, and AC006033.2. These non-coding RNAs 
could be potentially useful biomarkers for GC prognosis and 
immunotherapy. Finally, we identified numerous cancer-
associated pathways whose activity was significantly associated 
with antitumor immunity in GC, including the mTOR, 
PI3K-AKT, MAPK, HIF-1, and VEGF signaling pathways. 
These pathways were mainly involved in cell proliferation, 
growth and migration, metabolism, and immune response.

TMB often has a positive association with tumor 
immunity and immunotherapy response (25,55) while TALs 
often inversely correlate with them (56). As expected, we 
observed a significant positive correlation of TMB with  
PD-L1 expression levels in TCGA-GC cohort (Student’s 
t test, P=0.03) (Figure 7A) and a significant negative 

https://cdn.amegroups.cn/static/application/a41ae079640a0bc9bd35cf88aec82e8d/10.21037atm-20-922-5.pd
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Figure 7 Associations of tumor mutation burden (TMB) and tumor aneuploidy levels (TALs) with CD8+ T cell enrichment levels, immune 
cytolytic activity (ICA), and PD-L1 expression levels. (A) TMB has a significant positive correlation with PD-L1 expression levels in TCGA-
GC cohort (Student’s t test, P=0.03). (B) TALs have a significant negative correlation with CD8+ T cell enrichment levels, immune cytolytic 
activity, and PD-L1 expression levels in both TCGA- and ACRG-GC cohorts (Student’s t test, P<0.001). For each tumor sample, its TMB is 
the total somatic mutation count and TAL is the tumor ploidy score calculated by ABSOLUTE (29). ***, P<0.001. 

correlation of TALs with CD8+ T cell enrichment levels, 
ICA, and PD-L1 expression levels in TCGA- and ACRG-
GC cohorts (Student’s t-test, P<0.001) (Figure 7B). This 
indicates that TMB and TALs are useful biomarkers for 
predicting GC patients responsive to immunotherapy. 

In conclusion, the molecular features significantly 
associated with GC immunity could be useful biomarkers 
for stratifying GC patients responsive to immunotherapy 
or potential intervention targets for promoting antitumor 
immunity and immunotherapy response in GC. 
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Supplementary

Figure S1 Associations of gene mutations with antitumor immune response and immunotherapy response in GC. (A) Kaplan-Meier survival 
curves show that the mutations of MLL3, FAT2, FAT3, ARID2, and CSMD1 are consistently associated with better overall survival (OS) in 
ACRG-GC cohort (log-rank test, P<0.05); (B) Kaplan-Meier survival curves show that the mutations of 18 genes are associated with better 
OS in TCGA-GC cohort (log-rank test, P<0.05); (C) Kaplan-Meier survival curves show that the mutations of seven genes (ARID1A, BCOR, 
MTOR, CREBBP, SPEN, NOTCH4, and TET1) are not significantly associated with OS in either of TCGA- and ACRG-GC cohorts (log-rank 
test, P>0.05). 


