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Abstract
Electroencephalographic (EEG) analysis has emerged as a powerful tool for brain state in-

terpretation and diagnosis, but not for the diagnosis of mental disorders; this may be ex-

plained by its low spatial resolution or depth sensitivity. This paper concerns the diagnosis

of schizophrenia using EEG, which currently suffers from several cardinal problems: it

heavily depends on assumptions, conditions and prior knowledge regarding the patient. Ad-

ditionally, the diagnostic experiments take hours, and the accuracy of the analysis is low or

unreliable. This article presents the “TFFO” (Time-Frequency transformation followed by

Feature-Optimization), a novel approach for schizophrenia detection showing great suc-

cess in classification accuracy with no false positives. The methodology is designed for sin-

gle electrode recording, and it attempts to make the data acquisition process feasible and

quick for most patients.

Introduction
Electroencephalography (EEG) is the measurement of electrical activity along the scalp, mostly via
manually placed electrodes at different locations or a headset device designed for that purpose.

EEG is increasingly used as a low-resolution diagnosis tool for general cognitive activity and
as an indicator of the current brain state at a given time due to its effectiveness as a mobile
quick-setup recordable tool. Past studies using EEG have included emotion detection [1;2],
cognitive state determination [3;4], evaluation of activity area control based devices [5], analy-
sis of epileptic seizures [6] and many other related methods. Due to a significant lack of signal
sensitivity compared to other tools such as fMRI, EEG has not emerged as an efficient or
accurate input method for the detection and analysis of mental illnesses. State of the art
computational studies have suggested that mostly changes in functional connectivity are seen
in schizophrenia patients [7], and significant differences in theta-frequency activity are evident
as well [8]. Past studies to diagnose schizophrenia using EEG have focused on classic ERP
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(Event Related Potential) analysis, in particular examining properties around N100 and P300
[9;10] and a recent study has also suggested to add a machine learning mechanism to analyze a
few P300 attributes [11] showing significant accuracy in classification.

In addition, conducting a full-scale EEG-based analysis requires, in most cases, recording
from patients for hours. Recording from subjects potentially suspected of mental illness might
not be feasible in many cases, or may be an arduous effort—especially when using a complex
multi-electrode setup.

The challenge is to find a reliable discriminating technology to discern the responses of the
healthy subjects and schizophrenia patients using limited data. In the scope of this study, the
chosen approach is to propose such a method based on the input of a single electrode and using
less than one minute of recording data from a subject to achieve an accurate classification result.

In this paper, we describe a novel methodology and illustrate the clinical experiment performed
to detect the presence of schizophrenia. The results indicate an accurate classification of healthy in-
dividuals and schizophrenia patients. The results also indicate that robust discrimination can be
achieved by the analysis of approximately one minute of data with only one to three electrodes.

Methodology

Problem Description
The current paper examines the question of whether there is sufficient information in EEG data,
which are collected over a short time—less than a minute—to differentiate between healthy sub-
jects and subjects who have been diagnosed with schizophrenia and are receiving relevant pre-
scribed medication. In particular, we are concerned with the question of whether data from a
single electrode can produce such a distinction. A second research question is whether the sever-
ity of the disease, as measured by the number of hospitalizations or other knownmarkers, is cor-
related with the results of the model (although these data were not used to form the model).

Methods
The general theme of the proposed method relies on the assumption that a given dataset of two
populations holds discriminating information that can be easily acquired and measured using
the EEG tool, and the challenge is finding the significant components of the data that can con-
tribute the most to the desired discrimination.

Given such data, an optimization analysis was used to emphasize the statistically significant
difference in the responses between the two populations. The optimization was performed
using several parameters:

1. Response time: finding the most discriminating interval following a stimulus trigger.

2. Acquisition time: given a collection of stimuli, the analysis examining how the discrimina-
tion power is spread over the course of stimuli.

3. Frequency bands: identifying which frequency bands are most relevant for the process of
discriminating the data.

4. Electrode: the electrode(s) from which the data are taken.

5. The EEG signal is acquired as a time series and is also converted into a time/frequency re-
presentation using the Stockwell transform. Another layer of optimization is to extract the
most significant components from the Stockwell transform representation.

In the specific case of schizophrenia, the assumption is that the expectation for an object (in
a sequence of objects) may be different between healthy subjects and schizophrenia patients.
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Therefore, specific experiments exploit this assumption by creating such an expectation and
measuring the response of both populations to this stimulus type.

The proposed discrimination system is based on a Time-Frequency transformation followed
by Feature-Optimization (“TFFO”). It is composed of four stages: (a) Raw-Data Preprocessing,
performing several preprocessing tasks and breaking the raw signals into relevant intervals, (b)
Transformation of the EEG signal into a time/frequency representation via the Stockwell trans-
form [12], (c) Feature extraction from the time/frequency representation, and (d) Discrimina-
tion of specific time frames following a given set of stimuli between the time/frequency matrix
representations of the healthy subjects and the schizophrenia patients. Fig 1 below presents the
four stages of the methodology.

EEG data from a previously reported study [13] were used. This study provided evidence
for contextual processing deficits in patients with schizophrenia by demonstrating alterations
in the neural correlates of local contextual processing. As will be described further below, the
acquired data are a recorded set of signals triggered by the stimuli and followed by mouse clicks
performed by the subjects during a computer simulation (game) in which graphic triangles ap-
pear on the screen and the subjects (players) are asked to press the button in certain cases ac-
cording to the orientation of the triangles.

EEG recording was performed with a 64 electrode array using the ActiveTwo system (Bio-
semi, The Netherlands). External electrodes above and below the right eye monitored vertical
eye movements, and electrodes placed laterally to the left and right eyes monitored horizontal
eye movements. Signals were amplified and digitized at 512 Hz.

The four stages were applied to data from each electrode separately to enable comparison
between single-electrode discrimination power.

Fig 1. Phases of the TFFOmethodology.

doi:10.1371/journal.pone.0123033.g001
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In the preprocessing phase, a band-pass filter of 0.1–30 Hz was applied, and the total energy
was normalized. The data were separated into frames of 1.2 seconds, with each interval starting
200 ms prior to the appearance of the ‘P’ shaped stimuli. The ‘P’ stimulus produced the best
discrimination between healthy subjects and patients diagnosed with schizophrenia, similar to
a previous study [13].

Eye blinks and other artifacts were removed using ICA [14]. Epochs containing misses (no
button press 150–1150 ms post-stimulus onset) and eye saccades were excluded from further
analysis. EEG epochs with amplitudes of more than 75 μV at any electrode were also excluded.

After the pre-processing stage, data were separated into two different datasets, train and
test, as specified below. The process described below was performed on the train dataset, and
the achieved parameters were tested using the test dataset. Time windows of 100/500 ms
(transitioned by 25 ms/50 ms; 50% overlap) were used to search for the most significant sub-
interval for analysis. For each window, additional stages were performed using only a given
sub-interval of the original full 1.2 second window. The time windows were used to obtain fur-
ther validation of the discrimination power of windows that contain P300-like features. Exam-
ining the 1.2 second interval before and after each stimulus is similar to the general concept of
ERP. The main difference between standard ERP and the methodology presented here is
the use of Stockwell features instead of the raw-signal representations and the addition of a
learning mechanism on top of the features to obtain optimal discrimination. A basic time-
frequency transformation without an additional learning mechanism was suggested in a previ-
ous study [15].

T/F representation
From the Stockwell representation of the data, frequency-band windows of 5 Hz/10 Hz (transi-
tioned by 1 Hz/2 Hz; 80% overlap) were used to search for a maximum variance band. The re-
dundancy in this frequency representation produced better discriminative features than less
redundant frequency representations as well as standard EEG frequency bands (Berger [16]).
The following steps were performed using only the sub-interval window in the chosen frequen-
cy band. The discrimination was calculated on a varying sequential number of stimuli chosen
from the full set of stimuli. The sequence of stimuli was chosen from the first and last stimulus.

The following process was performed in each iteration of the parameter enumeration de-
scribed above. Given a subset of events for each subject, a window [a, b] was filtered for a set of
frequencies {f} composed of the average of the subjects’ signals according to parameter K. The
procedure was followed by performing an implementation of the Stockwell transform [12],
known as a generalization of the short-time Fourier Transform and denoted by

TF xð Þ ¼ Sx t; fð Þ ¼
Z b

a

x tð Þjf je�p t�tð Þ2f 2e�j2pf tdt

, derived as phase correction of the continuous wavelet transform.
The Stockwell transform produces a vector xi i = 1. . ., n of features for each frame. The Eu-

clidian distance between such vectors was used for the creation of a K-nearest neighbor classifi-
er, and score denoted by

distancei ¼
X

min
k

jjxi; xjjj ¼
X

min
k

jjSi t; fð Þ � Sjðt; f Þjj; i 6¼ j

Cross-validation was performed using ‘leave one out’ [17]; prediction of the class of each
tested subject was achieved by training with the full remaining dataset, excluding one patient’s
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data each time, and using this ‘left out’ data as a test set. Test result is therefore given as average
on all subjects, where each subject was tested once on a model trained without that subject.
[18] Mathematically, matrix F presents the Stockwell features per class (healthy and schizo-
phrenia diagnosed patients). The regressor for testing a subject’s data was built after temporari-
ly excluding all vectors xi i = 1. . ., n that were recorded from the subject.

Given the limited number of subjects in the dataset, this technique allowed effective valida-
tion and guarded against errors in the data. For optimization purposes, a parameter K for the

number of voting neighbors to be checked was enumerated in the range: 1 � K � jeventsj
2

for best

classification. In the case that K is even, the closest neighbor has a casting vote. Lastly, regres-
sion for patient severity prediction was performed from the acquired time-frequency represen-
tation distance measurement. Ridge linear regression including a penalty to reduce overfitting
was used.

Accuracy for each classification was computed by dividing correct classifications by the
total number of analyzed subsets of patient data.

The execution of the proposed methodology described above on the EEG data provided us
with a high-dimensional matrix; each dimension of the matrix is a parameter of the learning
process, such as the electrode used, location of the window used from each recording, or the
frequency band used as a filter. Each entry in the matrix is a set of cross-validated prediction re-
sults referring to the success in predicting the different test datasets given the parameters that
are represented by the coordinates of the entry.

Examination of this matrix can not only reveal what combinations of the possible configura-
tions featured the best prediction results but also show for each dimension what values
achieved the highest scores on average (figuring other configurations into the calculation as
well), so that more specific conclusions regarding the parameters and their connection to the
physical attributes can be made.

In addition to the binary classification task, a ridge regression was performed to search for
a correlation between the acquired distance feature and general medical properties (such as
amount of medicine taken by the patient, number of recorded hospitalizations, and number of
positive/negative symptoms) of the diagnosed subjects because it has been proven to be a pow-
erful tool for time-frequency EEG-based features [19;20].

Data Description
The complete data collection process and experimental description are as described in previous
studies [13;21;22] and are further specified below.

The experiment is based on objects that appear on a computer screen. It includes the crea-
tion of anticipation for a specific pattern at a specific angle and then measures the responses of
the subjects.

A full data description appears in a previous study [13]. For completeness, we describe here
the main features of the data.

The experiment data recording set was obtained from a group of 50 patients, 25 healthy sub-
jects with no prior indication of mental illness or abnormal behavior and 25 subjects who had
been diagnosed with schizophrenia, hospitalized and treated with medication. The study was
approved by the ethics committees of the University of A Coruna, Spain, and Sha’ar Menashe
Mental Health Center in Hadera, Israel. All subjects signed a written consent form. Patients
were diagnosed with schizophrenia according to the Structured Clinical Interview for
DMS-IV-Tr and were rated for symptom severity using the Positive (SAPS) and Negative
(SANS) Syndrome Scale [23]. We note that during the recording phase, the schizophrenia pa-
tients were on their regular medication. All recordings took place in the morning (10:00–12:00).

Single Electrode EEG-Based Schizophrenia Diagnosis
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The stimuli consisted of black triangles on a gray background (triangles facing left, upwards
and right, at 90 degree increments). In each block, a total of 78 stimuli were presented for 150
ms each with an inter-stimulus interval (ISI) of 1 second. Stimuli blocks were a mixture of ei-
ther randomized sequences of standards or sequences including a three-standard predictive se-
quence. The predictive sequence always consisted of the three types of triangles facing left, up
and right, always in that order. We focused our analysis on data obtained from the predictive
sequences (“P” stimuli) because they are considered to be a significant indication of schizo-
phrenia [13;21;22].

Results and Discussion

I. General methodology accuracy as a function of electrode positioning
The results indicated a high accuracy for classification of the data, with a prediction accuracy
of the top 5 distinctive electrodes between 91.5% and 93.9% with the best electrode—F2. The
most accurate electrodes with the best distinction between the two classes were F2 and FC3, fol-
lowed by AFz, FCz and FC5, as seen in Fig 2 below. One can see the most distinctive electrodes
geographically close to one another and are located in a region previously found to be relevant
to schizophrenia [22]. while F2 showed strong results, similar statistical discrimination results
were obtained with other electrodes such as FC3, with which there is no correlation to visual
input. Additionally, ICA should have completely removed the blink effect from the signal, or at
least prevented it from being a significant factor even in the visual-area-based electrodes.

The discrimination accuracy of the presented methodology was compared with both laten-
cy-based approaches and subject reaction time [23]. Basic comparison to subject latency analy-
sis was performed by (a) calculating the distance to peak energy amplitude and clustering using

Fig 2. Accuracy of prediction for each electrode. The frontal-central scalp area showed the most
significant variance between healthy subjects and patients diagnosed with schizophrenia.

doi:10.1371/journal.pone.0123033.g002
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the K-Means [“PE-Latency”] for each stimulus and (b) repeating the post-feature extraction
methodology phases while replacing the time-frequency features with the distribution of the
energy peak location in the P300 area [“P300-RF-Latency”] and performing “RT ANOVA”—a
reaction time-based approach for the discrimination of healthy subjects and schizophrenia pa-
tients [22]. The discrimination results are presented in Table 1 below.

II. Representation of signal variance over time
The results showed that the reaction of both diagnosed patients and healthy subjects to non-
early stimulations is between weak and non-existent. As seen in Fig 3 below, which is taken
from a significantly discriminating electrode obtained from part I, the first several recordings
possessed the most variance, which was significantly higher than the variance obtained in the
general average. Therefore, better discrimination can be achieved with less data by having a sig-
nificantly quicker acquisition process.

III. Methodology accuracy as a function of events obtained from patients
As indicated in the above results, several initial stimuli possessed the most discriminating vari-
ance between the two classes of subjects. The resulting optimal learning parameters show that
achieving the best separation with the first 7 to 8 events in each subject results in optimal accu-
racy. This can be clearly seen in Fig 4 below, which plots the percentage of prediction accuracy
as a function of events taken from the beginning of the recordings for each subject.

IV. Methodology accuracy as a function of the internal time window of
recorded stimulations
The results for the optimal [a, b] window within the stimulus recording interval (of each ap-
pearance of the ‘P’ stimulus) showed that the most accurate predictions can be achieved at in-
tervals of (a) 200–300 ms post-stimulation and (b) 900–950 ms post-stimulation. These results
are presented in Fig 5 below. The interval in (a) can be explained by latency in the analysis pro-
cess in the frontal area located near the P300 recording area, which is evident from significant
visual-related stimuli [26]. The interval in (b) can be explained by the latency of recovery from
visual analysis and prediction of the brain activity, which is evident from differences in subjects
with mental disorders [26;27;28].

Table 1. Discrimination accuracy per testedmethodology.

Methodology Discrimination Accuracy Rate Specificity Rate Sensitivity Rate Significance P-Value

TFFO (proposed here) 88.7%±4% 100% 77.4%±7.1% 0.0078

P300 Derived Features—Reaction Time [22] 73.9%±4.3% 87.3%±3.1% 60.5±5.4% 0.043

P300-RF-Latency 68.1%±4.8% 82%±3.9% 54.2±5.5% 0.0919

PE-Latency [23] 64.5%±5.5% 74.2%±4.2% 58.7±7.2% 0.1746

The accuracy achieved by the TFFO methodology is significantly better than other reaction latency related implementations, proving the added value of

the analysis beyond latency differences between healthy subjects and schizophrenia patients (P-Value<1%). Moreover, the results obtained did not

include any false positives, i.e., no healthy subject was classified as a schizophrenia patient. Therefore, it is desirable in such problems to have high

specificity rather than high sensitivity. Generally, frontal area EEG input correlation to cognitive-related features and mental disorders is evident. Recent

work in patients with schizophrenia [13;22;24] and Parkinson’s disease [25] has shown high input variance in that segment. Such evident correlations can

explain the obtained results.

doi:10.1371/journal.pone.0123033.t001
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Fig 3. Average signal amplitude for healthy subjects and patients diagnosed with schizophrenia within total, early or late sets of events. The first 5
reactions to the stimulations result in peak responses; the variance between healthy subjects and patients diagnosed with schizophrenia is larger than the
variance obtained by the average amplitude of 8 entire event sets. Additionally, the last 5 events of both healthy subjects and patients diagnosed with
schizophrenia resulted in almost no reaction and almost zero variance between the two classes.

doi:10.1371/journal.pone.0123033.g003

Fig 4. Accuracy of prediction as a function of events obtained from each subject’s initial recording of stimulation events. By using only the first 7 or
8 events from each subject, the prediction accuracy of the methodology is close to optimum.

doi:10.1371/journal.pone.0123033.g004
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V. Methodology accuracy as a function of the selected frequency band
The results for the optimal frequency band showed that the most accurate prediction can be
achieved using Beta2 band frequencies, specifically with 15–20 Hz and 22.5–27.5 Hz bands,
which achieved maximal discrimination between healthy subjects and schizophrenia patients.
This finding is clearly demonstrated in Fig 6 below.

VI. Regression-based correlation between disorder severity and
methodology feature extraction
By performing a regression-based correlation between the schizophrenia patients’ extracted
features and predicting their documented severity, a strong physiological justification for the
validity of the features was acquired. We transformed the number of documented hospitaliza-
tions of each patient into an exponential scale (1, 2, 3–4, 5–7, 8–15, 16+) and attempted to pre-
dict the transformed hospitalization measure using the transformed Euclidian distance from
each patient to the average features of the healthy group. We found that 71.7% (with the best
classifying electrode, F2) of the variance of the transformed measurement is accounted for.
These findings support the claim that the TFFO methodology predicts the severity of the dis-
ease rather than the medication taken for its treatment because the medication dosages were
not correlated with the number of hospitalizations, and a similar attempt to correlate diag-
nosed patients’ dosages to the disorder severity showed only minor correlation.

By sorting the patients according to the Euclidian distance from the averaged features of the
healthy subjects group, we found that (a) 4 out of the 5 patients with the most negative symp-
toms were in the ‘severe half’ of the sorted feature; (b) 4 out of 5 of the patients with the most
hospitalizations were in the ‘severe half’ of the sorted feature; and (c) 4 out of 5 of the patients
taking the highest dose-wise medication load were in the ‘severe half’ of the sorted feature.

Fig 5. Accuracy of methodology prediction as a function of time windowwithin each stimulus recording. The most variance (or local peaks of
methodology accuracy) is best achieved with a ~300 ms window placed in the recording window post-stimulus.

doi:10.1371/journal.pone.0123033.g005
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Therefore, our results indicate the strong and direct connection between our discriminating
features and the disorder parameters and suggest their ability to act as discriminators of the dis-
ease and its severity.

Conclusions and Further Work
We presented a novel methodology for correlating EEG features and the schizophrenia condi-
tion. We demonstrated that these features can be detected using a small number (up to three)
of well-located electrodes and acquired in less than a minute of recording time for most pa-
tients. This holds great potential for future medical diagnosis, monitoring and neurofeedback,
enabling patients to be released from the hospital earlier and monitored for the use and effec-
tiveness of their medications, and it may be utilized to reduce the severity of their symptoms
using neurofeedback.

Future work can also focus on expanding the methodology for detecting additional types of
mental disorders or illnesses or for performing a general diagnosis by acquiring any abnormal
mental indications, which can transform detection methods into a reliable set of processes.

Additionally, the methodology can be further improved to achieve a higher accuracy and to
diagnose illness severity in a precise manner. It is possible that a machine learning model will
assist in this process and replace traditional diagnosis procedures in the future.
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Fig 6. Accuracy of methodology prediction as a function of the selected frequency band. The most variance (or local peaks of methodology accuracy)
is best achieved using a frequency interval of 15–20 Hz or 22.5–27.5 Hz (mostly Beta2 frequencies). It is clear that the Delta, Theta and Alpha frequency
bands possess less discrimination power.
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