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Abstract

Introduction: In recent years, LC-MS has become the golden standard for metabolo-

mic studies. Indeed, LC is relatively easy to couple with the soft electrospray

ionization. As a consequence, many tools have been developed for the structural

annotation of tandem mass spectra. However, it is sometimes difficult to do

data-dependent acquisition (DDA), especially when developing new methods that

stray from the classical LC-MS workflow.

Objective: An old tool from petroleomics that has recently gained popularity in

metabolomics, the Van Krevelen diagram, is adapted for an overview of the molecular

diversity profile in lichens through high-resolution mass spectrometry (HRMS).

Methods: A new method is benchmarked against the state-of-the-art classification

tool ClassyFire using a database containing most known lichen metabolites

(n ≈ 2,000). Four lichens known for their contrasted chemical composition were

selected, and extractions with apolar, aprotic polar, and protic polar solvents were

performed to cover a wide range of polarities. Extracts were analyzed with direct

infusion electrospray ionization mass spectrometry (DI-ESI-MS) and atmospheric

solids analysis probe mass spectrometry (ASAP-MS) techniques to be compared with

the chemical composition described in the literature.

Results: The most common lichen metabolites were efficiently classified, with more

than 90% of the molecules in some classes being matched with ClassyFire. Results

from this method are consistent with the various extraction protocols in the present

case study.

Conclusion: This approach is a rapid and efficient tool to gain structural insight

regarding lichen metabolites analyzed by HRMS without relying on DDA by
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LC-MS/MS analysis. It may notably be of use during the development phase of novel

MS-based metabolomic approaches.

K E YWORD S

extract comparison, lichens, metabolomics, structural classification

1 | INTRODUCTION

In recent years, significant advances in mass spectrometry (MS) have

led to an increase in the measurement precision, sensitivity, and fre-

quency of acquisition of tandem mass spectra. These different param-

eters, combined with the extensive separation capabilities of liquid

chromatography, have made LC-MS the golden standard in metabolo-

mics.1,2 It is indeed a preferred analytical technique because it pro-

vides an insight into the composition of an extract in a form that

could then be used by the industry.3 However, this also implies (1) that

a time-consuming extraction step must first be carried out and (2) that

a certain number of compounds will not be detected because they will

be retained on the column during separation. The extraction step

determines, through the choice of solvent, the fraction of the metabo-

lome that can be studied.4 To obtain a more comprehensive insight

into the chemical composition of an organism, it becomes necessary

to perform various extraction steps, which further increases the work-

load. Therefore, it is interesting to develop new tools for a compre-

hensive understanding of this composition by directly analyzing the

biological material. Natural products (NPs), which are the first histori-

cal source of drugs and remain an important subject of study for the

pharmaceutical industry today,5 are of special concern.

With the establishment of LC-MS as a standard for metabolomics,

many biocomputing tools have been developed and combined to facil-

itate the processing and interpretation of the massive amounts of data

generated.6 Most, if not all, of these tools have been created to pro-

cess data containing tandem mass spectra, which are commonly

acquired in data-dependent acquisition (DDA).7 It is possible to isolate

features characterized by a dataset each comprising one m/z value,

one retention time, and one tandem mass spectrum, which can be

linked together by scores or shared patterns, notably on the GNPS

platform.8–10 Finally, these tandem mass spectra allow to propose

identifications of a substantial number of molecules for each sample

by comparing them with experimental11,12 or in silico databases.13 This

structural annotation can allow a hierarchical classification of the mol-

ecules composing an extract, in particular thanks to the ClassyFire

tool.14

The use of tandem mass spectra, while being the strength of

these tools, is also their weakness. For instance, when developing

new MS tools, it is not always possible to proceed ab initio to such an

acquisition associating mass and tandem mass spectra. Data-

independent acquisition is also possible and fragments all ions present

in a wide range of m/z values regardless of intensity. However, it then

becomes difficult to interpret the resulting multiplexed spectra, and

the ad hoc algorithms require substantial computation time, which is

not suitable for a rapid screening.15 As an alternative, the option was

to develop a tool providing structural insight directly from the molecu-

lar formula (MF), which can readily be computed from high-resolution

MS data.16 Indeed, an old tool from petroleomics – the Van Krevelen

(VK) diagram17 – was previously used to estimate the structural class

associated with an MF through element ratios, notably for studying

the composition of some alcohols.18,19 To avoid the computational

burden of MF determination, a local database search can be per-

formed to determine element ratios for VK analysis;20 however, in this

approach the analysis ignores masses absent from the database, which

can be problematic in a compound discovery context. Furthermore, a

database search can sometimes generate mismatches because of cat-

ion adducts or the presence of “atypical” atoms – e.g., chlorinated

metabolites, often described in lichens21 – so, direct MF computation

was chosen. For users wishing to try this kind of VK-based approach,

a Python package (PyKrev) has recently been published and offers a

number of processing options, including a classification function – but

not tailored for phytochemicals.22

Lichens, as organisms constituted of a fungus living in a symbiotic

relationship with an alga and/or a cyanobacterium,23 possess an origi-

nal chemistry comprising varied and unique compounds21 and are

thus well suited for the development and assessment of such a tool.

They are also an interesting source of bioactive compounds,24,25 and

have been shown to be the ancestors of major fungal lineages

(e.g., Penicillium spp., Aspergillus spp.).26

This paper is the first part of a study aiming to establish a novel

concept using ambient MS for NP research, focused on four lichen

species: Evernia prunastri (L.) Ach., Lichina pygmaea (Lightf.) C. Agardh.,

Parmelia saxatilis (L.) Ach., and Roccella fuciformis (L.) DC. The lichens

were selected for their chemical diversity. An extensive list of the

metabolites described in these species is provided as Table S1. In this

paper a method capable of obtaining large structural insights into the

composition of lichen extracts is presented without being reliant on

tandem mass spectra.

2 | EXPERIMENTAL PROCEDURES

2.1 | General procedures

All solvents and reagents used in this study were HPLC grade (Sigma-

Aldrich) and were used without further purification. In order to avoid

any contamination by plastic compounds, the use of glass containers

was preferred and the use of colored plastics was strictly prohibited.

Eppendorf micropipetting systems were used for metering the extract
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solutions. For experiments requiring the thermal desorption of

extracts, samples were deposited on Marienfeld melting point

capillaries.

2.2 | Lichen material

This study was conducted on herbarium specimens. They were col-

lected in: Cressensac, France (N 45�0019.32100 O 1�30051.19100),

August 2006 for E. prunastri; Roscoff, France (N 48�43031.45800 O

3�5808.65100), June 2016 for L. pygmaea; Girona, Spain

(N 42�27053.39900 O 1�47023.81600), July 2017 for P. saxatilis; and

Saint-Coulomb, France (N 48�41029.29900 O 1�56045.85500), May 2003

for R. fuciformis. Voucher specimens are kept in the herbarium of the

University of Rennes, France under the respective reference codes:

JB/06/51, JB/16/204, JB/17/213, and JB/03/02.

2.3 | Extraction protocol

The dried weights were optimized for each extraction to reach a suffi-

cient quantity of material for all analyses (Figure S1). For each lichen,

two extracts were obtained with methanol and acetone, and two

extracts were from a successive extraction using cyclohexane, ace-

tone, and then methanol (CAM) and using cyclohexane, acetone, and

then water (CAW). CAM and CAW extracts were recombined pro rata

to the extracted quantities. The selected quantities were 2 g for both

the single-step “acetone” and the multiple-step “CAM” extracts,

500 mg for the “methanol” extract, and 4 g for the “CAW” extract. All
extractions were performed using an Accelerated Speed Extractor

Büchi SpeedExtractor E-914 after dispersion of ground lichens in

celite (1:1 ratio, w/w). A 2-g sand bed made of Büchi quartz sand of

0.3–0.9 mm granulometry was used to avoid clogging of the sintered

part of the extraction cartridges. Each extraction step consisted of

three maceration cycles of 10 min in 40�C solvent, with a discharge

time of 2 min and a degassing step between every cycle.

2.4 | HRMS analyses

Direct infusion electrospray MS (DI-ESI-MS) analyses were conducted

on a Q-Exactive mass spectrometer (Thermo Scientific, Bremen,

Germany) equipped with a Thermo HESI-II ion source. DI-ESI-MS ana-

lyses were performed on 15 μg/mL extract solutions using two ioniza-

tion solvents, acetone and methanol. Acquisition time was set to

2 min (230 scans). Optimized parameters included a sheath gas set at

20 a.u., a transfer capillary voltage of 2,800 V, and an S-lens RF level

of 50 a.u. The other parameters were set to default. The Thermo Sci-

entific Q-Exactive™ was calibrated with Pierce LTQ Velos ESI Positive

and Negative Ion calibration solutions and lock-mass calibration was

applied on palmitic acid during acquisition (deprotonated molecule

[M-H]� m/z 255.2330 and protonated molecule [M + H]+ m/z

257.2475). Experiments were performed in a single batch with

analytical triplicates. The system was rinsed with the working solvent

up to noise level between each sample. No loss of sensitivity was

observed when rerunning samples as control.

Atmospheric solids analysis probe MS (ASAP-MS) analyses were

acquired on a Maxis 4G spectrometer (Bruker Daltonics, Bremen,

Germany) equipped with an APCI ion source and a direct insertion

probe. The extracts were deposited on Marienfeld melting point capil-

laries as homogeneous solutions and dried with nitrogen before inser-

tion in the APCI source. Preliminary tests having shown a major

thermolability of some compounds, analyses were performed with a

temperature ramp-up (50�C every 15 sec) over 2 min. The tempera-

ture range covered was therefore 100–400�C with 120 scans in the

range m/z 100–2,000. Source parameters were optimized as follows:

a nebulization gas (nitrogen) pressure of 2.5 bars and a dry gas flow

rate at 2.5 L.min�1. Voltages were set to: 500 V for the transfer capil-

lary, �500 V for the end plate offset, with a 2,000 V charging voltage

and a 4,000 V working voltage. An ion cooler of 175 Vp-p was applied

on the pusher. The corona discharge was set to 500 nA for positive

ionization and 2,000 nA for negative ionization. External calibration of

the spectrometer was done with PEG600 in positive mode and PEG

diacid 600 in negative mode. Lock-mass calibration was applied on

palmitic acid by post-processing with R-script.27 During the batch two

replicates were performed to obtain a total of eight acquisitions on

the merged data for interpretation. Experiments were performed as a

single batch with a thermal desorption to noise level between each

run. No loss of sensitivity was observed on controls.

2.5 | Bioinformatic data processing

Thermo Scientific *.RAW files were converted to *.mzXML using

readw 4.3.1 and Bruker *.d folders were converted to *.mzXML using

Bruker CompassXport 3.0.6.9 from the command line. The obtained

files were processed with R-script and Microsoft Visual Basic, and fol-

lowing the Seven Golden Rules of MF determination,16 every step

was controlled manually while encoding the scripts, and exported in

the form of *.csv files.

Peak lists were extracted from the *.mzXML files using R pack-

ages xcms,28–30 MSnbase,31 and CAMERA,32 and automated instru-

ment detection was performed with the readMzXmlData33 package.

The peak picking parameters were optimized for each instrument. Iso-

topic contributions calculation and clustering followed by deisotoping

were performed with a 3 ppm tolerance using element restrictions

depending on m/z as described in the Seven Golden Rules. For this

purpose the mass ranges were refined according to the compounds

referenced in the online Dictionary of Natural Products (DNP) v26.234

(Table 1). After an in-depth study of the mass spectra, it appeared that

isotopic contributions could not be seen for monoisotopic ions of less

than 0.01% relative intensity, so this value was set as a threshold for

the calculation of isotopic clusters.

The MFs were then calculated by querying the online platform

ChemCalc35 with R-script, taking into account the calculated isotopic

patterns, allowing an error of four carbons and two nitrogens.
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[M + Na]+ adducts were further accounted for when generating the

formulae for ESI-MS. When no isotope pattern was detected, Table 1

features were considered. However, sulfur and chlorine were not con-

sidered unless detected. The absolute mass range error was set to 1.0

milli-unified atomic mass (mu) for orbitrap data (DI-ESI-MS) and 1.7

mu for Q-TOF data (ASAP-MS). Based on the double bond equivalent

(DBE) the script filtered out the formulae corresponding to radical ions

for ESI-MS. The results were coherent with manual MF determination

of known compounds and yielded most often a single formula, though

the script was able to calculate the five best formulae.

The different elemental ratios were then calculated with Visual

Basic in order to filter the formulae according to the Seven Golden

Rules to remove the potentially incoherent ones. An adduct correction

was applied according to the formulae and DBE with the following

considered adducts: ASAP-MS: M+●, [M + H]+, M–●, and [M-H]�;

ESI-MS: [M + H]+, [M + Na]+, [M-H]�, and [M + Cl]�. The corre-

sponding exact molecular masses were subsequently calculated.

Chemical classes associated with the VK diagram were retrieved

from the literature and double-checked against an in-house database

of lichen compounds. The complete project is available12 (see Techni-

cal validation section). The VK coordinates, i.e., the H/C and O/C ratios,

were then imported in R-script and merged in a single matrix that can

be filtered by all experimental variables. A rectangle approximation of

the chemical groups presented in Figure 1 was applied to tag the

detected compounds, which were filtered for plotting in the form of a

histogram (relative proportion within a method) stacked with a heat-

map (absolute count of detected features). The plots were created

with R package plot3D36 and were made interactive with

plot3Drgl.37 Although the presented plots were constructed with

the merged data of all lichens, the provided scripts allow for species

filtering (e.g., Figure S2). The VK coordinates were also used to plot

the VK diagrams using R-script.

The entire processed dataset is available at https://osf.io/6pyuq/

(dataset_solvents_comp_publi1.tsv) along with sample files for Q-

Orbitrap and Q-TOF data in the *.mzXML format. The scripts are

deposited at https://github.com/siollivier/directacquisitionproject.

2.6 | Technical validation

2.6.1 | Database establishment

An in-house database of lichen compounds was compiled from the lit-

erature. The total number of structures contained in this compiled

database is about 2,000 entries.12 The database will be provided by

the authors upon reasonable request.

The structural information was translated into InChIKey, a partic-

ularly popular format in chemoinformatics, because it is standardized

and of fixed length, allowing easy data processing (example: mycos-

porine serinol, VVTDHOIRNPCGTH-NSHDSACASA-N).

A detailed classification of the lichen compounds was then

obtained by submitting these InChIKeys to ClassyFire,14 a tool to

obtain a hierarchical classification of compounds, through the clas-

syfireR package.38 This structure-based bioinformatics approach

allows for a comprehensive result through the establishment of a

chemical taxonomy – in hierarchical order: chemical kingdom, super-

class, class, subclass, and additional levels 5–9.

2.6.2 | Evaluation of the method against a state-of-
the-art classification tool

The accuracy of the classification established in Figure 1 was exam-

ined in comparison to this database of lichen compounds. Within the

database, compounds were selected according to different levels of

their ClassyFire classification, which was compared to the classifica-

tion obtained with VK.

TABLE 1 Element restriction ranges
established from the online dictionary of
natural products v26.2

Mass range [Da] C max H max N max O max S max Cl max

<200 15 30 8 7 6 4

<400 30 58 10 14 12 7

<600 42 86 13 21 12 8

<800 56 108 16 25 20 10

<1,000 66 126 25 37 20 11

<1,500 100 182 26 44 20 11

F IGURE 1 Identification of the chemical groups on the Van
Krevelen diagram.
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The same level of precision cannot be expected from a classifica-

tion based only on the MF. However, depending on the structure of

the compounds, it is possible to expect a result in one or more classes

(more or less specific) of this diagram. Thus, some areas of the diagram

(i.e., benzenoids or prenyl derivatives) can be considered as areas that

extend more specific ones. During the evaluation of the protocol, the

compounds were considered as correctly classified if their VK annota-

tion was in accordance with the expected matches between Classy-

Fire and VK that are shown in Table 2.

3 | RESULTS AND DISCUSSION

3.1 | Determination and validation of the Van
Krevelen chemical groups

First, a search was conducted in the literature to identify the position-

ing of the defined chemical groups on the VK diagram.18,19,39–41

These bibliographic results were then refined according to a database

organized with ClassyFire, and the final ranges are specified in

Figure 1. The database used to validate these annotations mostly con-

tains compounds of MW < 500 Da, including mainly, in terms of Clas-

syFire classes, depsides and depsidones (>20%), as illustrated in

Figure 2.

In order to guarantee the quality of the following results, it is first

necessary to evaluate the accuracy of the classification on datasets

not acquired in DDA. The proportion of correctly classified molecules

in each class is an effective way to perform this validation.

However, two biases to this estimation should be considered.

(1) The classification being based on H/C and O/C ratios, classes con-

taining a large number of heteroatoms (N, S, etc.) such as amino acids

are more likely to be incorrectly classified. Others have addressed this

issue by including various elemental ratios, but this promising

approach has yet to achieve the same level of specificity for classifica-

tion.42 (2) Some ClassyFire classifications include very structurally

diverse derivatives within the same class, particularly for compounds

with a lipid or carbohydrate function.

The proportions of molecules correctly classified in each of the

classes considered are presented in Figure 3. As expected, amino acids

and analogs, fatty acyls, and carbohydrates have a lesser overlap

between the two classifications, with respectively 56%, 59%, and 68%

of compounds being correctly classified.

On the other hand, all the other structural classes considered

have an overlap of more than 70%. For four of the 10 structural types

considered, the similarity between the two classifications is even

higher than 90%. These are benzenoid derivatives, chromones,

TABLE 2 Matches between ClassyFire and the Van Krevelen
diagram for the most common lichen metabolites. The matches were

determined to fit properly with the usual classification of lichen
compounds by Huneck and Yoshimura21

ClassyFire
classification (level)

Expected area(s) in the
Van Krevelen diagram

Amino acids and analogs

(subclass)

Amino acids; nucleic acids

Anthraquinones (subclass) Condensed aromatic compounds

Benzene derivatives (class) Polyphenols and derivatives;
benzenoids

Carbohydrates and

conjugates (subclass)

Carbohydrates

Chromones (level 5) Polyphenols and derivatives;
benzenoids

Depsides and depsidones

(class)

Polyphenols and derivatives;
benzenoids

Dibenzofurans (subclass) Condensed aromatic compounds;

benzenoids

Fatty acyls (class) Fatty acyls; prenol derivatives

Prenol lipids (class) Terpenes; prenol derivatives;

unsaturated hydrocarbons

Xanthones (level 7) Condensed aromatic compounds

F IGURE 2 (A) The distribution of the molecular weights of the compounds contained in the validation database (LDB-lit, solid line) shows a
good overlap with the experimental data (dotted line). (B) The ClassyFire classes of the compounds in the LDB-lit illustrate the diversity of the
molecules used for technical validation.
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depsides, and depsidones, as well as prenol lipids, which include ter-

penes. These chemical families are among the most frequently

reported in lichens, as illustrated in the recently published tandem

mass spectra database of the most common lichen compounds.12

The encouraging results of the method provided by processing

non-experimental data gave us the incentive to proceed to a practical

evaluation. In the following case study, this method is used to obtain a

rapid evaluation of the diversity of compounds detected by multiple

ionization techniques, presenting a comparison of results from two

DI-ESI-MS conditions vs. ASAP-MS.

3.2 | Case study: Evaluation of the metabolic
diversity of lichen extracts

In order to cover a large panel of structures from lichen extracts, four

lichen samples known to have very distinct metabolite profiles were

chosen (the numbers of compounds in the ClassyFire classes are given

in Table S2 for each lichen). Protocols used for each lichen species

(two single-step and two three-step ones) were established to have a

comparison with a simple extraction generally used in chemotaxo-

nomic studies in lichenology and more exhaustive extractions (pooling

successive extracts from polar to apolar ones) (Figure S1). These

extracts were analyzed with DI-ESI-MS and ASAP-MS to compare the

performance of these techniques to reveal lichen compounds and

evaluate their distribution in structural families (Figure S2).

The DI-ESI-MS experiments were conducted with two ionization

solvents, acetone and methanol, since this aspect of the experiment

heavily impacts the compound detection. Indeed, with positive ion

mode data, principal component analysis (PCA) shows that the two

ionization solvents form distinct groups on PC2 (Figure S3). PC1

clearly differentiates DI-ESI-MS from ASAP-MS analysis and post-

treated data with an adduct correction resulted in a slightly better

clustering of samples with regard to raw data. While the positive ion

mode detects a huge number of compounds when compared to the

negative ion mode, the VK diagram provides a broad and clear over-

view of the chemical diversity of the diverse chemical families in

lichens. The complementarity of these three methods is also revealed

through the distinct zones mostly covered by these three MS condi-

tions on the VK diagram with all discriminant coordinates (Figure S4).

In other words, a single detection mode is not sufficient to cover

the metabolic diversity of lichen compounds and each technique is

more or less suitable for a class of compounds to be revealed. This

assumption was verified using a bioinformatic quantification of the

number of molecules ionized in various samples obtained with differ-

ent extraction protocols: depending on their MF, a structural class

was assigned to the compounds according to the cartography pre-

sented Figure 1.

With regard to the relative performance of the extraction proto-

cols compared in this study the quantitative and the qualitative

aspects are considered. Comparing extractions with a single solvent,

yields are higher when a polar protic solvent (i.e., methanol) is used

instead of a polar aprotic solvent (i.e., acetone). The CAM and CAW

extractions gave yields in the same range compared to a single metha-

nol extraction (Figure S1).

Considering the performance of the MS techniques used to reveal

the composition of extracts, the results obtained with the two multi-

step solvents were analyzed, which are considered to be the more

exhaustive. In Figure 4 ASAP-MS allowed the detection of more com-

pounds than ESI-MS in negative mode (average number of ions:

424/run for ASAP-MS vs. 116/run for ESI-MS in acetone), but fewer

in positive mode (average: 482/run for ASAP-MS vs. 1,434/run for

ESI-MS in acetone). Furthermore, these results are coherent with

what could be expected when considering the protic solvent selected,

and the most appropriate extraction and ionization methods for each

class of compounds are summarized in Table 3. In addition, the com-

parison with the in-house database12 exhibits differences for fatty

acyls or amino acids, as examples, with higher frequencies in the

experimental data than in the database.

3.2.1 | Regarding the extraction protocols

The successive extraction steps method appears to be better suited

than the methanol extraction to gather terpenes and prenol deriva-

tives (2.0 and 1.5 times more in positive ASAP-MS, respectively),

while 1.3 times more carbohydrates were extracted with water (nega-

tive ESI-MS in methanol).

A comparison with the single-step extractions (Figure S5) shows

that an acetone extraction would appear as a good choice for studies

targeting polyphenols and derivatives or condensed aromatic structures

as well as terpenes. On the other hand, as methanol has the closest

extraction profile to that of the successive solvent extraction and com-

parable yields, it seems to be a good compromise. However as expected

with a protic solvent fewer terpenes are extracted with methanol.

3.2.2 | Regarding the MS methods

Compared to ESI-MS, ASAP-MS favors the ionization of terpenes (rel-

ative frequency [r.f.] within an ionization method up to 20%) and

unsaturated hydrocarbons (r.f. 10%) in positive mode and benzenoids

(r.f. 35%) in negative mode. However, ASAP-MS appears less

F IGURE 3 Proportions of molecules in the database accurately
classified by the Van Krevelen diagram (in accordance with Table 2).
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favorable for polyphenols and derivatives but, interestingly, quite

favorable for condensed aromatic compounds (up to r.f. 20% in some

conditions; see Figure 4d).

This piece of data also shows differences between the two DI-

ESI-MS ionization solvents that may be of use for targeted studies: in

negative mode, carbohydrate and fatty acyl ionization is superior in

methanol (15% vs. 10% and 20% vs. 10% r.f., respectively), whereas

that of polyphenols and derivatives and condensed aromatic com-

pounds is better in acetone (40% vs. 25% and 15% vs. 10%, respec-

tively). Differences are less marked in positive ionization, except for

the condensed aromatic structures that are better ionized in methanol

(>15% vs. 10%). Such compounds are common occurrences in lichens

(e.g., depsides for polyphenols and derivatives and xanthones for con-

densed aromatic compounds).21,43

F IGURE 4 Evaluation of the chemical diversity for the merged data of the three-step extractions: “cyclohexane–acetone–methanol” in
positive mode (A) and negative mode (B), and “cyclohexane–acetone–water” in positive mode (C) and negative mode (D). Both the relative
frequency for each technique (histogram, vertical axis) and the absolute number of detected ions (heatmap) are presented. The relative frequency
represents the proportion of a chemical class within a given ionization method. The database content is proposed in comparison to show the
existing potential in new identifications.

TABLE 3 An overview of the most
efficient parameters in this study for the
extraction and MS analysis of lichen
metabolites, with regards to the number
of compounds ionized and the amount of
other metabolites that may hinder the
interpretation for each structural class

Class Extraction Ionization MS polarity

Carbohydrates CAW ESI in methanol NEG

Amino acids Methanol ESI in acetone POS

Nucleic acids CAW ESI in acetone NEG

Prenol derivatives CAM ASAP (APCI) POS

Fatty acyls Methanol ESI in methanol NEG

Unsaturated Hydrocarbons CAM ASAP (APCI) POS

Terpenes CAM or acetone ASAP (APCI) POS

Benzenoids Acetone ESI in acetone POS

Polyphenols and derivatives Acetone ESI in acetone NEG

Condensed aromatic compounds Acetone ESI in methanol POS

OLLIVIER ET AL. 1117



Furthermore, in positive mode there appears to be a similar

ionization profile for benzenoids in all ionization methods (Figure 4,

Figure S5), questioning the complementarity of the methods in this

aspect. A referral to the VK diagram however reveals that the ionized

compounds have some discriminant elemental ratios with each

method (Figure 5). VK discriminant coordinates are clearly found in

low H/C ratio for ASAP-MS and in high H/C ratio for DI-ESI-MS in

methanol, whereas DI-ESI-MS in acetone as few discriminant coordi-

nates, showing a complementarity within the ionization modes. A

referral to the VK diagram however reveals that some elemental ratios

are common to two or three ionization modes (Figure 6). Moreover,

an overall higher number of occurrences in acetone extract is clearly

observed, with a specificity in high H/C ratio – once again showing

the usefulness of the VK diagram for NP metabolomics. To illustrate

the potential of the use of ambient MS for validation or new identifi-

cation of NPs, in comparison with the in-house database, classical

expected compounds but also new coordinates are found in DI-ESI-

MS and ASAP-MS as proofs of principle (Figures S6–S10).

Overall, the interest of the VK diagram was demonstrated for the

structural classification of metabolites (without the need to acquire

tandem mass spectra data), and its applicability was shown with real-

life cases by studying the chemical composition of lichens.
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F IGURE 5 Extracted Van Krevelen diagram for benzenoids, i.e., in the (O/C 0.2–0.4; H/C 0.8–1.8) range, in all three ionization methods for
the acetone (A) and cyclohexane–acetone–methanol extracts (B). The size of the circle, represented by a coefficient of expansion (cex), is
proportional to the number of occurrences of the (O/C, H/C) coordinates without correction factor (100 gives a cex of 100). The colors (green,
blue, and red, alpha of 0.4) indicate respectively discriminant VK coordinates for DI-ESI-MS in methanol, ASAP-MS, and DI-ESI-MS in acetone
ionization mode.

F IGURE 6 Extracted Van Krevelen diagram for benzenoids, i.e., in the (O/C 0.2–0.4; H/C 0.8–1.8) range, in all three ionization methods for
the acetone (A) and cyclohexane–acetone–methanol extracts (B). The size of the circle is proportional to the number of occurrences of the (O/C,
H/C) coordinates with a correction factor of 0.1 (100 gives a cex of 10). Non-discriminant VK coordinates for a single ionization mode are plotted
in violet.
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