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Extensive use of chemical pesticides poses a great threat to the environment

and food safety. The discovery of Bacillus thuringiensis (Bt) toxins with

effective insecticidal activity against pests and the development of transgenic

technology of plants opened a new era of pest control. Transgenic Bt crops,

including maize, cotton and soya bean, have now been produced and com-

mercialized to protect against about 30 major coleopteran and lepidopteran

pests, greatly benefiting the environment and the economy. However, with

the long-term cultivation of Bt crops, some target pests have gradually

developed resistance. Numerous studies have indicated that mutations in

genes for toxins activation, toxin-binding and insect immunization are

important sources in Bt resistance. An in-depth exploration of the corre-

sponding Bt-resistance mechanisms will aid in the design of new strategies

to prevent and control pests. Future research will focus on Bt crops expres-

sing new genes and multiple genes to control a broader range of pests as

part of an integrated pest management programme.

This article is part of the theme issue ‘Biotic signalling sheds light on

smart pest management’.
1. Introduction
Since the beginning of agricultural society, pest management has been an

important part of agricultural production. The advent of various chemical pes-

ticides has promoted crop production and been the main pest control measure

[1]. Chemical pesticides have also brought serious problems such as the emer-

gence of insect resistance, the re-emergence of insect pests, threats to non-target

organisms, soil contamination, environmental pollution, ecological hazards and

food safety problems [2–4]. With the continuous improvement of living

standards, pollution and food safety problems caused by chemical pesticides

have brought widespread demands for more effective and safe pest control

technology [5].

Bacillus thuringiensis (Bt), a Gram-positive soil bacterium, produces endo-

spores and a poisonous parasporal crystal. After ingestion by a herbivorous

insect, the crystal dissolves in the alkaline environment of the insect midgut,

releasing one or more insecticidal crystalline proteins (ICPs), also known as a

delta-endotoxin [6]. ICPs can be activated by midgut proteases. Once activated,

the ICPs interact with larval midgut epithelial cells and destroy membrane

integrity, ultimately leading to insect death [7,8].

As a biogenic insecticide, the Bt-ICP has significant advantages over chemical

insecticides [9], but direct spraying of Bt has many problems. Poor product stab-

ility, easy inactivation under visible light, short residual effect period, slow speed

of killing, and susceptibility to soil and environmental factors have severely lim-

ited commercialization of Bt insecticides. As more Bt genes have been discovered
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and transgenic technology has improved, generating Bt crops

has become more convenient. Since the first Bt-insecticidal

crystalline protein gene was cloned and sequenced in 1981,

993 Bt toxin-encoding genes have been cloned and classified,

including 801 Cry genes, 40 Cyt genes and 152 Vip genes

(http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/),

providing abundant material for producing transgenic Bt crops.

In the past 22 years, transgenic Bt crops have been widely

developed and grown commercially, contributing greatly to

the control of numerous agricultural pests [10].

With long-time use of Bt crops, however, target pests can

respond actively by evolving resistance to the crop as in the

case of Busseola fusca, Diabrotica virgifera virgifera, Helicoverpa
zea, Pectinophora gossypiella and Spodoptera frugiperda [11]. By

understanding the mechanism underlying this resistance in

target pests, we hope to devise strategies to delay resistance

evolution. In addition, crops expressing novel Bt toxins

have been developed and popularized. In this paper, we

summarize the Bt-transgenic crops that have been commer-

cialized and the target pests and recent progress on the

interaction between insects and Bt crops, the mechanisms

underlying resistance to Bt toxins, and strategies to avoid

the emergence of resistance.
 316
2. Commercialized Bacillus thuringiensis crops
and the target pests

Genetically modified (GM) plants producing Bt genes have

been approved for commercialized cultivation in most of

the major grain and economic crops, including maize,

cotton, soya bean, rice, potato, brinjal, tomato and sugar-

cane. Currently, Bt crops are mainly cultivated to

manage coleopteran, lepidopteran and some hemipteran

insects (table 1).
(a) Bacillus thuringiensis maize
The early Bt genes inserted into maize were primarily

Cry1Ab, Cry1Ac and Cry2A [55]. Subsequently, Cry34/35Ab1
and Cry3Bb1 genes were introduced to control closely related

pest species [56,57]. In recent years, Bt genes have started to

be stacked in GM maize. For example, a maize variety expres-

sing five Bt genes (eCry3.1Ab, mCry3A, Cry1Ab, Cry1Fa2 and

Vip3Aa20) was planted commercially in 2013, and another

GM maize expressing six Bt genes (Cry2Ab2, Cry1A.105,

Cry1F, Cry34Ab1, Cry35Ab1 and Cry3Bb1) was introduced

in 2017. At present, even more GM maize varieties that pro-

duce multiple Bt genes have been approved (http://www.

isaaa.org/gmapprovaldatabase/default.asp). Chilo partellus
caused much less damage to the leaves of three Bt maize

hybrids producing Cry1Ab than to those of non-Bt iso-

hybrids, and the mortality of C. partellus larvae feeding on

Bt maize was 79.4–100% in laboratory tests [58]. Cry3Bb1 is

one of the most commonly used Bt toxins in GM maize,

has good insecticidal activity against Colorado potato beetle

(Leptinotarsa decemlineata) and even better activity against wes-

tern corn rootworm (D. v. virgifera) [59,60]. In eastern North

Dakota (United States), the total feeding injury and population

level of western corn rootworm were the lowest on Cry3Bb1þ
Cry34/35Ab1 hybrids than on Bt maize producing either

Cry3Bb1 or Cry34/35Ab1 protein alone [61].
(b) Bacillus thuringiensis cotton
In 1996, Bt cotton producing Cry1Ac was first released for

cultivation in Australia and the United States, and in China

the next year [11,62]. Early in the history of GM cotton, Bt

cotton expressing Cry1Ac gave good control of major target

pests such as cotton bollworm (Helicoverpa armigera) and

pink bollworm (P. gossypiella), and obviously, the population

of the target pests decreased [63]. However, long-term planting

of a cotton variety with one Bt gene brings the risk of resistance,

so two-toxin cotton, including different toxin combinations of

Cry1AcþCry2Ae, Cry1AbþVip3A(a), Cry1AbþCry2Ab2,

Cry1AbþCry2Ae and Cry1AcþCry2Ab2, began to be studied

and tested at the end of the twentieth century. In many

countries, Bt cotton expressing Cry1AbþCry2Ab2 gradually

replaced GM cotton expressing a single-Bt gene [62]. When con-

trol efficiency was monitored, the number of cotton bollworm

larvae at the second, third and fourth generations on two-

toxin cotton was 81.4%, 87.1% and 87.0%, respectively, lower

than on non-Bt cotton. Compared with one-toxin cotton, the

number of larvae decreased by 11.1%, 33.3% and 57.1%, respect-

ively [64]. Some three-toxin Bt cottons that express

Cry1AcþCry1FþVip3A(a), Cry1AcþCry2AbþVip3A(a), and

Cry1AbþCry2AeþVip3A(a) have also been developed

(http://www.isaaa.org/gmapprovaldatabase/gmtrait/default.

asp?TraitID=6&GMTrait=Lepidopteran%20insect%20resistance).

Although cotton bollworm and other lepidopteran pests have

been well controlled, the non-target pest, the mirid bug (Lygus
hesperus; Hemiptera: Miridae), has emerged as the main pest

[65]. Interestingly, Monsanto has found that Cry51Aa2 had

insecticidal activity against mirid nymphs. Cry51Aa2 belongs

to the Mtx (mosquitocidal toxins) group of proteins, which dif-

fers structurally from the widely used Cry1A [39,66] and is also

insecticidal against Apolygus lucorum [41]. At present, mirid is

mainly controlled by chemical pesticides. If the Cry51Aa2 gene

can be co-introduced into cotton with another Bt toxin gene(s),

the risk of mirids outbreak and environmental problems from

pesticides should be greatly lowered.

(c) Bacillus thuringiensis soya bean
GM soya bean accounts for the largest proportion of all GM

crops planted, so far, Cry1Ac, Cry1F, Cry1A105 and Cry2Ab2

have been studied in soya bean. Monsanto developed a GM

soya bean variety MON87701 (expressing Cry1Ac) and

MON89788 (expressing 5-enolpyruvylshikimate-3-phosphate

synthase (EPSPS)) and was first commercially released in

Brazil during the 2013–2014 growing season [10]. Bt soya

bean varieties MON87701 and MON87701RR2Y (expressing

Cry1AcþEPSPS) were significantly resistant to H. armigera
throughout the whole growing season when first released; H.
armigera larvae had a survival rate between 5.4% and 24.4%, sig-

nificantly lower than after feeding on non-Bt leaves (71–94.9%).

The survival rate, larval mass and female fecundity of Spodop-
tera litura also significantly decreased when Bt soya bean was

planted [51]. Soya bean MON87701�MON89788 also has a

high preventive effect against Heliothis virescens [67]. In an effi-

cacy test with a modified Bt soya bean cultivar, 100% mortality

of H. armigera was obtained for all six instars [68].

(d) Bacillus thuringiensis rice
Since Fujimoto first introduced Cry1Ab into a japonica rice

variety, several other Bt rice materials with good insect
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Table 1. Bt crops and their target pests.

crop Bt toxin commercialized (yes/no) target pest reference

maize Cry1Ab yes Ostrinia furnacalis [12]

Ostrinia nubilalis [13]

Spodoptera frugiperda [14]

Busseola fusca [15]

Diatraea saccharalis [16]

Diatraea grandiosella [17]

Chilo partellus [18]

Cry1Ac yes Ostrinia furnacalis [12]

Chilo partellus [18]

Spodoptera frugiperda [14]

Cry1Fa2 yes Ostrinia nubilalis [13]

Spodoptera frugiperda [19]

Cry1F yes Spodoptera frugiperda [20]

Diatraea saccharalis [20]

Diatraea grandiosella [20]

Ostrinia nubilalis [21]

Cry9C yes Ostrinia nubilalis [22]

Cry1A.105 yes Spodoptera frugiperda [20]

Diatraea saccharalis [20]

Diatraea grandiosella [20]

Cry2Ab2 yes Spodoptera frugiperda [20]

Diatraea saccharalis [20]

Diatraea grandiosella [20]

Vip3Aa20 yes Spodoptera frugiperda [23]

Cry3Bb1 yes Diabrotica virgifera virgifera [24]

Cry34Ab1 yes Diabrotica virgifera virgifera [24]

Cry35Ab1 yes Diabrotica virgifera virgifera [24]

mCry3A yes Diabrotica virgifera virgifera [25]

eCry3.1Ab yes Diabrotica virgifera virgifera [25]

Cry1Ie no Ostrinia furnacalis [26]

Helicoverpa armigera [26]

Cry1C no Ostrinia furnacalis [27]

cotton Cry1Ac yes Helicoverpa armigera [28]

Heliothis virescens [29]

Pectinophora gossypiella [30]

Helicoverpa zea [28]

Helicoverpa punctigera [31]

Spodoptera exigua [32]

Trichoplusia ni [33]

Cry2Ab2 yes Helicoverpa armigera [28]

Helicoverpa punctigera [31]

Trichoplusia ni [33]

Heliothis virescens [29]

Pectinophora gossypiella [30]

Helicoverpa zea [29]

Spodoptera exigua [34]

(Continued.)
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Table 1. (Continued.)

crop Bt toxin commercialized (yes/no) target pest reference

Vip3A(a) yes Helicoverpa armigera [28]

Heliothis virescens [29]

Helicoverpa zea [29]

Helicoverpa punctigera [35]

Cry1F yes Helicoverpa armigera [28]

Helicoverpa zea [36]

Cry1Ab yes Helicoverpa armigera [28]

Heliothis virescens [37]

Helicoverpa zea [37]

Cry2Ae yes Helicoverpa armigera [28]

Heliothis virescens [37]

Helicoverpa zea [37]

Cry1Ca no Spodoptera exigua [38]

Cry51Aa no Lygus hesperus [39]

Cry15Aa no Apolygus lucorum [40]

rice Cry1Ab no Chilo suppressalis [41]

Cnaphalocrocis medinalis [41]

Scirpophaga incertulas [42]

Cry1Ac no Chilo suppressalis [41]

Cnaphalocrocis medinalis [41]

Scirpophaga incertulas [42]

Cry1C no Chilo suppressalis [43]

Cnaphalocrocis medinalis [44]

Cry2A no Chilo suppressalis [45]

Cnaphalocrocis medinalis [46]

Scirpophaga incertulas [46]

Cry9C no Chilo suppressalis [45]

Vip3H no Scirpophaga incertulas [47]

Chilo suppressalis [47]

Cry64Ba no Laodelphax striatellus [48]

Sogatella furcifera [48]

Cry64Ca no Laodelphax striatellus [48]

Sogatella furcifera [48]

potato Cry3A yes Leptinotarsa decemlineata [49]

Cry1Ab no Phthorimaea opercullela [50]

soya bean Cry1Ac yes Spodoptera litura [51]

Anticarsia gemmatalis [52]

brinjaul Cry1Ac yes Leucinodes orbonalis [53]

sugarcane Cry1Ab yes Diatraea saccharalis [54]
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resistance have been developed. T1C-19 and T2A-1 are two

widely used Bt rice lines, which have insecticidal activity in

various insect tissues and organs and confer resistance

during different reproductive periods [69,70]. Because

deploying two or more Bt genes in one rice variety can

delay the emergence of pest resistance [71], Cheng et al. [72]

introduced the Cry1Ab/Cry1Ac fusion gene into various

rice plants and obtained highly efficient expression strains.
Field experiments with rice strain Minghui63 (Cry1Abþ
Cry1Ac fusion gene) and its hybrid strain Bt-Shanyou63

showed high resistance against target pests [42]. The inci-

dence of Chilo suppressalis larvae on another variety

Huahui1, which also expresses Cry1Ab/Cry1Ac, was signifi-

cantly reduced by 84.9–100% [73]. In addition, the

incidence of dead heart/white head plants and damaged

plants caused by C. suppressalis on Bt rice was significantly
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lower (30.8–98.3% and 11.4–96.6%, respectively) than on the

control variety. Recently, Cry64Ba and Cry64Ca proved to be

effective in controlling rice planthoppers, thus providing a

novel strategy to manage hemipteran pests [48].

(e) Other Bacillus thuringiensis crops
GM potato expressing Cry3A showed significant resistance to

Colorado potato beetle [49]. Potato producing Cry1Ab was

also effective against potato tuber moth (Phthorimaea opercu-
lella), and transgenic tubers caused significant growth

retardation and high mortality of neonatal tuber moth

larvae [50]. In 2014, Bangladesh began to plant Cry1Ac-trans-

genic brinjal to control the main pest Leucinodes orbonalis [10].

With the continuous improvement of GM technology, more

potential Bt genes will be discovered and applied in GM

crops. In general, Bt crops show high efficiency against

most target pests, but the risk of insect resistance evolution

needs to be given more attention.
B
374:20180316
3. Managing the efficacy of Bacillus thuringiensis
crops against target pests

The first insect-resistant Bt-transgenic maize was developed

in the United States in 1986, but did not enter commercial

production until 1996. Subsequently, three Bt-transgenic

maize lines were commercialized in the United States, and

in 2017, 59.7 million hectares among 14 countries were

planted in transgenic maize [10]. GM cotton, commercially

grown for more than 20 years, made up 80% of the cotton

grown with a planting area of 24.21 million hectares in

2017. Among the 14 countries that grew GM cotton in 2017,

the top four producers were India (11.40 million hectares),

United States (4.58 million), Pakistan (3.00 million hectares)

and China (2.78 million). Bt soya beans have been grown in

seven countries since they were introduced in Brazil in

2013. The planting area of Bt aubergine in Bangladesh has

reached 2400 ha. Bt sugarcane (expressing Cry1Ab protein)

will also be first commercially grown in Brazil in 2018.

When Bt crops were first planted, target pests were effec-

tively controlled, but with the long-term cultivation of Bt

crops, target pests gradually developed resistance. To delay

the evolution of Bt resistance, refuge strategies are rec-

ommended. The success of such strategies depends on three

factors: inheritance of the resistance allele must be recessive,

resistance allele frequency must be low, and abundant non-

Bt host plants must be near the Bt crop [10]. Second-generation

Bt crops, that produce two or more distinct Bt toxins, have also

been developed and used in target pest resistance manage-

ment. In some countries, Bt resistance has been delayed with

this strategy, while others have failed.

Pest resistance management can be divided into three

types, which we discuss using P. gossypiella as an example.

In the United States, refuges with non-Bt cotton have grown

more than 25% in acreage every year from 1996 to 2005,

increasing the survival of the susceptible pink bollworm.

Very few resistant pink bollworms in Bt cotton fields mate

with the susceptible ones from the refuges because the resist-

ant inheritance is recessive; Bt cotton kills any heterozygous

progeny produced by mating between a homozygous suscep-

tible moth and homozygous resistant moth [74,75]. This refuge

strategy plays a crucial role in sustaining the susceptibility of
the pink bollworm to Bt cotton. With this strategy, even after

many years of commercial cultivation of Bt cotton, a few

Bt-resistant genes in pink bollworm were detected in fields,

and pink bollworm remained susceptible to Bt toxins and

was rare in fields [10] (figure 1). With the production of

two-toxin cotton, the refuge abundance was greatly reduced

during 2006–2009, to a mean percentage of only 7% [75].

Mass releases of sterile pink bollworms in these years has

contributed greatly to the control of pink bollworm, and this

target pest has nearly been eradicated.

In India, Bt cotton that produces a single Cry1Ac protein

has been planted since 2003, and pink bollworms resistant to

Bt cotton expressing Cry1Ac were first detected in 2008 in

Gujarat [30,76]. This emergence of field-evolved resistance

is probably owing to insufficient planting of conventional

cotton as refuges [77]. Although the Indian government has

mandated that each Cry1Ac cotton field be surrounded by

non-Bt refuges with more than five lines or at least 20% of

the field area, Indian growers have not complied [78].

Second-generation Bt cotton (expressing Cry1Ac and

Cry2Ab protein) has been planted since 2006, and sub-

sequently, one-toxin and two-toxin plants have been grown

concurrently [79]. On the basis of continuous field surveys

from 2010 to 2017, the survival of pink bollworm on two-

toxin Bt cotton increased in central and southern India [80],

meaning that the management strategy against Bt resistance

in the targeted cotton pest failed in India (figure 1).

In China, millions of small-scale farmers first planted

transgenic cotton producing Cry1Ac in 2000 in the Yangtze

River Valley to prevent and control pink bollworm [81].

Pest resistance to Cry1Ac toxin increased significantly from

2005–2007 to 2008–2010 in the Yangtze River region. Surpris-

ingly, however, resistance then decreased from 2011 to 2015.

After a survey in 2010 and subsequent years, Wan et al. [82]

found that growers had planted seeds from second-generation

(F2) cotton hybrids. The production of F1 hybrid seeds requires

expensive artificial pollination, but F2 hybrid seed is relatively

easy to produce through self-pollination of plants from F1

hybrid seeds at an expected rate of 25% homozygous and

50% heterozygous for Bt toxin production and 25% homozy-

gous for nonproduction of Bt. Thus, the seed mixture

generated with F2 hybrids is equivalent to the mixture pro-

vided by refuges and was the main reason for the delay in

Bt resistance of pink bollworm in China (figure 1).

Natural refuges can usually serve as adequate refuges.

Owing to intercropping with multiple crops, cotton boll-

worm has been well controlled and Bt resistance effectively

delayed [83]. The effectiveness of natural refuges is influ-

enced by many factors, including the characteristics of

target pests, distribution and abundance of host plants, and

so on [84]. Although natural refuges are important in delay-

ing Bt resistance in pests, they are not as effective as non-Bt

cotton refuges. Field population monitoring data showed

that non-recessive resistance increased faster than recessive

resistance. During resistance monitoring in 17 counties in

six provinces in northern China from 2010 to 2013, Jin et al.
[85] found that the proportion of resistance among more

than 70 000 larvae increased from 1% in 2010 to 5.5% in

2013. This large-scale field investigation and simulation mod-

elling of the evolution of Bt resistance of bollworm in

northern China, generated more attention on the increase in

non-recessive resistance populations by comparing the devel-

opmental trends in non-recessive resistant and recessive



single-Bt cotton

single-Bt cotton

single-Bt cotton

control failure control failure

multiple-Bt cotton
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F2 hybrid Bt-cotton
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Figure 1. Models of the evolution of pink bollworm (PBW) Bt resistance. In the United States, the effective implementation of high-dose/refuge strategies when
growing single-Bt cotton (i.e. a line with one Bt toxin) has maintained PBW populations with few Bt-resistant genes. With planting of multiple-Bt cotton (i.e. a line
with more than one Bt toxin), the scale of refuge has been greatly reduced; however, when the line was grown using other control measures, PBW populations were
eradicated [11,75]. In India, the cultivation of single-Bt cotton and the lack of refuge have led to Cry1Ac resistance in PBW, resulting in widespread control failures of
Bt cotton. Several years after multiple-Bt cotton was planted, PBW sensitivity to multiple-Bt cotton also decreased [30,79]. In China, with the cultivation of Bt
cotton, the frequency of PBW resistance increased. After F2 Bt cotton was planted, the frequency of resistance decreased because the F2 seeds contained 25%
conventional cotton as a refuge [82]. Note: light-coloured cotton plants represent conventional cotton, dark-green plants represent Bt cotton, light PBWs represent
Bt-sensitive population, dark ones represent Bt-resistant population. PBWs with two colours represent those that carry the resistance mutation genes; green ones
represent sterile PWBs.
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resistant populations. Although the overall Bt-resistance

levels in the field are still low, the populations of cotton boll-

worm in China should be monitored carefully for resistance

in the future.

In some countries and regions, owing to the widespread

planting of Bt-transgenic corn, cotton and other crops, the

natural refuge of target pests has disappeared, and the risk

of Bt resistance evolution increased dramatically. Fall army-

worm (Spodoptera frugiperda) is a major maize pest in Brazil,

and migrated to South America [86]. Because of wide

planting of Bt crops and no natural refuge, this pest had

developed resistance to Bt crops [87].
4. Resistance mechanisms of target pests to
Bacillus thuringiensis crops

Laboratory and field data have shown that different mechan-

isms are involved in the evolution of resistance to Bt crops. So

far, the mechanisms comprise three types: variations in toxin

activation, mutation in the toxin receptor and regulation of

the immune system (figure 2).

(a) Variations in toxin activation
Bt protoxin is hydrolysed in the alkaline intestine and activated

by protease degradation in the midgut, then released as the
insecticidal toxin. Changes in the proteases in insect midgut

can thus affect the activation of insecticidal proteins. When

major intestinal trypsin was absent in the midgut of a Bt-resistant

strain of Plodia interpunctella, the protoxin was not activated in

the midgut, and resulted in Bt resistance [88,89]. Forcada et al.
[90] reported that changes in the composition of midgut protease

in Bt-resistant H. virescens strain were associated with a signifi-

cant reduction in protoxin activation. When the protease

activity in resistant and sensitive strains of European corn

borer was compared, soluble serine protease activity in sensitive

strains was higher than in the resistant strains [91]. Liu et al. [92]

found that mutations in the promotor of one trypsin gene

conferred high Cry1Ac resistance in the cotton bollworm.

Although reports have shown that variations in toxin activation

are important in the development of Bt resistance [93,94], most

researchers believe that the proportion of Bt-resistance cases

caused by changes of protease is not very high.
(b) Mutation in genes for toxin receptors
Midgut membrane-bound cadherin (CAD), ATP binding

cassette (ABC) transporters, aminopeptidase N (APN), alka-

line phosphatase (ALP) and perhaps unknown receptors

have important roles in the insecticidal activity of Bt toxins

in lepidopteran larvae. Mutations and gene expression regu-

lation of receptors are important reasons for Bt resistance in

insects (table 2).



variation of ECL4 deletion mutation
HaABCA2 insertion/deletion mutation
HaABCC2 gene mis-splicing
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CtABCB1 deletion mutation
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Figure 2. Bt-resistance mechanisms in target pests. The main mechanisms include disruption of the activation of Bt protoxin, mutations or regulation of Bt receptors
such as cadherin, ATP binding cassette (ABC) transporters, alkaline phosphatases (ALPs), and aminopeptidase N (APNs), and changes in immune systems. In
Bt-resistant insects, activation of Bt toxin and binding of specific receptors on the midgut membrane can activate the mitogen-activated protein kinase
(MAPK) signalling pathway, reducing the expression level of Bt-receptor genes via different transcription factors. The MAPK pathway and other regulators
may enhance resistance to Bt toxin through the repair of cell membrane damage and changes in the immune system. SSS, sodium solute symporter; GSL,
glycosphingolipids; TF, transcription factor.
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(i) Cadherin
CAD is one of the most important Bt toxin receptors because

it has important roles in toxin oligomerization. Bt resistance

in many pests is related to a mutation in the CAD gene. Dis-

ruption of the gene by retrotransposon-mediated insertion

and an early stop codon is related to the high resistance to

Cry1Ac toxin that developed in the cotton pest H. virescens
[104]. Morin et al. [114] reported that pink bollworm field

populations harboured three mutant alleles of the CAD-

encoding gene that were linked to Cry1Ac resistance. Each

of the three Cry1Ac-resistance alleles had a deletion, which

was associated with binding of Cry1Ac. Zhao et al. [125]

also reported that diverse CAD mutations in cotton bollworm

were linked with resistance to Cry1Ac toxin. In addition, a

CAD transmembrane mutation affects cellular trafficking

and results in resistance of pink bollworm to Cry1Ac toxin

[115]. Amino acids Leu1425 and Phe1429 play a vital role in

the interaction between CAD and Cry1Ac toxin, and if they

are replaced with charged amino acids, the toxin will not

bind to CAD, which may lead to resistance to Cry1Ac

[106]. Xiao et al. [102] found that a single-point mutation

caused CAD mislocalization on the surface of the midgut epi-

thelium, which led to high Cry1Ac resistance in the cotton

bollworm, which is a novel finding. The interaction of
CAD1 and CAD2 with Bt toxins may underlie Bt resistance

in the important rice pest C. suppressalis; reducing the

expression of CAD1 or CAD2 can increase resistance to

Cry2A and Cry1C [108].
(ii) ATP binding cassette transporter
ABC transporter plays important roles in the toxicity of Bt

toxin and insect metabolism of chemical pesticides. A

mutation in ABCC2 was first found to contribute to Cry1Ac

resistance in H. virescens [107], then in other insects such as

Bombyx mori and Plutella xylostella [126,127]. Xiao et al. [99]

demonstrated that mis-splicing of the ABCC2 gene led to a

loss of 150 amino acids and conferred high resistance to

Cry1Ac toxin in H. armigera. Tay et al. [98] found that a

mutation in the ABCA2 gene in cotton bollworm led to resist-

ance to Cry2Ab toxin, another important Bt toxin used in

cotton. This finding was the first elucidation of a molecular

genetic mechanism resistance to Cry2Ab in insects, and the

detection of related resistance sites was helpful to understand

the microevolution processes of Bt resistance in lepidopteran

insects. Wang et al. [128] knocked out the midgut HaABCA2
gene with the clustered regularly interspaced short palindro-

mic repeats (CRISPR)/Cas9 gene editing system and revealed



Table 2. Bt-resistance mechanism in target pests.

target pest receptor/enzyme resistance mechanism Bt toxin reference

Bombyx mori ABCC2 variation in amino acid residues around 770DYWL773 of

ECL4

Cry1Aa [95]

Chilo suppressalis ALP downregulation Cry1A

Cry2A

Cry1C

[96]

Helicoverpa armigera cadherin premature stop codon Cry1Ac [97]

trypsin mutations in promoter region Cry1Ac [92]

ABCA2 three independent indel mutations Cry2Ab [98]

ABCC2 insertion of 73 bp in cDNA leads to 6-bp deletion at

splicing site

Cry1Ac [99]

APN1 deletion mutation Cry1Ac [100]

protease altered protease profile leads to improper processing of

the protoxin

Cry1Ac [101]

cadherin point mutation leads to cadherin mislocalization Cry1Ac [102]

ALP N-glycosidase digestion Cry1Ac [103]

Helicoverpa

punctigera

ABCA2 deletion of 14 bp leads to loss of tpm2 transporter motif

in NBF2

Cry2Ab [98]

Heliothis virescens cadherin retrotransposon-mediated insertion Cry1Ac [104]

cadherin single-nucleotide mutation, CTG!CGG Cry1A [105]

ALP downregulation Cry1Ac [106]

ABCC2 inactivating mutation Cry1Ac [107]

Ostrinia furnacalis ABCG1 knockdown Cry1Ab

Cry1Ac

[108]

cadherin downregulation and mutation Cry1Ac [109]

Ostrinia nubilalis cadherin premature termination codons and/or large deletions Cry1Ab [110]

ABCC2 mutation Cry1Fa [111]

APN downregulation Cry1Ab [112]

Aminopeptidase-P like

gene

mutation Cry1Ab [113]

Pectinophora

gossypiella

cadherin three mutant alleles in toxin-binding region Cry1Ac [114]

cadherin deletion of 207 bp and loss of transmembrane domain Cry1Ac [115]

cadherin premature stop codon, deletion of at least 99 bp or both Cry1Ac [116]

cadherin insertion of intact CR1 retrotransposon Cry1Ac [117]

Plutella xylostella ABCG1 downregulation mediated by MAPK pathway Cry1Ac [118]

ALP downregulation mediated by MAPK pathway Cry1Ac [118]

ABCC2 mutation Cry1Ac [119]

Spodoptera exigua ALP2 knockdown Cry2Aa [120]

APN downregulation Cry1Ca [121]

ABCC2 mutation Cry1Ac

Cry1Ca

[122]

Spodoptera frugiperda ALP downregulation Cry1Fa [123]

Trichoplusia ni APN1 downregulation Cry1Ac [124]
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that the edited strains had high levels of resistance to Cry2Aa

and Cry2Ab. The ABCG1 protein is located on the cell mem-

brane, and expression of the ABCG1 gene in a Bt-resistant

population of P. xylostella population is significantly lower
than in the susceptible populations. Silencing by RNA inter-

ference (RNAi) of the midgut ABCG1 gene significantly

reduces susceptibility of P. xylostella to Cry1Ac toxin. More-

over, decreased expression of the ABCG1 gene is closely
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linked to resistance to Cry1Ac [129]. Downregulation of

genes in the ABCG subfamily of Ostrinia furnacalis is related

to its resistance to Cry1Ab and Cry1Ac [12]. The mitogen-

activated protein kinase (MAPK) signalling pathway alters

expression of ABCC genes, leading to high resistance to

Cry1Ac in P. xylostella [118]. Recently, forkhead box protein

A (FOXA) was also shown to upregulate expression of

ABCC2 and ABCC3 genes in S. frugiperda SF9 cells [126].

ABCC2 and ABCC3 are important receptors of Cry1Ac

toxin, so the low expression of FOXA is related to the lepi-

dopteran larval resistance to Bt toxin. Specific toxicity of

Cry1Aa to some lepidopteran insects is related to the conser-

vation or variation in amino acid residues around
770DYWL773 of extracellular loop 4 (ECL4) in ABCC2 [95].

ABC transporters may play key roles together with CAD,

which is responsible for oligomerization of activated toxins

and may be necessary for binding to ABC transporters.

ABC transporters might bind to the oligomeric toxins to

form pores. Perhaps in some insects, the oligomerization is

not needed; thus, CAD would not function in the insecticidal

process in these insects. But ABC transporters are necessary.

Different ABC transporters can bind to different Bt toxins, for

example, ABCA2 is the receptor for Cry2Ab, and ABCC2 is

the receptor for Cry1Ab and Cry1Ac [98]. We speculate that

nearly all Bt toxins need a responding ABC transporter to

bind and forming pores. Moreover, a strain with a mutation

in the ABCC2 gene is more sensitive to abamectin, which

means that Bt resistance which is mediated by the ABC

transporter mutation may cause negative cross-resistance to

other biological or chemical insecticides [127].

(iii) Alkaline phosphatase
In the brush border membrane vesicle of H. virescens, ALP is

a receptor for Cry1Ac toxin [106], and ALP levels in resistant

H. virescens are significantly lower than in susceptible strains.

According to proteomic and genomic analyses of the Bt-

resistant and susceptible larvae of H. virescens, H. armigera
and S. frugiperda, the level of ALP that bound to the

midgut membrane is significantly lower in resistant strains

than in susceptible [130]. The MAPK signalling pathway

alters expression of ALP genes, causing Cry1Ac resistance

in P. xylostella [118]. When the ALP gene is downregulated,

C. suppressalis becomes resistant to Cry1A-, Cry2A- and

Cry1C-transgenic rice lines [96]. ALP2 is also important for

the susceptibility of Spodoptera exigua to Cry2Aa and is prob-

ably the receptor for Cry2Aa [120]. The expression of midgut

membrane-bound Cry1Fa and midgut ALP is also reduced in

a field-evolved Bt-resistant S. frugiperda strain [123]. In an

analysis of the molecular mechanism of HaALP binding

to Cry1Ac toxin in H. armigera, Ning et al. [103] found that

N-glycosidase digestion of HaALPs reduces the binding

level of Cry1Ac on the midgut brush border membrane sur-

face. The exact function of ALPs as important receptors for Bt

toxins is still unclear. One of our hypotheses is that the glyco-

syl on ALP binds the toxins, which may help the toxin

accumulate, accelerate oligomerization of the Bt toxin by

CAD and eventually cause cell perforation by binding to

the ABC transporters.

(iv) Aminopeptidase N
APN is also an important receptor in the midgut membrane

of insects for Bt toxins. Zhang et al. [100] reported that
HaAPN1 was a receptor of Cry1Ac, and a deletion mutation

in the HaAPN1 gene is associated with resistance of H. armi-
gera to Cry1Ac. When the HaAPN1 gene is silenced by RNAi,

the susceptibility of H. armigera to Cry1Ac is reduced [131].

Biochemical, proteomic, and molecular analyses of Cry1Ac-

resistant cabbage loopers revealed that APN1 gene expression

is significantly downregulated, but ANP6 gene expression is

significantly upregulated. Further analysis showed that

Cry1Ac resistance is only related to the downregulation of

APN1. The concurrent upregulation of APN6 might play a

compensating role for the loss of APN1 to minimize the

fitness costs of resistance [124]. In a comparison of Cry1Ab-

resistant and -susceptible strains of O. furnacalis, the APN

sequence of the resistant strain had an amino acid variation

in four locations [132]. An RNAi-mediated knockdown

analysis showed that APN1, APN3 and APN6 might be

receptors of Cry1Ca in S. exigua [133]. However, the role of

APNs in the Bt-insecticidal process is not very clear. Perhaps

their role is similar to that of ALPs.

(v) Other receptors
Other types of receptors on the cell membrane are involved in

insect interactions with Bt toxin. For example, several poss-

ible Cry3Ba receptors in Tribolium castaneum were identified

by ligand blotting. Sodium solute symporter (TcSSS) protein

gene knockdown enhances the resistance of T. castaneum to

Cry3Ba. The presence of CAD repeats in amino acid

sequences is a significant feature of TcSSS, and a TcSSS pep-

tide fragment that contains sequences homologous to binding

epitopes in Bt CAD functional receptors was found to

enhance Cry3Ba toxicity in Manduca sexta and Tenebrio molitor
[134]. This finding was the first report that the TcSSS protein

is a Bt toxin receptor, which broadens the scope of Bt-

resistance mechanisms in insects. Bt toxin can bind to

glycolipids directly, and Griffitts et al. [135] found that

Cry1Ac, Cry1Aa and Cry1Ab combine with the same glyco-

lipids extracted from midguts of M. sexta. Resistance to

Cry1Ac in a strain of P. xylostella is also associated with a

decrease in glycolipid levels, consistent with glycolipids ser-

ving as general host cell receptors for these toxins [136].

Chen et al. [137] reported that glucosinolate sulfatases GSS1

and GSS2 bind directly to Cry1Bd in P. xylostella and play a

crucial role in Cry1Bd toxicity. New Bt receptors and new

mechanisms are likely to be discovered as research continues.

(c) Changes in immune systems
Insects can improve their resistance to Bt toxin by increasing

the level of esterses such carboxylesterase or accelerating

degradation of the toxin [138,139]. Carboxylic cholinesterase

increases in larvae of M. sexta after they feed on Bt toxin

[90]. In the third-instar larvae of the Asian corn borer,

carboxylesterase activity is significantly lower after the larvae

feed on Bt maize than on non-Bt maize, indicating that the

activity of carboxylesterase may be related to the detoxification

of Bt by the insect [139]. In an Australian bollworm population

with 275-fold higher resistance to Bt toxin than in the suscep-

tible strain, inheritance of this resistance was found to be

autosomal semi-dominant and associated with elevated

esterase levels [140]. Biochemical analysis showed that the

esterase in the resistant population binds to the Bt protoxin

and the activated protoxin, preventing the toxin from binding

to the receptor.
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Symbiotic microbes in insects may also be involved in

insect interactions with Bt toxins. Larvae of H. armigera carry-

ing HaDNV-1, a novel densovirus that phylogenetically

groups with members of the genus Iteravirus, are signifi-

cantly more resistant to Bt toxin at low doses [141].

Compared with uninfected insects, HaDNV-1-positive

individuals develop faster and have greater reproductive

capacity. These results suggest that HaDNV improves the

resistance of H. armigera to Bt cotton and helps the pest

survive in Bt crop areas. Perhaps the interaction between

an insect pest and a microorganism can activate immunity

or tolerance in the pest, increase its rate of growth and

reduce the fitness cost for Bt resistance. In the laboratory,

although symbionts seem to contribute little to Bt-resistance

levels in pests, in the natural environment, the effect might

be remarkable.
s.R.Soc.B
374:20180316
5. Discussion
With further research and commercialization of multiple-

gene Bt crops, the efficacy of pest control can be improved

and the development of Bt resistance delayed. Usually, Bt

genes have different insecticidal mechanisms, thus providing

choices for a particular Bt crop. When the target pest evolves

resistance to one Bt toxin, another Bt toxin still can kill them.

Moreover, the percentage refuge can be greatly reduced

when multiple-Bt-gene crops are planted. In the United

States and Australia, the non-Bt cotton refuge was more

than 25% of the area planted to cotton with a single-Bt

toxin protein. For cotton expressing two Bt proteins, the

area of the refuge has been decreasing significantly [74,75].

This reduction is even more important for some developing

countries such as China and India, where there are many

small farmers, and they do not want to plant conventional

crops as the refuge.

The discovery of new Bt genes is another important direc-

tion for Bt crop development, primarily in two areas: new Bt

genes with different insecticidal mechanisms that can kill the

target pests that are now resistant to previous Bt toxins and Bt

genes to control important hemipteran pests such as mirids,

planthopper, aphids rather than lepidopteran and coleop-

teran insects. Towards this new direction, Monsanto has

developed GM cotton MON88702, which produces a modi-

fied Cry51Aa2 toxin protein with good insecticidal activity

against hemipteran insects [16]. Another modified Bt-

Cyt2Aa crystal toxin is toxic to green peach aphids and pea

aphids [142]. So crops with Bt genes that control a wider

range of pests seem likely in the future.

Another important area is increasing the commercializa-

tion of Bt crops. Although Bt maize has been studied for

many years and is very successful in controlling pests and

reducing usage of insecticides, Bt maize is still not commercia-

lized in China. People worry about the food safety of Bt

maize [10]. Relevant policies should be further enriched to

drive the use of Bt maize. Bt rice and other Bt crops encounter

the same problems. Other countries face similar problems

and worries.

There are legitimate concerns with commercializing more

Bt that still need to be addressed. Pest populations, especially

those of polyphagous insects, may be affected by the com-

mercialization of many crops. Usually, Bt resistance in
polyphagous insects can be delayed by mass migrations in

different areas and different crops. Conventional crops in

different areas can serve as natural refuges [83]. If the non-

Bt crops are replaced by Bt crops, the insects will continue

to be under high Bt selection pressure, and the evolution of

Bt resistance will be accelerated, which will increase the

difficulty of pest control. In Brazil, with the large-scale

planting of Bt maize and Bt cotton, the rate of Bt-resistance

emergence among fall armyworms (S. frugiperda) has

increased dramatically. Most Bt maize varieties gradually

lost their ability to control fall armyworm after only 3 years

of planting [87]. Fall armyworms can also migrate long

distances. In 2016 for the first time, this pest was found

in South Africa and caused significant damage to maize

crops and other crops [143]. It has spread to almost all of

Africa [144].

Integrated pest management that combines the use of

attractants; physical, chemical and biological controls; and

planting both Bt and non-Bt crops helps delay the evolution

of insect resistance. In recent years, new molecular techniques

have been applied to pest control to indirectly help to reduce

the harm from resistant pests. Host-mediated RNAi of impor-

tant pest genes has been proposed as a potential avenue for

increasing crop resistance against pests. Plants that have

been modified to express double-stranded RNA against suit-

able target genes in pests have effectively controlled pest

growth and reproduction or reduced pest resistance to pesti-

cides [145,146]. Ni et al. [147] demonstrated by computer

simulation that, compared with Bt cotton alone, Bt cotton

combined with RNAi can substantially delay the evolution

of Bt resistance in bollworm. CRISPR/Cas9-mediated knock-

out of related genes effectively inhibits egg production and

viability of target pests [148]. CRISPR/Cas9 technology pro-

vides an easier way to control pests using a site-specific

homing-based gene driver, as demonstrated in model insects

[149]. If CRISPR-based gene drivers can be used to spread

target genetic elements through wild populations and then

combined with Bt-transgenic crops, we may have a more

effective measure for pest resistance management. In

addition, as mentioned earlier, a resistant bollworm strain

with a mutation in ABCC2 had negative cross-resistance

between Cry1Ac and abamectin [127]; thus, taking advantage

of the fitness cost of resistance may provide another strategy

for managing resistance. If similar negative cross-resistance

mechanisms exist in other pests, new methods will be devel-

oped to prevent and control the pests [150]. Such research

provides a theoretical basis for feasible strategies to manage

Bt resistance and support the long-term usage of multiple

Bt crops. With the development of genomics, proteomics

and metabolomics, we anticipate more novel integrated pest

control technologies will be developed and adopted. Such

technologies and other environment-friendly pest control

methods will provide safer, more effective pest management.
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