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Abstract: Influenza A virus (IAV) infection is a major cause of morbidity and mortality. Retinoic
acid-inducible protein I (RIG-I) plays an important role in the recognition of IAV in most cell types, and
leads to the activation of interferon (IFN). We investigated mechanisms of RIG-I and IFN induction
by IAV in the BCi-NS1.1 immortalized human airway basal cell line and in the A549 human alveolar
epithelial cell line. We found that the basal expression levels of RIG-I and regulatory transcription
factor (IRF) 7 were very low in BCi-NS1.1 cells. IAV infection induced robust RIG-I and IRF7, not
IRF3, expression. siRNA against IRF7 and mitochondrial antiviral-signaling protein (MAVS), but
not IRF3, significantly inhibited RIG-I mRNA expression and IFN induction by IAV infection. Most
importantly, even without virus infection, IFN-β alone induced RIG-I, and siRNA against IRF7 did
not inhibit RIG-I induction by IFN-β. Similar results were found in the alveolar basal epithelial A549
cell line. RIG-I and IRF7 expression in humans is highly inducible and greatly amplified by IFN
produced from virus infected cells. IFN induction can be separated into two phases, that initially
induced by the virus with basal RIG-I (the first phase), and that induced by the subsequent virus with
amplified RIG-I from the first phase IFN (the second phase). The de novo synthesis of IRF7 is required
for the second phase IFN induction during influenza virus infection in human lung bronchial and
alveolar epithelial cells.
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1. Introduction

Influenza A virus (IAV) infection is a major cause of morbidity and mortality. In 2009, a pandemic
caused by the novel H1N1 IAV infected over 300,000 individuals with at least 16,000 confirmed deaths
worldwide [1]. The 2017–2018 flu season has been the worst season in the US since 2009. It is estimated
that the burden of illness during the 2017–2018 season was high with an estimated 45 million people
getting sick with influenza, 21 million people going to a health care provider, 810,000 hospitalizations,
and 61,000 deaths from influenza (from 2017–2018 Estimated Influenza Illnesses, Medical visits,
Hospitalizations, and Deaths and Estimated Influenza Illnesses, Medical visits, Hospitalizations, and
Deaths Averted by Vaccination in the United States, Centers for Disease Control and Prevention).

The innate immune system recognizes and responds to pathogens in a non-specific manner and
provides immediate protection against infection. Induction of interferon (IFN) is a critical component
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of the host innate immune response to influenza virus infection. IFNs are further divided into type I
(mainly IFN-α and β), II (IFN-γ) and III (IFN-λ) subtypes, based in part on the differential use of unique
receptors through which they mediate signal transduction to induce anti-viral activity [2]. The IFN
responses to IAV are triggered by the recognition of pathogen-associated molecular patterns (PAMPs)
by host internal or cell surface pattern recognition receptors (PRRs), including retinoic acid-inducible
protein I (RIG-I) and Toll-like receptor 3 (TLR3) [3]. RIG-I is essential for IFN induction during RNA
virus infections of non-plasmacytoid dendritic cell (pDC) cell types [4]. TLR3, a double-stranded RNA
sensor, may be used by some epithelial cells to detect the viral replicative intermediate dsRNA [5].
Mitochondrial antiviral-signaling protein (MAVS), the intermediary protein of RIG-I, forms protease
resistant prion-like aggregates that activate specific signaling pathways leading to activation of NF-κB
and induction of the interferon regulatory transcription factors (IRF)3 and IRF7. NF-κB is crucial for
inflammatory cytokine induction. IRF3 and IRF7 are then translocated into the nucleus where they
act as transcription factors for the production of type I and III IFNs [6,7]. We have previously shown
that both RIG-I and TLR3 are important for IFN induction by IAV in human lung alveolar epithelial
cells (AEC) [3]. We also developed a human lung tissue model using precision-cut slices to study the
local lung response to IAV, and we showed that RIG-I is critical for the initiation of the early antiviral
cytokine response in the human lung [8].

IFN responses are the central component of the innate immune system’s control of viral infection [9].
Once released, type I and III IFNs bind to their respective receptors (IFNAR and IFNLR1/IL10R2,
respectively) on the same and neighboring cells. When an IFN interacts with its cognate receptor,
a signal is rapidly transmitted within the cell. The primary signal transduction cascade promoted
by IFNs is mediated by the Janus family of protein tyrosine kinase 1 (JAK1) signal transducers and
activators of the transcription (STAT) pathway [10]. Receptor engagement subsequently leads to
the activation of the IFN-stimulated regulatory factor 3 (ISGF3) transcription complex. ISGF3 is
composed of STAT1 and STAT2, both of which are activated by JAK1, and IRF9 [7]. The activation of
this transcriptional activator complex leads to increased expression of interferon-stimulated genes
(ISGs), including 2′,5′-oligoadenylate synthetase (OAS), Mx proteins, and protein kinase R (PKR),
inducing an antiviral state [11]. RIG-I and IRF7 are also ISGs that are up-regulated and further amplify
the entire antiviral immune system [12]. The basal expression level of RIG-I is very low in human lung.
However, RIG-I expression is highly inducible and greatly amplified by first phase IFN production
from the viral infected cells in an autocrine and paracrine fashion [13,14]. Therefore, there are two
phases of IFN induction after IAV infection. The first phase IFN is induced when the viral genome
is recognized by basal level RIG-I in the IAV-infected cells. The secreted first phase IFN proteins
then bind to its cognate cellular receptor and induce vast amounts of RIG-I and IRFs in the same and
neighboring cells. The significantly elevated RIG-I and IRF proteins turn the infected and uninfected
neighboring cells into an “immunoactive” state primed to respond to subsequent viral RNA detection.
Thus, second-phase IFN induction will be induced when IAV is detected in newly infected, or already
infected, IFN-stimulated cells.

The role of IRF3 and IRF7 in the host response to IAV infection was analyzed in IRF3−/−, IRF7−/−,
and IRF3−/−IRF7−/− knockout mice [15]. While the absence of IRF3 had only a moderate impact on
IFN expression, deletion of IRF7 completely abolished IFNα production after infection. In contrast,
lack of both IRF3 and IRF7 resulted in the absence of both IFNα and IFNβ after IAV infection.
Ciancanelli et al. reported that human IRF7 deficiency impaired IFN amplification in pDC, leukocytes,
induced pluripotent stem cell (iPSC)-derived pulmonary epithelial cells [16]. Despite advances in
the understanding of innate response to influenza in the mouse model, it is essential to conduct
further studies in humans to decipher the innate immune responses to IAV, particularly at the site of
infection [17]. Epithelial cells that line the conducting (bronchial) and respiratory (alveoli) airways
are the primary site of IAV replication in the lung [18]. In response to viral infection, epithelial cells
trigger the innate immune response to limit viral dissemination. To examine the role of IRF7 in
amplified second phase induction of IFN during IAV infection of the human lung epithelium, we
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used immortalized cell lines representative of the bronchial (BCi-NS1.1, [19]) and alveolar (A549)
lung epithelium.

2. Materials and Methods

2.1. Cell Culture

The BCi-NS1.1 cell line was derived from human airway basal cells via expression of a retrovirus
expressing human telomerase and was a kind gift of Dr. Ronald Crystal, Cornell Medical Center [19].
BCi-NS1.1 cells were cultured in BEBMTM Bronchial Epithelial Cell Growth Basal Medium (Lonza,
cat#CC-3171) with SingleQuotsTM Supplements and Growth Factors (Lonza, cat#CC-4175). The human
pulmonary epithelial cell line, A549, was obtained from the American Type Culture Collection (ATCC,
Manassas, VA, CCL-185). A549 cells were propagated in Dulbecco’s modified Eagle Medium (DMEM)
containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, and 80 µg of gentamicin/mL.

2.2. Preparation of Influenza Virus Stock

H1N1 influenza virus, A/PR/34/8 (PR8), was passaged in Madin-Darby canine kidney (MDCK)
cells. Virus was propagated in MDCK cells in DMEM/F12 with ITS+ (BD Biosciences, Franklin Lakes,
NJ) and trypsin, harvested at 72 h post-infection and titered by plaque assay in MDCK cells. The virus
was stored in aliquots at −80 ◦C. There was no detectable endotoxin in the final viral preparations used
in the experiments as determined by limulus amebocyte lysate assay (Cambrex, Walkersville, MD).
The lower limit of detection of this assay is 0.1 EU/mL or approximately 20 pg/mL LPS.

2.3. siRNA Transfection into BCi-NS1.1 and A549 Cells

IRF7 siRNA (siIRF7) and MAVS siRNA (siMAVS) were purchased from Dharmacon (Cat#
L-011810-00 and Cat# L-024237-00). IRF3 siRNA (siIRF3) and negative control siRNA were purchased
from Ambion (Cat# AM16708A and Cat# 4390843). For siRNA treatment, cells were plated and cultured
for 24 h before treating with siRNAs (40 nM). siRNA was diluted in 250 µL of Opti-MEM medium and
mixed gently. Five µL of Lipofectamine 2000 (Invitrogen) was added to 250 µL Opti-MEM medium
and incubated for 5 min. Diluted siRNA and Lipofectamine 2000 were combined and mixed gently
and incubated for 20 min at RT. The siRNA-Lipofectamine 2000 complexes were added to each well
and mixed gently. The siRNA final concentration was 100 nM. The cells were incubated at 37 ◦C for
24 h and fresh media were added to replace the siRNA containing transfection media.

2.4. Lactate Dehydrogenase (LDH) Assay

Staurosporine was used as a positive control (Enzo Biochem Inc., Farmingdale, NY, USA). LDH
activity was measured using a coupled enzymatic reaction using a commercially available kit (BioVision
Incorporated, Milpitas, CA, USA). The amount of LDH activity was assessed by detection of the reaction
product, formazan, at 500 nm using a spectrophotometer (Vmax Microplate reader, Molecular Devices,
Sunnyvale, CA, USA). Cytotoxicity was expressed as the percentage of LDH released (supernatant) of
the total LDH present (cell + supernatant).

2.5. Measurement of mRNA Expression by Quantitative Real-Time PCR (qRT-PCR)

Total RNA from cells was extracted using a modified TRIzol (Invitrogen, Carlsbad, CA, USA)
protocol, spectrophometrically quantitated, and the integrity was verified by formaldehyde agarose gel
electrophoresis. RNA was treated with DNAse to remove genomic DNA contamination. Equal amounts
(1 µg) of RNA from each sample were reverse-transcribed using oligo (dT) as primers for production
of cDNA (SuperScript II First-Strand Synthesis System for RT-PCR, Invitrogen, Carlsbad, CA, USA).
Gene specific primers for PRRs, cytokines and β-actin housekeeping genes were used. qRT-PCR was
performed using SYBR Green (Quanta Biosciences, Gaithersburg, MD, USA) in a Bio-Rad CFX96TM
Touch Real-Time PCR Detection System. Results were calculated and graphed from the ∆CT of the
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target gene and normalizing housekeeping gene control. The primers’ sequences were as follows: RIG-I
forward 5′-TCCTTTATGAGTATGTGGGCA-3′; RIG-I reverse 5′-TCGGGCACAGAATATCTTTG-3′;
IFN-β forward 5′-GCTCTCCTGTTGTGCTTCTCCAC-3′; IFN-β reverse 5′-CAATAGTCTCATT
CCAGCCAGTGC-3′; β-actin forward 5′-GCCAACCGCGAGAAGATGACC-3′; β-actin reverse
5′-CTCCTTAATGTCACGCACGATTTC-3′; TLR3 forward 5′-GTCTGGGAACATTTCTCTTC-3′;
TLR3 reverse 5′-GATTTAAACATTCCTCTTCGC-3′; IRF7 forward 5′-CAGATCCAGTCCCAACC
AAG-3′; IRF7 reverse 5′-GTCTCTACTGCCCACCCGTA-3′; IFN-λ1 forward 5′-CGCCTTGGAAGA
GTCACTCA-3′; IFN-λ1 reverse 5′-GAAGCCTCAGGTCCCAATTC-3′; IL-6 forward 5′-AGGAGCCC
AGCTATGAACT-3′; IL-6 reverse 5′-TGAGATGCCGTCGAGGATG-3′; MAVS forward 5′-CAATGCCG
TTTGCTGAAGAC-3′; MAVS reverse 5′-ATTCCTTGGGATGGCTCTGG-3′.

2.6. RIG-I, TLR3 and IRF7 Protein Determination by Immunoblotting

The cells were harvested and homogenized, and then lysed in 500 µL of cold lysis buffer (150 mM
NaCl, 50 mM Tris, pH 8.0, 10 mM EDTA, NaF, sodium pyrophosphate, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS, 10 µg of leupeptin/mL). Cell homogenates were clarified by centrifugation
at 10,000× g, at 4 ◦C for 10 min, and the clarified lysates were mixed with SDS-PAGE sample buffer
(60 mM Tris, pH 6.8, 10% glycerol, 2.3% SDS) and heated to 95 ◦C for 5 min. The samples were
separated using a 4–15% gradient gel and electrophoretically transferred to polyvinylidene fluoride
(PVDF) membranes. For the detection of proteins, the membranes were immunoblotted with rabbit
polyclonal antibody specific for RIG-I, TLR3 (both from Thermo Fisher Scientific, NY, USA), total IRF7
(Abcam, Cambridge, MA, USA) and GAPDH (R&D Systems). The membrane signals were detected
using horseradish peroxidase-labeled goat anti-rabbit IgG (Cell Signaling Technology, Beverly, MA,
USA) and chemiluminescent reagents (Pierce Biotechnology, Rockford, IL, USA). Blots were viewed
using the Syngene G:box Bioimaging System with GeneTools software (Syngene, Frederick, MD, USA)
and quantified using ImageQuant software (BD/Molecular Dynamics, Bedford, MA, USA).

2.7. Statistical Analysis

Where applicable, the data have been expressed as the means ± standard error of the mean (SEM).
Statistical significance was determined by one-way ANOVA with Student–Newman–Keuls post hoc
correction for multiple comparisons as appropriate. Significance was considered as P < 0.05.

3. Results

3.1. IRF7 Knockdown Inhibited Influenza-Initiated RIG-I and IFN Induction, but not IFN-β-Mediated RIG-I
Induction in Human Bronchial BCi-NS1.1 Cells

In lung epithelial cells, type I and III IFN induction by IAV is dependent on RIG-I and TLR3
activation. To examine the role of IRF7 induction in this process, we first examined the effect of IRF7
knockdown by specific siRNA on IRF7 mRNA induction by IAV PR8. IAV induced IRF7 mRNA 360
fold over the levels seen in mock-infected cells. Knockdown was successful as evidenced by almost
complete (99%) inhibition of IRF7 mRNA induction in specific IRF7 siRNA (siIRF7)-treated cells relative
to that seen in cells treated with siRNA control, when both were infected with IAV PR8 (Figure 1A).
IAV infection of BCi-NS1.1 cells (Figure 1A) caused a 27 and 11 fold increase in RIG-I and TLR3 mRNA
levels respectively, over the levels seen in mock-infected cells. RIG-I and TLR3 mRNA induction by
IAV was decreased 53% and 74% in siIRF7 treated cells compared to control (CTL) siRNA treated cells.
To further confirm the inhibition of RIG-I and TLR3 by IRF7 knockdown, we also assessed downstream
cytokine induction by virus. IFN-β, IFN-λ1 and IL-6 mRNA induction by IAV was 31, 120 and 33
fold over mock treated cells, respectively. IFN-β, IFN-λ1 and IL-6 mRNA induction was decreased
88%, 81% and 88%, respectively, in siIRF7-treated virus-infected cells compared to siRNA CTL-treated
virus-infected cells (Figure 1A). ELISA confirmed the inhibition of IFN-β, IFN-λ1 and IL-6 protein
induction released in the supernatants from siIRF7-treated virus-infected cells (Figure 1C). Decreased
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IRF7, RIG-I and IL-6 expression upon siRNA CTL-treatment was observed but the difference was not
significant. This may be due to off target effects of the siRNA CTL. To control for off target effects, we
have calculated the decreased induction in virus-infected siRNA-treated cells compared not to the IAV
only group, but to siRNA CTL-treated cells instead.

RIG-I is inducible by IFNs released from the same and neighboring IAV infected cells [20].
Secreted IFN-β proteins bind to its cognate cellular receptor and activate a specific JAK-STAT pathway.
Following receptor activation by IFN, the transcription factors STAT1 and STAT2 are phosphorylated
by Janus protein tyrosine kinases Jak1 and Tyk2 and released from their docking sites on the receptor.
They then associate with IRF-9 and form the ISGF3 complex, which stimulates IFN-dependent gene
transcription by binding to the IFN stimulated response element (ISRE) sequences located in the RIG-I
promoter. We next used trichostatin A (TSA), an ISGF3 complex formation inhibitor, to examine if
RIG-I induction in human BCi-NS1.1 cells is actually through the ISGF3 complex as has been reported
in other model systems. As expected, we found that TSA significantly inhibited RIG-I, IRF7 and
downstream cytokine induction by IAV in our human cell model (Figure 1B). This confirms that RIG-I
mRNA induction by IAV requires assembly of the transcription factor complex ISGF3 in our human
bronchial epithelial cells.
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Figure 1. IRF7 knockdown by specific siRNA or chemical inhibition decreased influenza-induced
innate responses in human airway BCi-NS1.1 basal cells. BCi-NS1.1 cells were transfected with IRF7
siRNA and cultured for 72 h (A) or these cells were treated with TSA (100 ng/mL), an ISGF3 inhibitor, for
16 h (B). After siRNA or TSA treatment, the cells were infected with IAV PR8 at the MOI of 0.2 for 24 h.
Total RNA was extracted and mRNA expression was assessed by qRT-PCR. Transcript levels of mRNA
were normalized relative to the constitutively expressed β-actin gene. (C) Cytokine protein levels
released in the supernatant were assessed by ELISA. Data were expressed as the means ± SEM from
three separate experiments. Statistical significance was determined by ANOVA. * denotes significant
difference compared to data from the siRNA CTL+ IAV infected group, p < 0.05.

Overall, the results demonstrate that de novo synthesis of IRF7 is critical in IFN and RIG-I mRNA
induction during IAV infection in BCi-NS1.1 cells, and that RIG-I mRNA induction by IAV requires
ISGF3 assembly. The results demonstrate, for the first time, that these events occur in human airway
epithelial cells.
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To determine whether IRF7 is critical in the effects of first phase IFN induction on autocrine
and paracrine amplification of RIG-I and TLR3 that occurs during viral infection, it is necessary to
isolate induction of these receptors by IFN in the absence of virus. Therefore, we next examined RIG-I
and TLR3 induction by IFN-β in siIRF7 treated, uninfected, BCi-NS1.1 cells. To mimic the effects
of first phase IFN release only, these cells were stimulated with 500 U/ml of IFN-β for 6 h without
IAV infection. As expected IFN-β treatment increased RIG-I mRNA 240-fold over mock treated cells
(Figure 2A). It also induced TLR3 mRNA by 22 fold over controls. Furthermore, IFN-β treatment
increased IRF7 mRNA 14-fold over mock treated cells, but did not significantly augment IFN-β mRNA
levels, showing that first phase IFN effects are isolated using this method. Surprisingly, RIG-I and
TLR3 mRNA induction was not affected by IRF7 knockdown during IFN-β treatment (Figure 2A).
We also examined our cells with a JAK-STAT pathway inhibitor, Ruxolitinib, as an inhibition positive
control since RIG-I and IRF7 mRNA induction by IFN-β requires JAK-STAT pathway activation [21].
As expected, the JAK-STAT pathway inhibitor significantly blocked RIG-I and IRF7 induction by
IFN-β in BCi-NS1.1 cells (Figure 2B). We also determined protein expression levels by immunoblotting
(Figure 2C). siIRF7 successfully inhibited IRF7 protein induction by IAV. Specifically, we found that
IRF7 knockdown did not block RIG-I and TLR3 protein induction by IFN-β, but blocked RIG-I and
TLR3 protein induction by IAV.
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Figure 2. Knockdown of IRF7 did not inhibit IFN-β-mediated RIG-I and TLR3 induction in BCi-NS1.1
cells. BCi-NS1.1 cells were transfected with IRF7 siRNA for three days (A), or were treated with
Ruxolitinib (2 µM), a JAK inhibitor, for 16 h (B). After the siRNA or TSA treatment, the cells were
stimulated with 500 U/mL of IFN-β for 6 h. Total RNA was extracted and mRNA expression was
assessed by qRT-PCR. Transcript levels of mRNA were normalized relative to the constitutively
expressed β-actin gene. Data were expressed as the means ± SEM from three separate experiments.
Statistical significance was determined by ANOVA. * denotes significant difference compared to data
from IFN-β group, p < 0.05. (C) RIG-I, TLR3 and IRF7 proteins in BCi-NS1.1 cells were detected
by immunoblotting. The immunoblot shown is representative of three separate experiments, with
quantitation of that result depicted below the image.
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Taken together, the data suggest that IRF7 does not mediate paracrine induction of RIG-I in
non-infected cells caused by first phase IFN-β secreted from adjacent IAV infected cells. In contrast,
IRF7 is important for full induction of IFN in IAV-infected BCi-NS1.1 cells. Therefore, the siIRF7
knockdown results suggest IRF7 indirectly modulates RIG-I and thus cytokine responses through
inhibiting generation of IFN during influenza virus infection.

3.2. MAVS, but not IRF3, Knockdown Inhibited Influenza-Initiated RIG-I and IFN Induction in Human
Bronchial BCi-NS1.1 Cells

IRF3 is another transcription factor implicated in RIG-I mediated IFN induction, which could
potentially induce RIG-I in an autocrine or paracrine fashion. We next tested whether this occurred in
our system using siRNA and the relative roles of IRF3 and IRF7 in IFN induction. Notably, IRF3 mRNA
induction by IAV (1.8-fold increase over mock, Figure 3A) was minimal when compared with IRF7
mRNA induction by IAV (370-fold increase over mock, Figure 1A). Furthermore, IRF3 knockdown
reduced RIG-I and TLR3 mRNA induction by IAV to a lesser extent (20% and 22 %, respectively) than
knockdown of IRF7 (59% and 73% inhibition of RIG-I and TLR3, respectively). Therefore, IRF3 is less
involved in the induction of RIG-I and TLR3 by IAV than IRF7 in these cells (Figure 3A).

Viruses 2020, 12, x FOR PEER REVIEW 7 of 12 

 

Taken together, the data suggest that IRF7 does not mediate paracrine induction of RIG-I in non-
infected cells caused by first phase IFN-β secreted from adjacent IAV infected cells. In contrast, IRF7 
is important for full induction of IFN in IAV-infected BCi-NS1.1 cells. Therefore, the siIRF7 
knockdown results suggest IRF7 indirectly modulates RIG-I and thus cytokine responses through 
inhibiting generation of IFN during influenza virus infection.  

3.2. MAVS, but not IRF3, Knockdown Inhibited Influenza-Initiated RIG-I and IFN Induction in Human 
Bronchial BCi-NS1.1 Cells 

IRF3 is another transcription factor implicated in RIG-I mediated IFN induction, which could 
potentially induce RIG-I in an autocrine or paracrine fashion. We next tested whether this occurred 
in our system using siRNA and the relative roles of IRF3 and IRF7 in IFN induction. Notably, IRF3 
mRNA induction by IAV (1.8-fold increase over mock, Figure 3A) was minimal when compared with 
IRF7 mRNA induction by IAV (370-fold increase over mock, Figure 1A). Furthermore, IRF3 
knockdown reduced RIG-I and TLR3 mRNA induction by IAV to a lesser extent (20% and 22 %, 
respectively) than knockdown of IRF7 (59% and 73% inhibition of RIG-I and TLR3, respectively). 
Therefore, IRF3 is less involved in the induction of RIG-I and TLR3 by IAV than IRF7 in these cells 
(Figure 3A).  

 

Figure 3. Knockdown of MAVS, but not IRF3, inhibited influenza-mediated RIG-I, TLR3 and cytokine 
mRNA induction in BCi-NS1.1 cells. The cells were first transfected with (A and C) IRF3 or (B and D) 
MAVS siRNA and cultured for 72 h and then infected with IAV PR8 (MOI = 0.2) for 24 h. Total RNA 
was extracted and mRNA expression was assessed by qRT-PCR (A and B). Data were expressed as 
the means ± SEM from three separate experiments. Statistical significance was determined by 
ANOVA. * denotes significant difference compared to data from the siRNA CTL+ IAV infected group, 
p < 0.05. (C and D) RIG-I, IRF3 and MAVS proteins in BCi-NS1.1 cells were detected by 
immunoblotting. The immunoblot shown is representative of three separate experiments, with 
quantitation of that result depicted below the image. 

IRF7 is phosphorylated and activated after IAV-induced binding of RIG-I to its adaptor, MAVS. 
If first-phase IFN synthesis in virus infected cells requires RIG-I, knockdown of MAVS will inhibit 
first phase IFN induction and subsequent RIG-I induction. We therefore used MAVS siRNA to 
knockdown the RIG-I adaptor in our BCi-NS1.1 human cell model. MAVS knockdown was 
confirmed as evidenced by the almost complete (99%) inhibition of MAVS mRNA induction in 
specific MAVS siRNA (siMAVS)-treated cells infected with IAV as compared to MAVS induction 

Figure 3. Knockdown of MAVS, but not IRF3, inhibited influenza-mediated RIG-I, TLR3 and cytokine
mRNA induction in BCi-NS1.1 cells. The cells were first transfected with (A and C) IRF3 or (B and D)
MAVS siRNA and cultured for 72 h and then infected with IAV PR8 (MOI = 0.2) for 24 h. Total RNA
was extracted and mRNA expression was assessed by qRT-PCR (A and B). Data were expressed as the
means ± SEM from three separate experiments. Statistical significance was determined by ANOVA.
* denotes significant difference compared to data from the siRNA CTL+ IAV infected group, p < 0.05.
(C and D) RIG-I, IRF3 and MAVS proteins in BCi-NS1.1 cells were detected by immunoblotting. The
immunoblot shown is representative of three separate experiments, with quantitation of that result
depicted below the image.

IRF7 is phosphorylated and activated after IAV-induced binding of RIG-I to its adaptor, MAVS.
If first-phase IFN synthesis in virus infected cells requires RIG-I, knockdown of MAVS will inhibit
first phase IFN induction and subsequent RIG-I induction. We therefore used MAVS siRNA to
knockdown the RIG-I adaptor in our BCi-NS1.1 human cell model. MAVS knockdown was confirmed
as evidenced by the almost complete (99%) inhibition of MAVS mRNA induction in specific MAVS
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siRNA (siMAVS)-treated cells infected with IAV as compared to MAVS induction seen in IAV infected
cells treated with siRNA control (Figure 3B). siMAVS treatment reduced RIG-I (63%) and TLR3 (96%)
mRNA induction, as well as subsequent IFN-β (92%), IFN-λ1 (93%) and IL-6 (85%) induction by IAV
in the cells (Figure 3B). Thus, the results demonstrate that first phase of IFN synthesis induced by IAV
requires MAVS. We also confirmed the RIG-I mRNA expression change affected by siIRF3 and siMAVS
at protein expression levels by immunoblotting (Figure 3C,D).

To determine whether the effects seen by siRNA knockdown could be due to non-specific
cytotoxicity, we measured LDH release as a percentage of total LDH present (media + cells) during
siRNA treatment. Cells were exposed to siIRF7, siMAVS, siIRF3 and siRNA control for 24 h, followed
by the measurement of LDH in the media. Staurosporine was used as a positive control for cytotoxicity
(Figure 4). Basal LDH release was low (mock). IAV infection caused BCi-NS1.1 cell death after 3 days,
but not 1-day post-infection when the samples were collected. LDH levels of all siRNA treated cells
and cells at 1-day post-infection were minor compared to the positive control. Thus, the effects in
siIRF7- and siMAVS-treated cells is not due to non-specific cytotoxicity.
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Figure 4. Effects of siRNA treatment and IAV infection on cell viability. BCi-NS1.1 were incubated with
siRNA for 3 days. For IAV PR8 infected cells, BCi-NS1.1 were incubated with IAV (MOI = 0.2) for 1
or 3 days. Staurosporine (10 µM) treated cells were used as a positive control for cytotoxicity. LDH
activity of the supernatant was measured by using the LDH-Cytotoxicity Assay Kit. Cytotoxicity is
expressed as the percentage of supernatant released LDH to LDH released from Staurosporine treated
cells. Results are shown as the Mean ± SEM from three separate experiments.

3.3. IRF7 Knockdown Inhibited Influenza-Initiated, but not IFN-β-Induced, RIG-I Induction in Human
Alveolar Epithelial Cells

We extended our work to more distal epithelial cells in the lung, human alveolar epithelial cells.
We used a common model for these cells, the A549 alveolar epithelial cell line. Infection with IAV PR8
resulted in a 40- and 15-fold increase in RIG-I and TLR3 mRNA levels, respectively, over mock-infected
cells. RIG-I and TLR3 mRNA induction was decreased 80% and 76% in siIRF7 treated cells compared to
control siRNA treated cells. Downstream IFN-β mRNA induction was decreased 72% in siIRF7-treated
IAV-infected cells compared to control siRNA-treated cells (Figure 5A). In terms of the siIRF7 inhibition
of its target, IRF7 mRNA induction by IAV was blocked 86% in the siIRF7-treated IAV-infected A549
cells (Figure 5A).

As was the case for BCi-NS1.1 cells, when A549 cells were treated with IFN-β only, siIRF7 did
not inhibit IFN-β-stimulated RIG-I and TLR3 induction (Figure 5B). We next examined if secreted
IFN-β from IAV infected cells stimulated RIG-I/IRF7 expression in uninfected cells. Supernatants
were collected from IAV infected cells after 24 h poi. Then the supernatants were filtered to remove
IAV using a 100 K MW filter. Absence of IAV was confirmed using qRT-PCR for viral NP and matrix
genes (not shown). The filtered supernatants were added to A549 cells. After 6 h, both RIG-I and IRF7
mRNA were induced by the supernatants (Figure 5C). We confirmed the effect of siRNA on RIG-I
protein induction by IAV using Western blot (Figure 5D). In these cells, protein levels reflected mRNA
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expression levels, as there was no detectable RIG-I protein in IAV-infected A549 cells treated with
siRNA for IRF7. In contrast, there was no inhibition of RIG-I protein induction by IFN-β with IRF7
siRNA treatment. The results suggested that, as we found in human bronchial BCi-NS1.1 cells, IRF7
knockdown inhibited influenza-initiated, but not IFN-β-induced, RIG-I induction in human alveolar
AEC II cells.
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Figure 5. Knockdown of IRF7 inhibited influenza-mediated RIG-I induction and innate responses in
human alveolar epithelial cells. A549 cells were transfected with IRF7 siRNA for three days. Then,
the cells were infected with (A) IAV PR8 at the MOI of 0.2 for 24 h or (B) 500 U/mL of IFN-β for 6 h.
Total RNA was extracted and mRNA expression was assessed by qRT-PCR. Data were expressed
as the means ± SEM from three separate experiments. Statistical significance was determined by
ANOVA. * denotes significant difference compared to data from the siRNA CTL + IAV infected group,
p < 0.05. (C) Supernatants from IAV infected cells stimulated RIG-I/IRF7 expression in uninfected cells.
Supernatants were collected from IAV infected cells after 24 h poi. Then the supernatants were filtered
to remove IAV using a 100 K MW filter (Amicon). The filtered supernatants were added to A549 cells
and changes in RIG-I/IRF7 mRNA were assessed by qRT-PCR. (D) RIG-I protein in A549 cells was
detected by immunoblotting. The immunoblot shown is representative of three separate experiments,
with quantitation of that result depicted below the image.

4. Discussion

The airway epithelium is strategically positioned at the interface with the environment, and
thus plays a key role in the innate immune lung response to outside stimuli or infection [22]. The
airway epithelium responds to IAV by increasing its production of mediators including cytokines
and chemokines that can recruit and activate inflammatory cells [23]. Human airway basal cells (BC),
a proliferating population of cells that reside in close proximity to the basement membrane, function as
stem/progenitor cells of both the mouse and human airway epithelium and differentiate into the other
specialized cell types during normal epithelial turnover and repair. In alveoli, the alveolar epithelia,
comprised of type I alveolar epithelial cells (AEC I) and type II alveolar epithelial cells (AEC II), cover
more than 99% of the internal surface area [24]. AEC II can replicate in the alveoli to replace damaged
AEC I cells, playing a similar basal role as BC in bronchiole.

Despite the evidence that BCs of the bronchioles and AEC II of the alveoli are stem cells, relatively
little is known about their biology in innate immune responses to IAV. In this report, we examined the
two most important human lung epithelial progenitor/stem cells, bronchial basal cells (BCi-NS1.1) and
AEC II cells (A549).

First, we found that the basal expression level, without virus stimulation, of RIG-I, TLR3 and
IRF7 were very low in BCi-NS1.1 cells, and that IAV infection induced robust RIG-I, IRF7 and IFN
expression (Figure 1). We then used exogenous IFN-β to examine the effects of produced IFN-β during
the first phase of IFN induction on non-infected cells in the absence of IAV. IFN-β alone induced
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significant RIG-I, TLR3 and IRF7 expression (Figure 2). This is consistent with a model whereby
secreted first phase IFN protein significantly elevates RIG-I, TLR3 and IRF proteins and turns these
uninfected neighboring cells into an “immunoactive” state primed to respond to subsequent viral RNA
detection. The second phase IFN induction is then amplified when IAV was detected in newly infected,
IFN-stimulated cells. Thus, RIG-I, TLR3 and IRF7 expression is highly inducible by the first phase
produced IFN. IRF7 is the master regulator of type-I IFN-dependent immune responses in vivo [25], but
the role of IRF7 in human airway epithelial cell responses to IAV has not been previously investigated.
Our data demonstrate that IRF7 controls the second-phase IFN amplification during influenza virus
infection in these cells. The produced first-phase IFN stimulates RIG-I and IRF7 through JAK-STAT
signaling and ISGF3 complex formation in a positive-feedback amplification loop during IAV infection
in human lung epithelia (Figures 1 and 2; model shown as Figure 6). IRF7 is not involved in RIG-I
induction stimulated by the first-phase IFN-β in the neighboring cells, as RIG-I induction by IFN-β is
not blocked by siIRF7 (Figure 2).
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Figure 6. Proposed model of the RIG-I/IRF7/IFN positive-feedback amplification loop in human lung
airway epithelial cells.

We found that knockdown of the transcription factor IRF3 only partially inhibited
influenza-mediated RIG-I mRNA induction in BCi-NS1.1 cells. This result is consistent with the model
proposed by Sato et al. [26], in that we showed that IRF7 must first be induced in response to IAV in
order for early limited IFN production to occur. In another paper, the same group showed that the
IRF3−/− mouse embryonic fibroblasts produced IRF7 and IFN-β when infected with Newcastle disease
virus, indicating both IRF7 and IFN-β induction is independent of IRF3 [20]. With regards to IRF3,
it likely plays a role in the first phase of IFN induction, as there appeared to be modest inhibition of
IFN-β by IAV (did not reach statistical significance, Figure 3). It is unlikely that IRF3 plays a significant
role in the amplification of IFN-β induction, as IRF3 was minimally induced by IAV (Figure 3). The
previous results from other laboratories examining the role of IRF7, IRF3 and RIG-I in IAV-induced
IFN production was obtained from animal models. Our data are unique in that we demonstrate that
IRF7, IRF3 and RIG-I play similar roles in human lung epithelial cells during IAV infection. We also
show that MAVS is required for first-phase IFN production. Doubtless, IRF3 still plays an important
role in IFN induction, even though it is not critical in the amplification phase. It is demonstrated that
RNA synthesis and nuclear export are required for activation of the IFN induction cascade by IAV
using IRF3 phosphorylation as a marker [27].

5. Conclusions

Our study demonstrates that the induction of two major PRRs, RIG-I and TLR3, in epithelial cells
by IAV is through an IRF7-dependent positive amplification loop. IRF3 plays a minimum role in this
amplification loop. Our current model is that, after cell entry, viral RNA is recognized by trace level
RIG-I. RIG-I signaling induces, via MAVS adaptor protein, the activation of trace level transcription
factors IRF3/7. Next, the IRFs induce type I IFNs (IFN-α and IFN-β), which are released outside
the cells to stimulate the production of ISGs (including RIG-I and IRF7) in neighboring cells. In this
way, the new produced RIG-I and IRF7 establish a positive feedback loop when they encounter more
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viruses (Figure 6). IRF7, but not IRF3, plays a central role in modulating the expression of RIG-I, TLR3
and antiviral responses during IAV infections. Whereas IRF3 is constitutively expressed, IRF3 is only
important in early-phase IFN induction. IRF7 may therefore be an important molecular driver of the
antiviral responses to IAV in human airway epithelial cells.
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