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Abstract

Viruses change constantly during replication, leading to high intra-species diversity.
Although many changes are neutral or deleterious, some can confer on the virus
different biological properties such as better adaptability. In addition, viral genotypes
often have associated metadata, such as host residence, which can help with inferring
viral transmission during pandemics. Thus, subspecies analysis can provide important
insights into virus characterization. Here, we present VirStrain, a tool taking short reads
as input with viral strain composition as output. We rigorously test VirStrain on multiple
simulated and real virus sequencing datasets. VirStrain outperforms the state-of-the-art
tools in both sensitivity and accuracy.
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Introduction
RNA viruses usually lack strict proofreading mechanisms during replication, leading to
new copies containing genetic variations from the parent strains. Many of these varia-
tions can be neutral or deleterious to the virus survival. However, some mutations are
beneficial to the fitness of the virus [1, 2]. Sequenced viral genomes often have associ-
ated metadata, such as the infection time, the host’s residence, gender, ethnicity, and drug
usage, which are important to infer the virus evolution and transmission during pan-
demics [3–5]. Thus, subspecies composition analysis can provide important insights into
virus function characterization, viral disease control, and vaccine design.
As pointed out in [6], it is difficult to give a universal definition of microbial strain.

Depending on the context, strain can refer to a virus variant with unique and stable phe-
notypic characteristics under natural conditions [7], or a specific viral genome [3, 6, 8–10].
In this context, strain refers to a specific viral genome.
Recent advances in sequencing technologies enable researchers to conduct subspecies-

level composition analysis with unprecedented resolution. Both whole genome sequenc-
ing and metagenomic sequencing have been conducted extensively for subspecies virus
analysis. Strain-level composition analysis has been intensively studied for bacteria. There
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are a plethora of tools for identifying bacterial strains from metagenomic data [6]. The
available tools are divided into four groups based on their utilities. One group contains
tools for known strain identification [9, 11], which takes the reference strain database and
short reads as input and outputs the composition analysis of the known strains in the
sequenced sample. As known strains often have annotated information such as the sub-
types, clades, and other biological properties, this type of tools can provide important
insights into the downstream analysis of the microbial communities.
For viruses, besides the annotated phenotypes associated with clades, subtypes, and

strains, the strain-associated metadata such as symptoms, geographical location, and
travel history also makes known strain identification useful for inferring the transmis-
sion path when the contact history is ambiguous or missing. Studies that used the strain
genomes for studying the spread of COVID-19 showed that the clusters of the reference
genomes are highly structured and are consistent with their geographical distributions [5].
The difficulty of strain identification stems from high similarity between strain

genomes. The viral strains with different biological properties may still share very high
sequence similarities. For example, Alpha, Beta, Gamma, and Delta strains of SARS-CoV-
2 have different transmissibility, disease severity, and risk of reinfection. But they are
> 99.5% identical and have about 50 to 70 mutations in their genomes. If using read
mapping for known strain identification, short reads tend to ambiguously map or align to
multiple reference genomes. Dissolving the ambiguity in the alignment is computation-
ally expensive [9]. Faster methods often cannot distinguish highly similar strains [12–14]
or they have to sacrifice the resolution by only keeping reference genomes with similarity
below a given cutoff. In addition, RNA viral strain identification tools should be able to
detect more than one strain if there are multi-strain infections, which is not rare for RNA
viral diseases. The available tools often have various limitations in strain-level analysis.
We summarize related work in the following section.

Related work

When near-complete virus genomes can be assembled from the sequencing data,
alignment-based tools such as BLAST can be applied to find reference genomes that best
match the input sequence. However, short contigs or reads tend to align to multiple ref-
erence genomes when employing alignment-based tools, such that determining a best
match proves difficult. Available tools and websites that can monitor the mutations in
strain genomes such as NextFlu and NextStrain [3, 15] also take genomes as input and
assign the genome into major genetic groups. When there are difficulties in constructing
high-quality virus genomes due to complexity of the data (e.g., metagenomic data), the
low abundance of the virus, or the presence of a minor strain besides a major one, there
is a need for a tool that can still identify the strains using reads as input.
When the goal is bacterial strains, there are some tools for strain-level analysis using

short reads as input. The available reference-based strain-level analysis tools were divided
into four groups by Yan et al. [6]. The first group focused on identifying known geno-
types from reference genomes [9, 11], which are related to our work. The representative
tools in this group, PathoScope [11] and Sigma [9], rely on ambiguity-resolved read map-
ping strategies between short reads and reference genomes with high sequence similarity.
Both tools allow users to create their own reference database and thus can be applied to
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viruses. However, they are too slow for identifying strains with tens of thousands reference
genomes and large-scale sequencing data.
Other bacteria-centered tools cannot be conveniently re-purposed for virus strain

analysis because they use bacteria-specific features such as bacterial marker genes or
structural variants. For example, our experiments showed that existing marker gene sets
can recognize HIV if the reads are sequenced from the dominant strain HXB2, but not
other strains of HIV [16]. One possible reason is that the marker gene derivation process
of the existing programs [17] did not use all the available viral strains.
Using the available haplotypes or strains to infer transmission has been applied to

COVID-19. For example, Gudbjartsson et al. [5] are able to assign a sample to its clos-
est haplotype based on a manually derived haplotype table. However, it is not clear the
manually created table can scale to larger datasets or other viruses.
A very relevant tool, QuantTB [18], is targeted at identifying individual M. tuberculo-

sis strains with high similarity. However, their tool is “hard coded” for M. tuberculosis
and thus we cannot conveniently extend it to viruses. In addition, they also applied dif-
ferent thresholds on the number of distinct SNPs between strains, which are actually still
stringent for newly identified RNA viruses such as SARS-CoV-2.
For RNA viruses, viral haplotype reconstruction is often applied to reconstruct co-

infecting viral haplotypes from viral sequencing data [19–23]. Haplotype reconstruction
can be divided into two types: reference-based and de novo. Technically speaking, we
can apply haplotype reconstruction tools for known strain identification because the
reconstructed haplotypes can be reference strains or novel ones. However, haplotype
reconstruction from short reads is more challenging than de novo assembly and usually
the performance deteriorates with the increased number of haplotypes and their similar-
ities. Thus, although there are a number of haplotype reconstruction tools, they all have
their limitations in reconstructing low-abundance strains, producing full-length haplo-
types, or distinguishing highly similar haplotypes. A couple of haplotype reconstruction
tools such as CliqueSNV [24] can handle highly similar haplotypes but require tremen-
dous amount of computational resources. We will benchmark against several popular
haplotype reconstruction tools in our experiments.

Results
In order to test our tool on viruses with a large number of reference strain genomes and
different mutations rates, we mainly assessed our tool on three types of RNA viruses. The
first is SARS-CoV-2, many of which have very high sequence similarity and may differ
only at a few sites. The second is the “HA” region of Influenza A H1N1, which has lower
average similarity than SARS-CoV-2 but higher similarity within the same clades and sub-
clades. The third is HIV, which has a much lower similarity than SARS-CoV-2 and H1N1.
For HIV, we used the “Gag” region, which is one of the marker genes for HIV subtype
classification [25, 26]. Although our focus is RNA viruses, VirStrain can also be applied
to DNA viruses, which can be much larger than RNA viruses. We will assess VirStrain
on mixed strain identification of 2 well-studied DNA viruses, hepatitis B virus (HBV)
and human cytomegalovirus (HCMV). The available HBV strains have lower sequence
similarity than RNA viruses, forming a good test case for the MSA construction stage of
VirStrain. HCMV has genome size of around 236kbps, allowing us to test the scalability
of VirStrain.
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Data and clustering results

To construct the reference database for VirStrain, we collected all available complete
genomes of SARS-CoV-2 from NCBI, H1N1 (HA) from Influenza Research Database
(IRD, http://www.fludb.org), and HIV (Gag) fromHIV database (http://www.hiv.lanl.gov)
as of July 14, 2020. VirStrain allows the users to construct their own databases by inputting
a file containing all reference genomes.
Different metrics are available to quantify the similarity of viral strains [27, 28]. Because

our method aligns all the reference strains, it is convenient to directly use pairwise Ham-
ming distance at the SNV sites chosen by VirStrain. Figure 1A compares the pairwise

Fig. 1 A The pairwise Hamming distance distribution of SARS-CoV-2, H1N1 (HA), and HIV (Gag). The
Hamming distance here is measured only on the chosen SNV sites by the greedy covering algorithm. They
can represent the overall similarity of the three reference sets. The dashed line is at distance value 50 across
the three panels for easy comparison. B The statistics of the reference database of 3 viruses. “# Genome
Number”: the number of downloaded genomes. “# Cluster Number”: the number of final clusters generated
by VirStrain. “# SNV Sites Number”: the number of SNV sites chosen by VirStrain for each virus. C The cluster
size distribution of SARS-CoV-2 , H1N1 (HA), and HIV (Gag). “Cluster size” represents the number of strains
contained in each cluster
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Hamming distance derived from the aligned reference sequences. As expected, SARS-
CoV-2 has the highest similarity. H1N1 has multiple peaks showing heterogeneous
pairwise strain similarities. HIV is more diverged.
Figure 1B summarizes the statistics of the reference genomes/genes of these three

viruses, their final clustering results, and also the number of their SNV sites chosen by
VirStrain. It shows that the number of HIV (Gag) sequences is nearly equal to the number
of clusters while the other 2 viruses differ a lot, which is caused by relatively low sequence
similarity between HIV (Gag).
The cluster size distribution of three viruses are displayed in Fig. 1C. Most clusters are

very small, with many containing a single genome. But there are also genomes that can-
not be distinguished by the chosen SNV sites. Especially, there are strains with different
lengths, leading to alignments with many gaps at the beginning and ending parts. Those
columns are not utilized by the greedy covering algorithm. Thus, these strains are usually
in the same cluster.

Overview of the experiments

The input to VirStrain are short reads from either relatively pure or highly mixed samples
(such as viral metagenomic data). VirStrain is able to directly return strains from both.
We assessed VirStrain from multiple aspects. The organization of all experiments is

summarized in Fig. 2. First, we focused on evaluating the possible limitations of VirStrain
based on the method design (Fig. 2A). In particular, we will evaluate how read length,
sequencing coverage, and the reference database size affect the performance of VirStrain.
Then, we will investigate the applicability of VirStrain to heterogeneous data (e.g., metage-
nomic data) by conducting k-mer match against reads from the host, bacteria, etc.

Fig. 2 The overview of all experiments
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In addition, we will provide some guidance about the acceptable strain divergence in
multi-strain detection cases. Second, we benchmarked VirStrain against other popu-
lar strain-level analysis tools and haplotype reconstruction tools with simulated data
(Fig. 2B). Third, we validated VirStrain in multiple usage scenarios with both real data and
mock data (Fig. 2C).
In all these experiments, we use accuracy as the main performance metric for different

tools. It is worth noting that all tested tools usually output multiple strains with associated
ranking. If we know the number of strains (e.g., x) in a sample, we will keep only the top
x outputs of a tool. Then, the accuracy is defined as the percentage of correctly identified
strains in the output. It is noted that if multiple tied best matches are presented, with the
correct strain among them, this will be counted as correct. We will quantify the number
of “tie cases” in our experiments.

Baseline performance of VirStrain

The strain identification performance can be affected by sequencing coverage, read
length, similarity of strains, and the size of the reference database. In order to provide
users with guidance on utility of VirStrain, we conducted experiments to evaluate the
robustness of VirStrain when the input data have different properties. First, we evalu-
ated how the read length, sequencing coverage, and database size affect the performance
of VirStrain. Second, we evaluated whether the k-mer derived by VirStrain could falsely
match other microbes, which is important for applying VirStrain to heterogeneous data
such as viral metagenomic data. Third, we focused on evaluating theminimumdivergence
between the strains for VirStrain to identify them in the multi-strain infection case.
Because SARS-CoV-2 is of high interest and has large size and high strain-level sim-

ilarity, we conducted all experiments in this section on SARS-CoV-2. As some strains
contain non-ACGT characters, we did the experiments by only simulating reads from
2280 SARS-CoV-2 strains that do not contain non-ACGT characters.

Impact of read length/sequencing coverage on VirStrain

In order to evaluate the impact of read length and sequencing depth on VirStrain, we sim-
ulated reads from each single strain with 5 different sequencing depths and 4 different
read lengths. Thus, there are altogether 20 combinations as shown in Table 1. For each
combination, we conducted 2280 experiments using ART simulated reads [29] from each
of the 2280 strains as input. For all these experiments, we found that the known reference
strain always has the best Vscore (see the “Step 2: iterative strain search algorithm”

Table 1 The number of tie cases and the median number of best matches in all tie cases of VirStrain
on 2280 ×20 simulated datasets

75bp 100bp 150bp 250bp

5X (903, 7) (782, 6) (602, 5) (679, 5)

10X (141, 2) (109, 2) (51, 2) (65, 2)

20X (0, 1) (0, 1) (0, 1) (0, 1)

50X (0, 1) (0, 1) (0, 1) (0, 1)

100X (0, 1) (0, 1) (0, 1) (0, 1)

Each cell contains a tuple with the first number being the number of tie cases and the second number being the median number
of strains in the top-ranking group. For example, “(903, 7)” in the combination 5x and 75bp means when the reads have the
length 75bp and coverage 5x, 903 out of 2280 experiments return multiple strains with the same score. The median number of
the returned strains is 7. For the single strain experiment, the ideal case is (0, 1), indicating that VirStrain ranks the correct strain as
the top one
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section). However, when the reads are too short and the coverage is low, there are many
“tie cases” where multiple strains have the same Vscore as the reference strain. Table 1
shows the number of the tie cases out of the 2280 experiments for each case and also the
median number of strains in the top ranking group based on Vscore. For example, when
the reads have the length 75bp and coverage 5x, 903 out of 2280 strains have the top rank-
ing group with at least 2 strains. The median number of strains in this group is 7.With the
increase of the coverage, the tie cases drop significantly. When the coverage is 10x, the
median number of strains in the top ranking group is 2. With the increase of the coverage,
the tie cases reduce to 0 and the top 1 strain is always the correct reference. When the
coverage is above 20x, VirStrain can return the correct strains without multiple hits. The
change of read length does not significantly influence the performance when the depth is
above 20x.

Impact of database size on VirStrain

To examine the relationship between the performance and the reference database size,
we also repeated this experiment using databases with different sizes. The results are
summarized in Supplementary File 1, Supplementary Table S1 [3, 30]. When the number
of reference genomes decreases, the number of multiple hits slightly decreases for the
same combination of read length and sequencing coverage.

Will the k-mer derived by VirStrainmatch non-viral genomes?

Because heterogeneous samples such as viral metagenomic data can contain reads from
non-viruses, it is fair to ask whether VirStrain may construct false strains from non-viral
reads. In order to evaluate this, we directly tested whether the k-mer derived by VirStrain
can match commonly seen non-viral sequences, including those from human, bacteria,
and bacteriophages. In addition, we tested whether there are k-mer matches between dif-
ferent viruses. The result is shown in Table 2. Most k-mer in the VirStrain database do
not match the genomes of other species, indicating that VirStrain is not likely to mistaken
other species as viral strains. Our experiments of applying VirStrain to real viral metage-
nomic data in the “VirStrain detects SARS-CoV-2 strains from real sequencing data”
section further confirmed this.

Detecting a reference strain from simulated reads

In this experiment, we compared VirStrain against Kraken2 [31], KrakenUniq [32], Patho-
scope2 [11], Sigma [9], and Centrifuge [33] on detecting one reference strain from the
input data. Although there are more taxonomic classification tools for sequence classifi-
cation, other authors have shown that they cannot achieve satisfactory performance on
strain-level composition [34]. Thus, we did not include those tools in our comparison.

Table 2 The number of k-mer matches between each type of virus and other two viruses, the
human genome, bacteria, and bacteriophages

Virus SARS-CoV-2 H1N1 HIV Human Bacteria Phage

Name # k-mer (HA) (Gag) (GRCh38)

SARS-CoV-2 34,754 - 0 0 1 0 0

H1N1 (HA) 687,818 0 - 0 13 12 0

HIV (Gag) 2,073,196 0 0 - 102 63 5

The human genome, 2770 complete representative bacterial genomes, and 3725 complete phage genomes are downloaded
from NCBI RefSeq
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For each tool, the reference database is constructed using RNA viral strains. As Sigma
and Pathoscope2 are computationally expensive, we were not able to construct their
database using all strains. To ensure a fair comparison using the same reference database,
we built smaller, lower-resolution databases of 200 stains randomly selected from all
strains of the three types of viruses.
For each virus, we randomly picked 100 strains/genes from the 200 reference sequences

and simulated short reads from each. Thus, there are 300 datasets for three types of
viruses. For each dataset, we used ART [29] to simulate 250 bp error-containing Illumina
reads with depth of 100X, average insert size of 600 bp, and standard deviation of 150
bp. We identified strains from these simulated reads with VirStrain and five other tested
programs and calculated the accuracy for each program.
The performance comparison of different tools is shown in the left panel of Fig. 3A.

Gag region of HIV shares relatively low similarity and thus it is easier to distinguish dif-
ferent reference genes. As a result, all tools have high accuracy. As H1N1.HA has very
high similarity within the same clades or sub-clades, sequence classification tools that
are not specifically designed for distinguishing highly similar genomes have low accuracy.
We have similar observations for SARS-CoV-2 too. Across all the three viruses, VirStrain
has consistently high accuracy. Tie cases were also checked for all tested tools. Only Cen-
trifuge had tie cases (5/100 for SARS-CoV-2 and 9/100 for H1N1 (HA)) and no tie case
was found in the output of all other tested tools.
In order to test the performance of VirStrain on all strains, we carried out a benchmark

experiment for fast-running tools (see Supplementary File 1, Supplementary Section 1.2).
The result shows that VirStrain is able to identify all strains in the database while other
tools have lower accuracy (Supplementary File 1, Supplementary Figure S1).
VirStrain extracted about 30,000 k-mer out of roughly 300,000 k-mer from the input

reference genomes. As shown in Fig. 3A, using all k-mer in Kraken2 does not render sat-
isfactory accuracy. Based on this, it is noted that by selecting intelligently chosen unique
combinations of k-mers centered around SNVs, strain distinguishment performs as well
as if not better than the same program comparing all possible k-mers. Similarly, we
observed decreased accuracy if we use all possible k-mer in VirStrain. Thus, using selected
k-mer by the greedy covering algorithm is important to VirStrain.

Benchmark experiments on low coverage data

To assess the performance of other strain identification tools on datasets with low
sequencing depth or shorter reads, we applied Krakenuniq, Centrifuge, Sigma, and Patho-
scope2 on the same datasets used in Table 1 of the “Baseline performance of VirStrain”
section. We did not evaluate Kraken2 due to its low accuracy on all tested viruses
(Fig. 3A). To keep the same reference database configuration as the experiment in Table 1,
all the tools used 4082 reference strain genomes (see Fig. 1B) except Sigma and Patho-
scope2. Due to the high computational cost, we can only run Sigma and Pathoscope2
using a 200-strain reference database. The results were summarized in Supplementary
File 1, Supplementary Table S2. All tested tools have poor performance on low coverage
datasets except Sigma. Because Sigma was run on a much smaller reference database, the
accuracy is expected to be higher. Nevertheless, Sigma took more than 2 weeks to ana-
lyze all datasets given 8 threads on an HPCC CentOS 6.8 node with 2.4Ghz 14-core Intel
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Fig. 3 A The accuracy comparison of 12 tools. There are 100 sets of simulated reads for single-strain datasets
and 100 for multi-strain datasets. For each set of multi-strain simulated reads, there are two strains with 100X
and 10X coverage, respectively. B The bubble plot of the predicted abundance distributions for 100
simulated SARS-CoV-2 two-strain datasets. The center of each circle represents the relative abundance of the
two strains output by one tool. When a tool produces the same abundance distribution on multiple datasets,
we represent the identical output using a circle, whose size represents the number of those datasets. “Truth”
refers to true relative abundance of the 2 strains in each dataset, which is calculated by normalizing the
sequencing depth (100X and 10X). Its circle contains 100 datasets (samples). Many circles have centers with
the x-coordinate being 0, meaning that these tools only output one strain

Xeon E5-2680v4 CPUs and 128 GB memory. On top of that, it has low accuracy in the
mix-strain identification experiments (Fig. 3A).

Detecting multiple strains from simulated data

Multi-strain infection is not rare for RNA viruses, especially the ones with high muta-
tion rates. Usually, if one strain dominates the virus population, the minor strains tend to
be missed. To mimic this situation, we constructed two-strain datasets that consist of a
major strain (100x coverage) and a minor strain (10x coverage). Similar to “single-strain”
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datasets, we constructed 100 datasets of simulated reads for each type of virus. Each set
contains simulated reads from two randomly selected reference sequences. The read sim-
ulation process is the same as the single strain experiment. As we know there are two
strains, only the two most possible strains are kept for each tool. The accuracy is the ratio
of correctly identified strains to the total number of the kept strains. Because haplotype
reconstruction tools can be applied to assemble multiple strains, we also evaluated six
haplotype reconstruction tools in this experiment. All constructed haplotypes by these
tools are ranked according to their estimated frequency. For each predicted haplotype, we
use MegaBLAST [35] to identify the closest reference strain (defined as s) in the database.
If the reference strain s is the ground truth, we treat this haplotype as a correct identi-
fication. The performance comparison is shown in the right panel of Fig. 3A. Although
the accuracy of VirStrain decreases a little for H1N1.HA (from 1.0 to 0.95) compared to
the single-strain experiment, it maintains the accuracy of 1.00 for SARS-CoV-2. And it
outperforms other tools by about 10% on H1N1(HA) and 38% on SARS-CoV-2.
Considering that haplotype reconstruction tools do not have the information of the

known strains, one may wonder whether the accuracy-based metric is a fair evaluation of
the haplotype reconstruction tools. We thus conducted in-depth evaluation of the con-
structed haplotypes by comparing their similarities with the ground truth. We focused
on those predicted haplotypes whose closest strains s are not the ground truth. For each
of these haplotypes, we first identified the reference strains that have higher similar-
ity to the ground truth than s. Intuitively, a larger number of strains between s and the
ground truth indicates worse accuracy of the haplotype reconstruction. We showed the
numbers in Supplementary File 1, Supplementary Table S3 [35]. Then, we plotted the
similarity distribution between those haplotypes and the ground truth in Supplemen-
tary File 1, Supplementary Figure S2. All tested tools tend to underestimate the number
of strains (see Fig. 3B and Supplementary File 1, Supplementary Table S3), particularly
the minor ones. ShoRAH [36] and PredictHaplo [37] have the worst performance and
only reconstructed a few strains correctly. aBayesQR [38], CliqueSNV [24], and TenSQR
[39] have relatively better performance than other tools. The constructed haplotypes by
CliqueSNV have the highest similarity with the ground truth strains. However, it missed
many strains, particularly the minor ones in the input data. Overall, the outputs of the
haplotype reconstruction tools cannot reflect the true strain composition.

Recombinant strains

One related question is whether VirStrain is able to distinguish recombinant strains from
their parent strains. VirStrain is able to detect recombinant strains like other strains when
it is included in the reference database. We applied VirStrain to identify recombinant
strains from 2 simulated mix-strain datasets (see Supplementary File 1, Supplementary
Table S4) [40, 41]. The results show that VirStrain can identify both the recombinant
strain and the strains in its parent genotypes/subtypes. However, VirStrain is not designed
to distinguish the recombinant strain from its parent strains because the recombinant
strain may not possess enough SNVs.

Relative abundance computation

For identified strains, VirStrain also outputs its sequencing coverage, which can be used to
compute relative abundance for multi-strain infection. As Fig. 3A shows, the accuracy of
ShoRAH, PredictHaplo, CliqueSNV, aBayesQR, Kraken2, KrakenUniq, and Pathoscope2
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on the SARS-CoV-2 multiple-strain data sets is lower than 0.5. Thus, we did not include
them in the comparison. Sigma, Centrifuge, HaROLD [42], and TenSQR were able to
return the strains’ abundances in the outputs. Therefore, it is convenient to calculate the
relative abundance for each strain.
Figure 3B shows that the relative abundance estimated by VirStrain is closer to the

ground truth than others. Sigma, Centrifuge, HaROLD, and TenSQR failed to detect the
minor strain in many datasets. Thus, many data points are aligned with x-value 0.00.
In addition, they have more variations about the relative abundance computation for
different datasets even though the ground truth keeps the same (100x vs 10x).

VirStrain detects the closest relative for novel strains

When a strain is not present in the reference database, VirStrain will output its closest
relative in the database. Here, we define the closest relative as the strain in the database
that is most similar to the query strain identified by MegaBLAST [35]. In order to test
VirStrain on returning the closest relative for novel strains, we created multiple simulated
read sets from mutant strain genomes.
In order to test the ability of different tools on detecting the closest relative, we need to

reconstruct our reference genome set by choosing only the sequences that can be correctly
identified by all tools.
Thus, we used 53 SARS-CoV-2 genome sequences that can be identified correctly by

all tools in the single-strain experiment. Then, we used simuG program [43] to simu-
late random point mutations to each of these genomes. According to Dorp et al. [44],
the average number of mutations in the SARS-CoV-2 strains is 9.6. Thus, we simulated
mutant genomes with 5, 7, 9, 11, and 13 random point mutations from the raw genome
sequences and marked these newly obtained genomes as M5, M7, M9, M11, and M13. In
total, there are 265 (53*5) mutant genomes and 53 raw (i.e., reference) genomes. Then,
we simulated short reads from these mutant and raw genomes using the same parameters
as other experiments. Thus, we have 318 (265 mutant and 53 raw) datasets as inputs. For
each dataset, as it only contains reads simulated from one strain, we thus only keep the
top 1 output by different tools.
Figure 4 shows that VirStrain and Sigma are able to find the correct closest relatives

in all data sets, while the other 3 tools failed to output the correct strains in some cases.
This is consistent with the experimental results of Sigma [9], which tested this function
on multiple datasets.
This experiment demonstrated that the performance of our tool is as good as the

mapping-based tool Sigma in identifying the closest relative. It is noteworthy that Fig. 4
looks better than Fig. 3 for several tested tools because this experiment only used 53
strains that are correctly identified by all tools in the single-strain experiment.
To further test the robustness of VirStrain, we applied VirStrain to detect the closest

relative in a larger simulated dataset (see Supplementary File 1, Supplementary Section
1.6). The result shows that VirStrain can still identify correct closest relatives in all the
600 simulated datasets (Supplementary File 1, Supplementary Figure S3).

Running time comparison

To evaluate the computational efficiency of VirStrain, we compared the running time
of the tested tools on the simulated data and recorded the result in Table 3. One real
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Fig. 4 The accuracy comparison of 5 tools on detecting the closest relative in 318 simulated datasets. The 53
strains used in this experiment can be correctly identified by all tools in Fig. 3. “Raw” means the dataset from
the reference genomes and M5, M7, M9, M11, and M13 represent datasets simulated from mutant strains.
There are a total of 53 data sets for each group and each dataset contains one strain

metagenomic sequencing data (SRR10971381) is also used to compare the computational
efficiency due to its large data size. The reference genome of the strain (MN908947) in this
dataset (SRR10971381) can be found in the database of all tested tools, so it is a fair test
strain. VirStrain has similar running time to Centrifuge and KrakenUniq but runs signif-
icantly faster than Pathoscope2 and Sigma. All the experiments were tested on an HPCC
CentOS 6.8 node with 2.4Ghz 14-core Intel Xeon E5-2680v4 CPUs and 128 GB memory.
We used 8 threads for all tools. We also evaluated the running time of haplotype recon-
struction tools in Supplementary File 1, Supplementary Section 1.12 and found all tested
tools were more computationally expensive than VirStrain. These results indicate that
VirStrain achieved much higher accuracy than those computationally efficient tools such
as KrakenUniq and Centrifuge while maintaining comparable speed. It also outperforms
those mapping-based tools like Sigma and Pathoscope2 on both accuracy and speed.

VirStrain detects SARS-CoV-2 strains from real sequencing data

Apply VirStrain to trace the infection location

To evaluate the performance of VirStrain in SARS-CoV-2 strain identification, we con-
ducted experiments on 32 real sequencing datasets (see Table 4), which were sampled
from patients of different geographical regions. The samples were sequenced using dif-
ferent platforms such as Illumina, BGI-Seq, and Ion Torrent and may not have complete

Table 3 Running time of five tested tools on simulated and real data

Data sets VirStrain KrakenUniq Centrifuge Pathoscope2 Sigma

Sim_single_strain (6 MB) 16s 8s 6s 110s 255s

Sim_multiple_strain (6.6 MB) 23s 9s 8s 140s 268s

SRR10971381 (19.5 GB) 215s (Y) 254s (N) 290s (N) 1721s (Y) >15h (-)

Sim_single_strain and Sim_multiple_strain represent simulated single-strain and multiple-strain datasets, respectively. For real
data, the identification result is represented by Y and N, where Y means correct identification and N means wrong identification.
Sigma does not have the identification result due to its long running time
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assemblies available. There are 7 viral metagenomic samples. Out of the 32 samples,
4 samples have their SARS-CoV-2 strains present in the VirStrain database. Sixteen of
them have available complete genomes but they are not in our reference database (the
samples marked with red in Table 4). For the remaining samples, not every one can be
assembled into complete SARS-CoV-2 genomes. We applied 3 popular assembly tools
and found none of these tools can assemble the short reads into complete genomes
for four datasets (see Supplementary File 1, Supplementary Section 1.7) [45, 46]. Even
so, VirStrain can still be applied to identify the closest strain in the reference database
and uses the metadata to provide possible infection locations. The results are shown
in Table 4.
By comparing the metadata of the output strain by VirStrain and the known infor-

mation associated with each sample, we can conclude that the derived and known
geographical information is generally consistent for all datasets. For most cases where the
complete genomes are available, the strains returned by VirStrain are the same as the out-
put of MegaBLAST. There are four cases where VirStrain output different results from
MegaBLAST. Of the four cases, MegaBLAST output multiple hits for two. For the other
two, the strain identified by VirStrain is very close toMegaBLAST. As VirStrain uses short
reads as input, this indicates that its accuracy is comparable to highly accurate alignment
tools that take genomes as input.
The first sample SAMN13922059 is actually from a patient in Wuhan, China, whose

sample was used to generate the first reference genome of SARS-CoV-2 [47]. In the output
of VirStrain, this first reference genome is located in a cluster with other 47 SARS-CoV-
2 strains, which all belong to clade 19A defined by nextstrain. In this cluster, there are
two main geographical locations: Wuhan and Hangzhou, China. As Hangzhou’s cases are
slightly more than Wuhan, we used Hangzhou in column “Region of clusters”. This is
one current limitations of VirStrain. These 48 strains cannot be divided into single-strain
clusters.
There are 2 very interesting samples in Table 4: SAMN14560168 and SAMN14643484

(bold font). SAMN14560168 is from the first COVID-19 patient of Cambodia, who had
been to China before being admitted to the hospital. The identification result of VirStrain
shows that its closest relative is MT470175.1, which is from China. Thus, the result indi-
cates that this Cambodia patient could be infected in China, which is consistent with this
patient’s travel history. Another interesting case, SAMN14643484, is from Israel and its
closest relative identified by VirStrain is from the Diamond Princess cruise ship. Accord-
ing to the sample information at NCBI, this patent was indeed a passenger of the cruise
ship and got infected by SARS-CoV-2 there.
These results show that VirStrain is able to identify SARS-CoV-2 strains from real

sequencing data with or without assembled genomes. In addition, VirStrain also provides
information that can be very useful for tracking the virus spread.

Apply VirStrain to identify co-infection of SARS-CoV-2 strains

A recent study [48] reported a case where one patient was infected by 2 different
SARS-CoV-2 strains simultaneously. According to the authors, two samples (Sample1
and Sample2) were obtained from the same patient 8 days apart and both samples were
found to contain two highly similar SARS-CoV-2 strains from different clades. In addition,
they also found a change in the dominant strain between Sample1 and Sample2. Thus,
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we applied VirStrain, HaROLD, CliqueSNV, TenSQR, and aBayesQR to these 2 samples
(SRR14142137 and SRR14142136) to check whether they were able to identify the co-
infection of SARS-CoV-2. In Fig. 5, we compared the results obtained from the original
study and 5 tools. As shown in Fig. 5, VirStrain is the only tool that identifies two strains
with the same clades as the original study in two samples and is consistent with the orig-
inal study in terms of abundance prediction. This experiment shows that VirStrain can
provide useful insights into strain co-infection, even those that are highly similar and have
low abundance.
VirStrain identifies 5 strains from HIV mock data

In this experiment, we applied VirStrain to a mock dataset (SRR961514) containing real
sequencing data from five HIV strains. The authors mixed five HIV strains (JRCSF, 89.6,
NL43, YU2, andHXB2) and conducted Illumina sequencing [49]. Using the reads as input,
VirStrain can detect 5 strains from its reference database and predict their sequencing
depth. Based on the predicted sequencing depth, we calculated the relative abundance by
normalizing the depth of each identified strain.
To compare the predicted abundance with the ground truth, we applied the chi-square

test and got the p-value 0.9998, which indicates that the distribution of the predicted
abundance by VirStrain is not statistically different from the ground truth (Fig. 6). This
experiment demonstrates the ability of VirStrain in identifying multiple strains in one
sample.

VirStrain identifies strains of DNA viruses frommix-strain sequencing data

Because there are a large number of sequenced strains of high similarity for RNA viruses,
we mainly focused on evaluating VirStrain on RNA viruses. But VirStrain can also be

Fig. 5 The comparison between the reported abundance in the original study (referred to as “report”) and
the predicted by 5 tools. Strain1 belongs to clade 20C and strain2 belongs to clade 20B defined by nextstrain
[3]. According to the original study, there are only 8 mutations between strain1 and strain2. TenSQR failed to
analyze “Sample2” due to memory usage, so the abundance is “0%.” Similarly, aBayesQR was terminated after
analyzing Sample2 for more than 7 days using 8 threads, so the abundance is also “0%”
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Fig. 6 Abundance comparison of HIV mock data between the ground truth and VirStrain. The true average
abundances sorted in descending order are 31.35%, 20.04%, 18.11%, 17.65%, and 12.86%

applied to DNA viruses as long as a quality multiple sequence alignment can be pro-
duced for the reference strain genomes. Mixed strain infections are also possible for DNA
viruses, such as hepatitis B virus (HBV) and human cytomegalovirus (HCMV). To further
assess the performance of VirStrain on the mixed strain identification of DNA viruses, we
applied VirStrain to 12 real sequencing datasets, which consist of 2 HBV samples and 10
HCMV samples with known strain composition.
The two samples for HBV are from the same study (PRJEB31886) and both contain two

known strains of HBV [50]. To test the performance of VirStrain on these datasets, we
downloaded the complete genomes of 9356 HBV strains from NCBI and then applied
VirStrain to build the reference database. We also tested the performance of two other
efficient tools, Krakenuniq and Centrifuge, and 4 haplotype reconstruction tools on the
same datasets. The result shows that only VirStrain can successfully identify all strains
present in the samples (Table 5). Centrifuge can identify the dominant strains but miss
the low abundance strains. The performance of the haplotype reconstruction tools can
be found in Supplementary File 1, Supplementary Table S6. Because the strains’ similarity
is 89.97%, much lower than RNA viruses, all tested tools can output haplotypes with the
highest similarity to the ground truth strains. But the constructed haplotypes are not
identical to the ground truth. And none of the tools is consistently better than others
on the two datasets. For example, the haplotypes output by aBayesRQ have the highest
similarity (97.7% and 99.8%) to the true strains on one of the sample. But HaROLD and
CliqueSNV generated more accurate haplotypes on the other sample.
We then evaluated VirStrain using 10 HCMV samples, which are from a comprehen-

sive benchmark study for tools on strain-resolved analysis [51]. According to the authors,

Table 5 Performance of the three tools on two HBV mix-strain datasets

Sample
name

Actual strains
present in the
sample

VirStrain Centrifuge Krakenuniq

Strains
detected

Predicted
abundance

Strains
detected

Predicted
abundance

Strains
detected

Predicted
abundance

ERR3253398 MK720631.1 Y 89% Y 12% N -

MK720628.1 Y 11% N - N -

ERR3253399 MK720631.1 Y 80% Y 14% N -

MK720628.1 Y 20% N - N -

“-” in the table indicates that the strain is not identified and thus the abundance is unknown
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these 10 lab-generated strain mixtures were generated from 3 HCMV strains (TB40/E,
AD169, and Merlin), at different mixing ratios. For example, the sample “TA-1-1” in
Table 6 means it was generated from HCMV strains TB40/E and AD169 (designated as
“TA”), at a mixing ratio of 1:1. Then, we downloaded the complete genomes of 332 HCMV
strains from NCBI and constructed the database using 328 strains with the parameter “-
s 0.4”. Four strains are not included due to the low quality such as frameshift errors in
many genes. Six samples contain two strains and thus we also tested HaROLD on them
because HaROLD was adopted by another study to reconstruct HCMV strains in clini-
cal samples [52]. The result is shown in Table 6. On these 10 samples, VirStrain achieves
100% accuracy. For two hard cases (“TA-1-50” and “TM-1-50”), VirStrain is able to suc-
cessfully identify both the dominant and low abundance strains. However, the accuracy
of HaROLD is only 50%. For the three samples of “TM”, HaROLD is only able to success-
fully reconstruct the genome sequence of Merlin, which is consistent with our previous
observation that HaROLD tends to underestimate the number of strains.

Application of VirStrain to a cohort with mixed HCMV infections

In this experiment, we applied VirStrain to samples (PRJNA605798) collected from five
HIV-infected Kenyan mothers and their infants between 1993 and 1998 [53]. These sam-
ples are sequenced at different time points from the mother’s breast milk (BM), cervical
(CV), and the infant’s blood spots (BS). In a recent study [52], the authors used HaROLD
to reconstruct and analyze the HCMV strains in this batch of samples. Here, we take a
similar approach to the original study to show the utility of VirStrain in identifying mixed
strain infections. It is worth noting that “family” in this experiment represents all samples
of a mother and her infant, so the subsequent analysis contains a total of 5 families.

Table 6 Performance of VirStrain and HaROLD on 10 HCMV lab-generated benchmark datasets

ID Sample
name

Actual strain
present in the
sample

VirStrain HaROLD

Strains
detected

Predicted
abundance

Strains
detected

Predicted
abundance

1 TA-0-1 AD169 Y 100% - -

2 TA-1-0 TB40/E Y 100% - -

3 TA-1-1 TB40/E Y 83% Y 79%

AD169 Y 17% Y 21%

4 TA-1-10 TB40/E Y 56% Y 30%

AD169 Y 44% Y 70%

5 TA-1-50 TB40/E Y 5% Y 5%

AD169 Y 95% Y 95%

6 TM-0-1 Merlin Y 100% - -

7 TM-1-0 TB40/E Y 100% - -

8 TM-1-1 TB40/E Y 66% N 0%

Merlin Y 34% Y 100%

9 TM-1-10 TB40/E Y 16% N 0%

Merlin Y 84% Y 100%

10 TM-1-50 TB40/E Y 5% N 0%

Merlin Y 95% Y 100%

“-” in the table indicates that HaROLD is not tested on these datasets because they contain only one strain. The three strains are
TB40/E (T), AD169 (A), and Merlin (M). Each sample name starts with the acronyms of the two composite strains, followed by the
strain ratio
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Firstly, we applied VirStrain to identify HCMV strains in these longitudinal samples
with the same reference database as mentioned in the “VirStrain identifies strains of DNA
viruses from mix-strain sequencing data” section. For the strains identified by VirStrain,
we used Mafft v7.455 [54] to align their genomes and constructed maximum-likelihood
trees of the strains from each family using FastTree v2.1.11 [55]. Similar to the original
study, the strains were then grouped into clusters and the pairwise evolutionary distance
between each strain pair of a cluster was less than 0.017. Same as the original study, the
evolution distance here refers to the sum of the distances between the strains and their lat-
est common ancestor on the evolutionary tree. As a result, 26 clusters were generated and
we considered these clusters as genotypes. The different strain clusters (genotypes) were
represented by different colors in Fig. 7. In Fig. 7, we plot the abundance of each geno-
type within a sample over time to visualize the strain composition relationship between
maternal and infant genotypes.
As shown in Fig. 7, there are multiple genotypes in the breast milk of all five mothers

and the relative abundances change over time. Besides, we can also have some interesting
findings regarding the mother-to-child transmission of HCMV strains. For example, the
infants from families 12 and 123 were initially infected with genotypes found in the cervix
and then re-infected with genotypes found only in breast milk. Same as the original study,
we also found a distinct genotype (marked in purple) in mother 22’s breast milk in the first
6 weeks, which disappeared in subsequent samples. However, the original study based
on HaROLD analysis indicated that most samples from cervical and infant blood spots
contained only a single genotype, but our analysis showed that most of these samples
contained two genotypes. This may be the result of HaROLD’s tendency to underestimate
the number of strains. More interestingly, we find that the genotypes found in the breast
milk all contain strains (MK422176.1, MK290742.1, etc.) isolated from the breast milk
of HIV-infected mothers in Zambia [57], and similarly, some of the strains (KJ361966.1,
KR534203.1, etc.) identified in cervical are from the amniotic fluid. These results suggest

Fig. 7 Abundance of strains within each sample for breast milk (BM), cervix (CV), and blood spots (BS), and
the maximum-likelihood phylogenetic tree for strain clusters (genotypes) of each family. Each color in the left
panel is associated with the genotypes’ color on the right side. For all families, we use the same set of colors
to represent different genotypes. However, for different families, the same colors are not directly related and
do not represent the same genotype. The value shown in the tree represents the bootstrap value. The
visualization of phylogenetic tree is generated with iTOL [56]
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that VirStrain can provide more comprehensive views for the analysis of mixed strain
infections.

Discussion
Our large-scale benchmark experiments against several other popular strain-level analy-
sis tools and haplotype reconstruction tools demonstrated the high accuracy of VirStrain
on detecting reference strains from short reads. But there are still cases where VirStrain
cannot return the exact strain. One limitation of the current method is the ambiguity
of detecting low abundance viral strains from very short reads (depth <10x, read length
<100bp). As mentioned in the “Baseline performance of VirStrain” sections, there could
be multiple best matches when the depth is smaller than 10X. As not all SNV sites can be
covered by the reads, strains of high similarity and with a large number of shared SNVs
can form a tie case with the same score. With coverage bigger than 10x, the tie cases
become very rare and the top 1 strain identified by VirStrain is the correct strain in the
sample. This limitation caused by low coverage and high similarity is also observed in
other tested tools. Instead of outputting a wrong strain, VirStrain outputs all with the cor-
rect strain being one of them, which can inform the users of this ambiguity. It is our future
work to design more accurate algorithms for addressing this limitation.
In the case of detecting multiple strains in one sample, there is a tradeoff between the

resolution and accuracy. Specifically, if there are multiple strains sharing a large number
of SNV sites, they will be clustered in the list ranked by Vscore, which can pose false pos-
itive detection when one of the strain exists in the underlying sample. Thus, we do not
reuse the SNV sites so that the output strains are representative ones in a sample rather
than near duplicate ones. Essentially, the iterative search procedure poses a constraint on
the number of different SNVs between strains in the same sample. Strains with too few
differences will be missed by VirStrain. In order to provide the guidance on the number
of expected different SNVs, we tested a hard case for our method. The input data con-
tains reads from three strains, with one being the major one (100x) and other two being
minor ones (10x). In addition, two of the three strains are highly similar with less than
10 different SNV while the rest one has more than 3 different SNVs. The result can be
found in Supplementary File 1, Supplementary Section 1.11. It shows that VirStrain may
miss the low abundance strain that differ by less than 10 SNV sites for SARS-CoV-2 in the
multi-strain infection cases.
Currently, we derive k-mer from aligned reference genomes. Thus, VirStrain is not

designed for bacterial strain identification because it is hard and computationally expen-
sive to obtain the high-quality multiple sequence alignment of bacterial strain genomes.
We noticed some alignment errors especially at sites with consecutive insertions or dele-
tions. As a result, we tend to exclude columns with many indels, which may lead to
clusters containing multiple genomes in the end. Ideally, we want to derive optimal k-mer
sets for reference genomes without relying on alignment programs, which is our future
work.
It also should be noted that the completeness and bias of the genomes in the database

will play a major role in the performance of VirStrain. For example, low-quality genomes
may lead to poor quality of multiple sequence alignment, which may affect the accuracy
of VirStrain. VirStrain does not automatically detect the contamination or bias of the
database. But VirStrain allows the users to build the reference database using their own
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reference genomes. Thus, data pre-processing can be conducted to mitigate the bias or
contamination.

Conclusions
In this work, we implemented a strain identification tool for short reads. We designed a
greedy covering algorithm to divide reference genomes into multiple clusters so that the
genomes in each cluster possess unique set of k-mer.
VirStrain shows higher accuracy than other tested tools across all benchmark datasets

with different complexity. VirStrain can be applied to identify strains from low-quality
sequencing data, which is the hard case for assembly tools (see Supplementary File 1,
Supplementary Table S5). VirStrain has high accuracy in detecting multi-strain infection
cases. We demonstrated this by using VirStrain on both simulated and real sequencing
data on different types of viruses including SARS-CoV-2, HIV, H1N1, HBV, and HCMV.

Material andmethods
In this work, we developed a tool, VirStrain, which can quickly identify one or multi-
ple reference strains closest to those in short-read sequencing data. It achieves a better
tradeoff between speed and resolution by deriving unique k-mer combinations that can
distinguish highly similar strains.
VirStrain conducts strain identification using short reads as input and does not rely on

sequence assembly, making it more amenable to cases where full virus genome cannot
be assembled. The output of VirStrain contains the most possible strain (the strain that
best matches the SNVs found in the sample set) identified in the data and the detailed
read coverage of its single nucleotide variation (SNV) sites in an interactive HTML format
(Supplementary File 1, Supplementary Figure S5).
Highly similar reference genomes may not possess genome-specific k-mers. But they

can possess genome-specific k-mer set, where the component k-mer can be utilized
together to distinguish different reference genomes. Figure 8 shows a toy example of using
k-mer sets to distinguish five sequences when there are no genome-specific k-mer. In
order to find such k-mer set, we develop a greedy covering algorithm to identify unique
combinations of SNV sites from aligned virus reference genomes. Then, k-mer will be
extracted from the SNV sites and construct k-mer set for underlying genomes.

Step 1: identify unique set of SNVs from reference genomes

The input to this algorithm is an MSA of the reference genomes. It is noteworthy that
generatingMSA for thousands to tens of thousands of genomes can be slow. But when the
reference genomes share high sequence similarity (such as for SARS-CoV-2), the MSA

Fig. 8 Use k-mer sets to distinguish five sequences of high sequence similarity. Each sequence has a unique
k-mer combination
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can be produced using more efficient programs, such as the one provided by Mafft at its
website [54].
Given the MSA M, the program will exclude all the sites where no SNV is observed.

Instead, the algorithm favors variations from conserved sites, which indicate features
that are specific to one or a small number of genomes. Thus, given M, we compute the
Shannon entropyH for each column.

Algorithm 1 Divide reference genomes into clusters with unique SNV combinations
using the greedy covering algorithm.
Input: Multiple sequence alignmentM with multi-fasta format.M has n columns andm

sequences. LetMj
i be the character at row j and column i. A = {a, c, g, t,−}.

1: Define an empty list S
2: Define a two-dimensional array N for recording the character occurrence times in

each column
3: Initialize H as an empty list � Initialization
4: for i = 1 to n do
5: Compute Nb

i , the occurrence of the character b for b ∈ A.
6: Define pb = Nb

i∑
b∈A Nb

i
for b ∈ A

7: Entropy h = ∑
b∈A −pblogpb

8: if h > 0 then
9: push(S, i), push(H, h)

10: Define nseq = 0 � nseq is the number of clustered sequences
11: while S != empty and nseq < m do
12: nmin = argmin

i
(H[ i])

13: bmin = argmin
b∈A

Nb
nmin

14: Initialize a new cluster C
15: for x = 1 to m do
16: ifMx

nmin eq bmin then
17: push(C, x)
18: if x has not been clustered then
19: nseq++
20: Output the new cluster C
21: for k = 1 to |S| do
22: for l = 1 to |C| do
23: Let b′ = MC[l]

S[k], N
b′
S[k] − −

24: if H[ k]== 0 then
25: Remove S[ k] from S
26: update H[ k]

Then, we pick the column with minimum positive H from M. Let this column be si.
Let the nucleotide at si with the minimum frequency be smin

i . All the genomes containing
smin
i at site si will be extracted and saved in one cluster. The entropy for the remaining
genomes will be updated after the extraction. And this greedy choice will be applied to the
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Fig. 9 The sketch of the k-mer identification and SNV matrix construction stages. The SNVs in the matrix are
represented by the site and base [18]. “C1-C4” represents the name of clusters

remaining genomes until all the genomes are in one cluster. It should be noted that low-
quality columns with too many dashes will not be considered and can be filtered in pre-
processing. Depending on the reference genome similarity and alignment quality, users
can choose a threshold for the allowed percentage of dashes in one column. For SARS-
CoV-2 and H1N1(HA), our default cutoff is 0. For HIV, our default cutoff is 10%. The
pseudocode of the entropy-based greedy covering algorithm is presented in Algorithm 1.
A working example is shown in the top-left panel of Fig. 9.
After we apply this greedy covering algorithm, the reference genomes are divided into

multiple clusters, where each cluster is defined by one SNV event. Figure 10 sketches the
SNV sites for different clusters based on the order of SNV site selection in the greedy
covering algorithm. Let the number of chosen SNV sites (i.e., the final number of clusters)
be m. Let si be the SNV site chosen at the ith step in the greedy covering algorithm.
Again, smin

i is the base with minimum frequency at site si in the remaining genomes. Let
the corresponding cluster be ci, which contains the genomes containing smin

i at the ith

Fig. 10 The SNV sites and corresponding clusters. Site i is the SNV site chosen at the ith step. The base in red
denotes the base with the minimum pb (i.e. smin

i ). Genomes in the same cluster share the red base at the
chosen SNV site. Each cluster has unique SNV base combination, which is shown in the white part of each
row. The SNV base combination for cluster ci is shown in a box
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step. We use smin
i at SNV sites s1, s2, . . ., si to represent cluster ci. We have the following

theorem and proof.

Theorem 1 Let the SNV base combination for the ith cluster ci be smin
1 , smin

2 , . . . , smin
i .

This nucleotide base combination uniquely represent the genomes in cluster ci.

Proof In order to prove that the nucleotide base combination smin
1 , smin

2 , . . . , smin
i

uniquely represent the genomes in cluster ci, we need to show that at least one base of
these SNV events in ci is different from any other cluster cj, where j �= i. Figure 10 can be
used to illustrate this proof.
Without losing generality, we consider two cases. In case 1, we consider a cluster cj

with j < i. The bases at j in genomes of cj must be identical (condition for clustering).
In addition, that base must be different from the base at site sj in genomes of cluster ci.
Otherwise, the genomes of ci will be clustered into cj at step j. In the second case, we
consider a cluster cj with j > i. For any genomes in cj, their base at SNV site si must be
different from the base at site smin

i of the genomes in ci. Otherwise, that genome will be
clustered into ci. Thus, we proved that at least one base at the SNV event combination in
ci is different from any other cluster cj.

Thus, as shown by Fig. 10, we identified unique SNV combinations for each cluster. As
we found the columns involving indels may have alignment errors or assembly errors (an
example can be found in Supplementary File 1, Supplementary Figure S6), we only use
columns with no gap or a small number of gaps in greedy covering. As a result, some clus-
ters can contain multiple genomes. In this case, the genomes inside each cluster can be
aligned again (to reduce the alignment errors) and be clustered in a hierarchical fashion.
An example can be found in the bottom panel of Fig. 9.

Maintaining “balanced” SNV site combinations

In the ideal case of no sequencing errors and each base of a viral genome being covered
by at least one read, the SNV site sets that uniquely represent genomes in each cluster ci
are sufficient to determine the cluster or the strain precisely. But in reality, both heteroge-
neous coverage and sequencing errors exist. For clusters represented by a small number
of SNV sites (e.g., c1 contains just one SNV site), sequencing errors can incur false posi-
tives. To address this issue, we will balance the number of the SNV sites for each cluster so
that each cluster has the same number of SNV sites. To do so, we will use allm SNV sites
for strain identification. If the original SNV sites can distinguish the genomes in different
clusters, adding SNV sites will not change this property. Thus, each cluster still possesses
unique SNV site combination. As shown in Fig. 10, the SNV bases in both the white and
gray part will be used for strain identification.

Step 2: iterative strain search algorithm

k-mer extraction

We will extract k-mer from these SNV sites, with the center base of each k-mer coming
from this site (see Supplementary File 1, Supplementary Section 2.1). Supplementary File
1, Supplementary Figure S7 shows an example of k-mer extraction. In order to avoid using
k-mer that repeat at different sites in theMSA, we determine the k-mer size by examining
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the repeat times of k-mer of different k in the MSA. We find that with the increase of k,
the repeat numbers of the k-mer at different sites reduce quickly (Supplementary File 1,
Supplementary Figure S8). By default, we use 25-mer.
To detect all possible strains in a sample, we take an iterative strategy similar to

QuantTB [18]. The overall workflow of the strain search algorithm is displayed in Fig. 11.
For an input set of reads, the k-mer match frequencies are computed using a k-mer count-
ing tool and are mapped to an SNV matrix, which will allow us to quickly compute the
sum of the coverage for all the SNV sites and rank the strains. The major operations are
described below.

Construction of the SNVmatrix

The SNV sites chosen by the greedy covering algorithm will be used to construct an SNV
matrix S of size 4mn, wherem is the number of chosen variation sites and n is the number
of reference genomes. An example is given in Fig. 9. For a strain i and a chosen SNV site
x, there are four cells corresponding to bases A, C, G, and T in S. Denote an SNV event as
x-b, indicating that base b is observed at site x. A cell Si,x−b is 1 if the strain i has base b at
site x. Otherwise, it is 0. Each cell in the matrix S has associated k-mer match frequency.

Rank the reference genomes using k-mermatch frequency

We apply Jellyfish (V2.3.0) [58], a fast multi-threaded k-mer counter, to count k-mer in
the sequencing data. Let Fx−b be the k-mer match numbers of base b at site x. Thus,
Si,x−b = Si,x−b∗Fx−b. Then, we will compute the frequency of base b at site x by normalize
the Fx−b. Therefore, Si,x−b = Si,x−b∑

b∈� Si,x−b
. To reduce the effect of sequencing error, we filter

Si,x−b if its value is smaller than a given threshold.
Once S is updated based on the actual k-mer match frequency from the reads, we will

compute the score of strain i using vscorei =
∑

x=1...m Si,x−b∑
x=1...m I(Si,x−b>0) , where I is an identity

function. vscore favors strains with the most number of k-mer hits. Although it looks
reasonable to consider other factors such as uniformity of k-mer match frequency, our
empirical studies show that considering the total number of k-mer hits renders the best

Fig. 11 The overall workflow of the iterative strain identification. The red arrow represents that all strains are
listed in descending order of Vscore
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accuracy. One possible reason is the heterogeneous coverage of real sequencing data
along RNA viral genomes. Read coverage profiles of 11 real sequencing datasets in our
experiment can be found in Supplementary File 1, Supplementary Figure S9. We will
compute vscorei for all the strains and rank them in decreasing order.

Iterative strain search

VirStrain takes an iterative approach to search for multiple strains. VirStrain will output
the top 1 strain in the ranked list and then update S by replacing the frequency of all the
SNV sites in identified strain with 0. Any strains that share the same SNV bases with the
identified strains cannot reuse the frequency. Otherwise, strains that share high similar-
ity with the identified ones can easily get higher Vscore than low-abundance strains that
are not similar to the best match. An example is given in Fig. 11. At each iteration, the
sequencing depth is calculated by taking the average frequency of its SNVs for each iden-
tified strain in the sample. VirStrain continues to calculate the score and identifies the
best matched strain in each iteration until the frequency values of all variations become 0.
At each iteration, the sequencing coverage of the identified strain is calculated by taking
the average of the k-mer match frequencies. In the end, this iterative process will return a
list of strains with their k-mer coverage profiles on the SNV sites.
We sacrifice the resolution of finding highly similar strains in the same sample by avoid-

ing introducing false-positive hits via the iterative search strategy. If there are indeed
highly similar strains such as those in quasispecies, the most abundant one will be out-
put as a representative. We conducted experiments to examine how many different SNV
sites are needed for VirStrain to recognize multiple strains (see Supplementary File 1,
Supplementary Section 1.11).
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