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Abstract. Colorectal cancer (CRC) is a malignant tumor 
with poor prognosis. Pyroptosis is a newly discovered type 
of programmed cell death that is typically accompanied by 
a strong inflammatory response. Accumulating evidence 
suggests that pyroptosis‑related genes (PRGs) may have 
important roles in the development of malignant tumors. 
However, the association between PRG expression and clinical 
outcomes in CRC remain unclear. In the present study, the 
genetic variations and transcriptional patterns of 52 PRGs were 
comprehensively analyzed using cohorts from The Cancer 
Genome Atlas and Gene Expression Omnibus and the mRNA 
expression levels of 7 PRGs in collected CRC samples were 
validated using reverse transcription‑quantitative PCR. Using 
LASSO‑Cox analysis, a PRG score was then generated and the 
relationship between the PRG score and prognosis, immune 
cell infiltration and drug sensitivity in CRC was uncovered. 
In the present study, the mutation and expression patterns of 
PRGs were analyzed and it was found that these genes were 
differentially expressed in CRC tissues compared with normal 
tissues. Based on the expression patterns of the PRGs, patients 
with CRC were divided into two subtypes (cluster A and B), 
of which cluster B had an improved prognosis and a higher 

abundance of immune cells. Next, differentially expressed 
genes between clusters A and B were identified and a PRG risk 
score closely related to the prognosis of CRC was constructed. 
Then, a nomogram for evaluating the overall survival of 
patients was constructed. Furthermore, a low PRG risk score 
was characterized by immune activation and closely related 
to the microsatellite instability‑high pattern. Additionally, the 
PRG risk score was notably correlated with drug sensitivity. 
In conclusion, the mutation and expression characteristics of 
PRGs in CRC were comprehensively analyzed and a prognostic 
PRG signature was constructed in the present study. This 
signature may predict immune cell infiltration and therapeutic 
response in CRC, providing new insights into the prognosis 
and treatment of CRC.

Introduction

Colorectal cancer (CRC) is one of the most common tumors 
worldwide, and its incidence and mortality rates are ranked 
third among all malignant tumors (1‑3). Early‑stage CRC is 
mainly treated with surgery  (4), while advanced‑stage or 
metastatic CRC is treated with chemotherapy combined with 
targeted therapy (5). Unfortunately, a number of patients with 
CRC have no obvious symptoms in the early stage of disease, 
leading to patients reaching advanced stage disease at the time 
of diagnosis, missing the best opportunity for surgery (6). 
Additionally, even after successful surgical resection, some 
patients still encounter local recurrence or distant metas‑
tasis (7). Chemotherapy and targeted therapy have improved 
the therapeutic effect to a certain extent, but there are also side 
effects and drug resistance issues (8). Therefore, it is of great 
significance to develop new biomarkers to detect early CRC, 
improve the cure rate of surgery and overcome the existing 
drug resistance mechanism to prolong the survival of patients. 
With the popularization of gene detection, CRC classification 
based on biomarker classification, such as RAS and BRAF 
mutation and microsatellite instability (MSI), contributes to 
treatment and prognosis prediction in CRC (9). Therefore, 
further exploration and improvement in biomarker classifica‑
tion is of great value to provide individualized and accurate 
treatment for patients with CRC.

Pyroptosis is a newly discovered type of programmed cell 
death (10). Contrary to apoptosis, pyroptosis is accompanied 
by changes in cell membrane permeability, water influx, cell 
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rupture and the release of inflammatory factors (11), causing a 
strong inflammatory response. Pyroptosis can be induced via 
the classical inflammasome pathway (caspase‑1‑dependent) 
and non‑classical inflammasome pathway (caspase‑4/5/11‑de‑
pendent)  (12). Both pathways lead to the cleavage and 
activation of the gasdermin (GSD) family of proteins (GSDMA, 
GSDMB, GSDMA, GSDMD and GSDME) and finally result 
in membrane pore formation and cell death (13). A previous 
study has shown that pyroptosis is involved in the development 
of malignant tumors (14). In CRC, pyroptosis not only affects 
tumor angiogenesis (15,16) but also increases chemosensi‑
tivity (17). Therefore, pyroptosis‑related genes (PRGs) may be 
biomarkers of CRC and improve treatment and prognosis.

In the present study, the genomic mutations and expres‑
sion patterns of PRGs in CRC were analyzed using datasets 
from The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) databases. Distinct pyroptosis subgroups were 
identified and then the differential genes between the different 
subgroups were obtained to generate a PRG risk score. Further 
analysis was performed to determine whether the PRG risk 
score could assess prognosis, immune cell infiltration and 
drug sensitivity in CRC.

Materials and methods

Data sources. Somatic mutation data, mRNA expression 
data and the clinical information of patients with CRC were 
downloaded from TCGA  (18) (https://portal.gdc.cancer.
gov/repository) on February 20, 2022. There were 44 normal 
tissues and 568 CRC tissues in this dataset. The GSE39582 
dataset  (19) (platform GPL570; 579  patients with CRC) 
was downloaded from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/) on February 25, 2022. Some cases with 
missing clinical information were excluded from analysis. 
The CamBat function of the ‘SVA’ package in R (version 
4.1.0; https://www.r‑project.org) was used for merging and 
correcting the TCGA and GEO datasets.

Gene expression analysis and unsupervised clustering. A 
total of 52 PRGs were pooled from previous reviews (20‑22) 
(Table SI). Gene differential analysis was performed using the 
‘limma’ package in R (version 4.1.0), with P<0.05 as the cut‑off. 
Unsupervised clustering analysis (23) was performed using 
the ‘ConsensusClusterPlus’ package (24) to identify pyrop‑
tosis‑related subgroups. The repetition was set at 1,000 times 
to guarantee the stability of classification. Principal compo‑
nent analysis (PCA) was also conducted to investigate whether 
different subgroups had different characteristics.

Clinical samples, RNA extraction and reverse transcription-
quantitative PCR (RT‑qPCR). The samples used for RT‑qPCR 
were paired CRC tissues and adjacent normal tissues from 
27 patients. These samples were collected from patients who 
underwent CRC surgery at Zhongshan People's Hospital 
(Zhongshan, China) but had not undergone chemotherapy, 
targeted therapy, immunotherapy or other internal medicine 
treatments. These tissue samples were collected from June 
2022 to May 2023, and the age range of patients was 41‑81 years 
old, with 14 females and 13 males. The inclusion criteria were 
as follows: i) All samples must have undergone pathological 

examination and be diagnosed with CRC; ii) fresh or flash 
frozen tissue samples were preferred to maintain tissue integ‑
rity and bioactivity; iii) each sample should have enough tissue 
to meet the experimental needs; iv) detailed clinical informa‑
tion available, including the patient's age, sex, tumor stage, 
grade and treatment history; and v) patients or their family 
members had signed the informed consent form for the use of 
their tissue samples in research. The exclusion criteria were as 
follows: i) Tissue samples with obvious infection, inflamma‑
tion or severe necrosis; ii) samples containing a large number 
of non‑tumor tissues (such as normal mucosa and adipose 
tissue) to reduce interference; and iii) samples from patients 
who had received radiotherapy or chemotherapy were excluded 
as these treatments may change the biological characteristics 
of tumors. The clinical information of the patients is listed in 
Table SII. The clinical staging system for patients with CRC 
used in the present study was the 8th edition of TNM staging 
system released by the American Joint Committee on cancer 
and the Union for international cancer control in 2017 (25).

Total RNA was extracted from patient tissue samples by 
TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocol. Subsequently, the 
extracted RNA was reverse transcribed using the PrimeScript 
RT reagent Kit with a gDNA Eraser (Takara Bio, Inc.), according 
to the manufacturer's instructions. The cDNAs were subjected 
to SYBR Green‑based (Thermo Fisher Scientific, Inc.) qPCR 
analysis. qPCR reactions were carried out on an ABI 7500 
Real‑Time PCR System (Applied Biosystems; Thermo Fisher 
Scientific, Inc.) with the following thermocycling conditions: 
Initial denaturation at 95˚C for 3 min; denaturation at 95˚C 
for 10 sec, annealing at 60˚C for 30 sec and extension at 72˚C 
for 30 sec, which was repeated for 40 cycles; melting curve 
analysis at 95˚C for 15 sec, 60˚C for 1 min, 95˚C for 15 sec. 
β‑actin was used as the reference gene to normalize the cDNA 
input. The relative expression levels of target genes were quan‑
tified using the ΔΔCq method (26). The primers used in the 
qPCR are listed in (Table SIII).

Gene Set Variation Analysis (GSVA). GSVA  (27) was 
performed using the ‘GSVA’ packages in R (version 4.1.0) 
to analyze the differences in biological signaling pathways 
between the different subgroups, with adjusted P<0.05 as the 
cut‑off. ‘c2.cp. Kegg.v7.4.symbols’ was downloaded from the 
MSigDB database (https://www.gsea‑msigdb.org/gsea/msigdb) 
to conduct GSVA.

CIBERSORT analysis. Initially, the gene expression matrix 
was extracted from the raw data, which included the 
gene expression levels of all samples. Subsequently, the 
CIBERSORT algorithm in R (version 4.1.0) was employed 
to estimate the abundance of 23 types of immune cells in 
each sample. The inputs for the algorithm comprised the 
gene expression matrix and the cell type‑specific gene sets. 
The output results provided the relative abundance of each 
immune cell type in every sample.

Estimation of immune cell infiltration in the tumor micro-
environment (TME). A single‑sample gene set enrichment 
analysis (ssGSEA) was conducted to compare the immune cell 
infiltration profiles between the different subgroups. In total, 
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23 types of TME‑infiltrating immune cells, such as regulatory 
T cells (Tregs), activated CD8+ T cells and macrophages, were 
obtained from the study by Charoentong et al (28). R (version 
4.1.0; https://www.r‑project.org) was used to perform ssGSEA 
analysis to calculate the abundance of each type of infiltrating 
cells in the CRC TME. The enrichment scores were used to 
indicate the degree of infiltration. ES >0.5 or ES <‑0.5 were 
selected as the threshold for significant enrichment or deple‑
tion. Adjusted P<0.05 indicated that the enrichment score was 
statistically significant.

Identification of differentially expressed genes (DEGs) in the 
different subgroups. The ‘Venn diagram’ package in R (version 
4.1.0) was used to identify the overlapping differential genes 
between the different subgroups. Then, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed to determine the molec‑
ular mechanisms of the overlapping differential genes using 
the ‘clusterProfiler’ package in R (version 4.1.0).

Kaplan‑Meier analyses. Kaplan‑Meier survival analyses 
were performed using R (version 4.1.0) to evaluate the asso‑
ciation between gene expression levels and patient survival. 
The median expression level of the target gene was used as 
the cut‑off to classify patients into the high‑expression and 
low‑expression groups. Patients with gene expression levels 
higher than or equal to the median were classified as the 
high‑expression group, while those with expression levels 
below the median were classified as the low‑expression 
group.

Identification of prognostic genes and the generation of a 
risk score model. A univariate Cox regression analysis was 
performed to identify genes that were significantly associated 
(P<0.01) with the survival of patients with CRC. TCGA and 
GEO data were integrated and randomly divided into the 
training and test cohorts. The risk score model was constructed 
using LASSO analysis and the ‘glmnet’ R package. The risk 
score was calculated as follows: Risk score= Σi

 n=1 vi x ci, where 
n indicates the quantity of genes, vi indicates the expression 
of genes and ci indicates the regression coefficient of genes i. 
According to the median risk score of the training cohort, both 
cohorts were divided into the high‑risk and low‑risk groups. 
Then, receiver operating characteristic (ROC) curved were 
used to assess the prognostic practicability of the risk score. 
Using the ‘regplot’ and ‘survival’ packages in R, a nomo‑
gram was constructed based on the clinical characteristics to 
predict the patient survival time (1‑, 3‑ and 5‑year survival). 
Calibration curves were produced using the ‘rms’ package in 
R to verify the nomogram.

Relationship between the risk score and drug sensitivity. 
Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.
cancerrxgene.org/) is a database providing the relationship 
between the antitumor drug response and genomic features. 
According to the list of drugs, the ‘PRRophetic’ package in R 
was used to construct the ridge regression model. By analyzing 
the expression profiles based on the drug IC50, the relationship 
between the risk score and the sensitivity to antitumor drugs 
was shown.

ESTIMATE analysis. All analyses were conducted in the R 
(version 4.1.0; R Core Team) environment. The main R pack‑
ages used include estimate and ggplot2. The estimate package 
was utilized to calculate the ImmuneScore, StromalScore and 
ESTIMATEScore, while the ggplot2 package was employed 
for data visualization.

Statistical analysis. All statistical analyses were performed 
using R (version 4.1.0). The ‘maftools’ package was used to 
analyze the mutation frequency of genes. The ‘RCircos’ package 
was used to analyze the copy number variation landscape of 
PRGs in 23 pairs of chromosomes. In the qPCR experiment, 
the comparison between two groups was performed using a 
paired two‑sample t‑test, while the comparison between two 
groups in other analyses was conducted using an unpaired 
two‑sample t‑test. One‑way ANOVA was used to compare 
three or more groups, followed by Bonferroni correction as 
the post hoc test. All P‑values were two‑sided, and P<0.05 was 
considered to indicate a statistically significant difference.

Results

Landscape of the genetic variation of the PRGs in CRC. A 
flow chart of the present study is presented in Fig. S1. Using 
the mutation data from TCGA, the somatic mutations and copy 
number variations (CNVs) of 52 PRGs in CRC were analyzed. 
Among 399 patients, 297 exhibited PRG mutations, with a 
frequency of 74.44% (Fig. 1A). Among them, TP53 (55%) had 
the highest mutation frequency, followed by NLRP7 (6%). In 
total, 8 PRGs, including CASP6, PRKACA, PYCARD, TNF, 
CHMP4A, CYCS, GSDME and PJVK, did not show any 
mutations in the CRC samples. The location of CNVs of PRGs 
on chromosomes is shown in Fig. 1B. The CNV frequency 
of PRGs was also analyzed (Fig. 1C), and it was found that 
the copy number of most genes of the GSD family, such as 
GSDMA, GSDMB, GSDMC and GSDMD, was amplified, 
while CASP9, CASP3, IRF2 and CHMP7 were mainly 
deleted. Next, the mRNA expression levels of 52 PRGs were 
investigated (Fig. 1D). Compared with normal tissues, most 
PRGs with increased CNV, such as GSDMA and GSDMC, 
showed significantly higher expression in CRC samples, and 
an opposite pattern was observed for genes with decreased 
CNV, such as CASP9 and IRF2. However, for certain PRGs, 
such as GSDMB and TP53, the alterations of CNV may not 
be the main factor affecting their expression, as these PRGs 
with increased CNV had significantly decreased expression in 
tumor tissues. These findings suggest an uncertain association 
between the gene mutational intensity and expression level.

Generation of pyroptosis subgroups in CRC. The data from 
1,089  patients with CRC in TCGA and GSE39582 were 
integrated to investigate the potential biological function 
of PRGs (Table  SIV). Univariate Cox and Kaplan‑Meier 
analyses were conducted to reveal the prognostic values of 
the PRGs (Table SV). Then, according to the expression level 
and prognostic value of the PRGs, a correlation network was 
constructed (Fig. 2A and Table SVI). There were 7 PRGs 
(GZMB, CYCS, CASP3, CASP1, CASP6, IRF1 and NLRP1) 
with statistical significance in the univariate and Kaplan‑Meier 
analyses (all P<0.05; Fig. S2 and Table SVII). Generally, if the 

https://www.spandidos-publications.com/10.3892/ol.2024.14835
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Figure 1. Genetic mutational and expression landscape of PRGs in CRC. (A) The waterfall plot demonstrates the mutation profiles of 52 PRGs in the TCGA COAD‑READ. 
(B) The location of CNVs of 52 PRGs on chromosomes in the TCGA‑COAD. (C) CNV frequency of PRGs in the TCGA COAD‑READ. (D) The mRNA expression 
levels of 52 PRGs between normal and CRC samples in the TCGA COAD‑READ and GSE39582 dataset. **P<0.01, ***P<0.001. CRC, colorectal cancer; CNV, copy 
number variation; PRGs, pyroptosis‑related genes; TCGA, The Cancer Genome Atlas; COAD, colonic adenocarcinoma; READ, rectal adenocarcinoma.
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upregulation of gene expression leads to a worse prognosis, 
the gene is termed a risk factor. Conversely, if the upregula‑
tion of a gene expression leads to an improved prognosis, 
the gene is termed a favorable factor. NLRP1 was the only 
risk factor, and increased expression of NLRP1 worsened 

the prognosis of CRC. By contrast, increased expression of 
GZMB, CYCS, CASP3, CASP1, CASP6 and IRF1 predicted 
a more favorable prognosis. The mRNA expression levels 
of the 7 genes were also verified by RT‑qPCR using clinical 
samples obtained from Zhongshan People's Hospital (paired 

Figure 2. Generation of PRG subgroups in CRC. (A) The correlation network of PRG interactions in The Cancer Genome Atlas cohort. (B) Analysis of 
the mRNA relative expression of the 7 genes by reverse transcription quantitative PCR (n=30). (C) The consensus matrix heatmap of consensus clustering 
analysis (k=2). (D) PC analysis for the expression of PRGs indicating a notable difference in clusters A and B. (E) Kaplan‑Meier analysis of clusters A and B. 
(F) The expression of the 7 PRGs and the clinicopathological variables of clusters A and B. *P<0.05, **P<0.01, ***P<0.001. PCA, principle component; PRGs, 
pyroptosis‑related genes.

https://www.spandidos-publications.com/10.3892/ol.2024.14835
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CRC tissues and adjacent normal tissues; n=30) (Fig. 2B). It 
was observed that, compared with the adjacent normal tissue, 
GZMB expression was elevated, while the expression of the 
other 6 genes (NLRP1, CYCS, CASP3, CASP1, CASP6 and 
IRF1) was decreased. Based on the expression patterns of 
the 7 PRGs, a consensus clustering and PCA analysis were 
performed. Notably, patients were clustered into two subtypes 
(clusters A and B; Fig. 2C and D). Furthermore, there were 
statistically significant differences in the prognosis of patients 
between clusters A and B (Fig. 2E). The differences in clinical 
features between the two groups of patients were also analyzed 
(Fig. 2F). It was found that there were no significant differ‑
ences in the clinical characteristics between the two groups of 
patients, but the PRGs in cluster B were more inclined towards 
high expression, especially GZMB, IRF1, CASP1, CASP3 and 
CASP6.

Difference in the TME between the PRG subgroups. A 
GSVA was conducted to investigate the differences in the 
biological signaling pathways of the PRG subgroups. Notably, 
cluster B was enriched in immune‑associated pathways, such 
as ‘NOD‑LIKE RECEPTOR SIGNALING PATHWAY’, 
‘T CELL RECEPTOR SIGNALING PATHWAY’, 
‘CHEMOKINE SIGNALING PATHWAY’ and ‘NATURAL 
KILLER CELL‑MEDIATED CYTOTOXICITY’ (Fig. 3A). 
Therefore, we speculated that cluster B may have a more 
favorable prognosis than cluster A due to the rich immune 
cell infiltration in its TME. The CIBERSORT algorithm was 
used to estimate the infiltration levels of 23 types of immune 
cells and verify our hypothesis. As expected the abundance of 
almost all immune cells was significantly increased in cluster 
B (Fig. 3B).

Identification of DEGs. Considering that phenotypic changes 
are closely related to differential expression of genes, the 
expression levels of all genes were analyzed using the ‘limma’ 
package and 76 DEGs between clusters A and B were obtained 
(Table  SVIII). Next, functional enrichment analysis was 
conducted to explore the underlying biological function of 
these DEGs. Both GO and KEGG analyses showed that DEGs 
were mainly enriched in immunomodulation‑associated 
pathways (Fig. 4A and B). Then, univariate Cox analysis was 
performed and 9 DEGs (P<0.01) with significant effects on 
survival were identified (Table SIX). A consensus clustering 
analysis was performed and patients were divided into three 
gene clusters (clusters A‑C) to investigate the specific prog‑
nostic value of the 9 DEGs (Fig. S3). It was found that patients 
in cluster A had the shortest OS (Fig. 4C). The expression of 
most PRGs was significantly different in the three gene clus‑
ters (Fig. 4D). The relationship between the three gene clusters 
and clinicopathologic features is shown in Fig. 4E.

Construction and validation of the PRG score. LASSO and 
multivariate Cox analysis were conducted for the 9 pyroptosis 
cluster‑associated prognostic DEGs to construct an optimal 
PRG score. In total, 5 DEGs, including GZMB, CASP1, 
LINC00261, MMP3 and CKMT2, were used (Fig. S4). These 
5 genes were not only statistically significant, but also contrib‑
uted the most in the model, which may more accurately reflect 
the survival risk of the patients. The reason why 9 genes were 

not used is that reducing the number of genes can reduce the 
complexity of the model, avoid overfitting and making the 
model more powerful in predicting new data. Additionally, 
5 genes may mean that the model is easier to understand and 
apply, which is convenient for practical operation in clinical 
practice. The formula used for constructing the PRGs score 
was as follows: Risk score=(expression of GZMB x ‑0.0990) + 
(expression of CASP1 x ‑0.1354) + (expression of LINC00261 x 
‑0.2266) + (expression of MMP3 x ‑0.0849) + (expression of 
CKMT2 x ‑0.1529). The distribution of patients with CRC in 
the two pyroptosis clusters, three gene clusters and two PRG 
score groups is shown in Fig. 5A. It was found that there 
were significant differences in the PRG scores between the 
different PRG clusters and gene clusters. Consistent with the 
results of the survival analysis, the PRG risk scores of PRG 
cluster A and gene cluster A were the highest (Fig. 5B and C), 
suggesting that patients in these clusters had a higher risk of 
death (Fig. 5D). Furthermore, Kaplan‑Meier analysis of the 
training cohort also confirmed that patients with high PRG 
risk scores had a worse prognosis (Fig. 5D), and the area 
under the curve (AUCs) for 1‑, 3‑ and 5‑year OS were 0.680, 
0.721, and 0.698, respectively (Fig. 5E), which indicates that 
the model has good prediction performance. A risk plot of the 
PRG score was also generated. With an increase in PRG risk 
score, the OS of patients with CRC decreased and mortality 
increased (Fig. 5F). The same method was used to calculate 
the PRG risk score of the entire cohort (Fig. S5A‑C) and the 
test cohort (Fig. S5D and E) to verify the robustness of the 
PRG risk score. Based on the median score of the training 
cohort, patients in the test cohort and the entire cohort were 
assigned to the high‑risk and low‑risk subgroups. Similar 
results were obtained in the training group, with good AUC 
values (Fig. S5B and E). These findings indicate that the PRG 
risk score has a great prognostic value for patients with CRC.

Constructing a nomogram for patients with CRC. As the PRG 
risk score was closely related to the OS of patients with CRC, 
by integrating the PRG risk score and clinical parameters, a 
nomogram was constructed to predict the 1‑, 3‑ and 5‑year 
OS of patients with CRC (Fig. 5G). The calibration curve of 
the nomogram is shown in Fig. 5H, implying great accuracy 
between actual observations and predicted values. Decision 
curve analysis indicated that the nomogram curve was higher 
than the other curves, suggesting that within the high‑risk 
threshold range (0 to 1), the prediction results of the nomogram 
model may better guide clinical decision‑making (Fig. 5I).

Relationship between PRG risk score and the TME. The most 
important components of the TME are stromal cells and immune 
cells, and the immune score calculated using the ESTIMATE 
algorithm is an important index to assess the TME (29,30). The 
correlation between the PRG risk score and the immune score was 
analyzed. It was noted that the PRG risk score was inversely asso‑
ciated with the immune score (Fig. 6A), suggesting that the PRG 
risk score could be used to evaluate the abundance of immune 
cells in the TME of CRC. In addition, it was demonstrated that 
the PRG risk score was positively correlated with the abundance 
of M0 macrophages Tregs, M2 macrophages, memory B cells and 
follicular helper T cells, whereas it was negatively correlated with 
the abundance of naive B cells, activated dendritic cells, resting 
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natural killer cells, plasma cells, resting memory CD4+ T cells 
and activated memory CD4+ T cells (Fig. 6B). This suggests 
that CRC tumors with high PRG risk scores may have a tumor 
immune microenvironment more prone to immune evasion. 

The correlation between GZMB, CASP1, LINC00261, MMP3 
and CKMT2 and immune cell infiltration was also explored. 
Most immune cells were closely related to the 5 genes (Fig. 6C). 
Among these 5 genes, the expression levels of CASP1, GZMB 

Figure 3. Tumor microenvironment differences in the PRG subgroups. (A) The heatmap of Gene Set Variation Analysis result, showing the active biological 
pathways of clusters A and B. (B) The infiltrating levels of 23 immune cells in different subpopulations. *P<0.05, **P<0.01, ***P<0.001. PRG, pyroptosis‑related 
gene; TCGA, The Cancer Genome Atlas.

https://www.spandidos-publications.com/10.3892/ol.2024.14835
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and MMP3 were significantly correlated with almost all immune 
cells, suggesting that they are most critical in CRC immune cell 
infiltration. In particular, GZMB showed a strong positive corre‑
lation with the activated memory CD4+ T cells.

Relationship between the PRG risk score and MSI. A number of 
studies have demonstrated that MSI is associated with the efficacy 
of immune checkpoint inhibitors. Patients with MSI‑high can 
benefit from immune checkpoint inhibitors (31‑34). The results 

Figure 4. Screening out DEGs and revealing their regulatory functions. (A) Gene Ontology and (B) Kyoto Encyclopedia of Genes and Genomes analyses 
demonstrated the abundance of immunomodulation‑associated pathways. (C) Kaplan‑Meier analysis of gene clusters A, B and C in the TCGA COAD‑READ 
and GSE39582 cohort. (D) PRGs have significant expression differences in the three different clusters. (E) The relationship between the three gene clusters and 
clinicopathological features. *P<0.05, **P<0.01, ***P<0.001. PRG, pyroptosis‑related gene; TCGA, The Cancer Genome Atlas; COAD, colonic adenocarcinoma, 
READ, rectal adenocarcinoma.
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suggest that patients with high PRG risk scores are more likely 
to have microsatellite stability (Fig. 7A and B). These findings 
indicate that patients with low PRG risk scores are more likely 

to benefit from immune checkpoint inhibitors. Consistent with 
the results of the MSI analysis, correlation analysis indicated that 
the PRG risk score is negatively associated with tumor mutation 

Figure 5. Generation of the PRG risk score and further validation. (A) The relationship between the two pyroptosis clusters, three gene clusters and the two 
PRG risk score groups. (B) PRG risk scores of PRG clusters A and B, as well as (C) gene clusters A, B and C. (D) Kaplan‑Meier analysis of the training cohort. 
(E) The receiver operating characteristic curves showing the AUCs of 1‑3‑, and 5‑year OS. (F) Risk plot of the PRG risk score. (G) A nomogram for predicting 
the prognosis of patients with colorectal cancer. (H) The calibration curve of the nomogram. (I) Decision Curve Analyses to evaluate the clinical value of the 
nomogram model. AUC, area under the curve; OS, overall survival; PRG, pyroptosis‑related gene; T, tumor; N, node; M, metastasis.
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burden (Fig. 7C), although the P‑value was not statistically signifi‑
cant. The somatic mutation distribution of different patterns of 
PRG risk scores in TCGA dataset were also investigated. The 
results showed that APC, TP53, KRAS and PIK3CA muta‑
tions were more common in the high PRG risk score subgroup 
(Fig. 7D and E). Previous studies (35‑37) have shown that these 4 
genes are the key genes in the development of CRC.

Drug sensitivity analysis. The IC50 values of 138 antitumor 
drugs in TCGA database were measured to determine 
whether the PRG risk score could predict the response to 
antitumor drugs. It was found that patients with low PRG risk 
scores were sensitive to cisplatin, paclitaxel, gemcitabine, 
sorafenib, camptothecin and Epothilone.B. (Fig.  8A‑F), 
while patients with high PRG risk scores were sensitive to 

Figure 6. Assessment of the TME in distinct groups. (A) The relationship between the PRG risk score and the immune score. The immune score was calculated with 
the ESTIMATE algorithm. (B) The correlation of the PRG risk score with the immune cell types. (C) The correlation between the 5 genes in the PRG risk score 
construction and the infiltration of immune cells.  *P<0.05, **P<0.01, ***P<0.001. PRG, pyroptosis‑related gene; TME, tumor microenvironment; NK, natural killer.
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imatinib, dasatinib, shikonin and CGP.60474 (VEGFR‑2 
inhibitor) (Fig. 8G‑J).

Discussion

Pyroptosis is an important type of cancer cell death  (31). 
Different from apoptosis and autophagy, pyroptosis is often 
followed by strong immune and inflammatory responses, 
implying that PRGs may markedly modulate the tumor 
immune microenvironment (6,23). A previous study reported 
that pyroptosis has a complex effect on cancer, which varies 
in different tissues and genetic backgrounds  (38). In liver 
cancer, 17 β‑estradiol was found to have antitumor effects by 
activating the NLRP3 inflammasome and pyroptosis (39). In 
gastric cancer, a previous study showed that PRGs can regulate 
tumor‑related signaling pathways and modulate the TME (40). 
Tang et al (16) reported that pyroptosis plays a pivotal role in 
tumor cell growth and metastasis in CRC. Miguchi et al (40) 
found that TGFBR2 can upregulate GSDME expression, 
which contributes to tumor cell proliferation and tumori‑
genesis. Therefore, accumulative evidence has demonstrated 

that the expression levels of PRGs significantly affect cancer 
progression. However, the biological function of most PRGs in 
CRC is still unknown. Therefore, it is necessary to clarify the 
mutation/expression profiles and functional characteristics of 
PRGs in CRC.

In the present study, the transcriptional alterations and 
expression patterns of 52 PRGs in CRC were examined using 
data from TCGA and GEO datasets. Although a certain 
correlation between the mutational intensity and expression 
level was not found, most PRGs were abnormally expressed 
in patients with CRC and GZMB, CYCS, CASP3, CASP1, 
CASP6, IRF1 and NLRP1 were related to prognosis. Using 
the unsupervised clustering method, patients with CRC were 
divided into two clusters (clusters A and B). A significant 
difference was observed in the clinical outcome, immune 
cell infiltration and cell signaling pathways between the two 
clusters. Based on the DEGs of PRG clusters A and B, three 
gene clusters (gene clusters A, B, and C) with different clinical 
features were obtained. Furthermore, the PRG risk score was 
generated to differentiate between pyroptosis subgroups. Both 
cluster A and gene cluster A, with the highest PRG risk score, 

Figure 7. Relationship between the PRG risk score and MSI/TMB. (A and B) Relationships between the MSI pattern and the PRG risk score in the TCGA 
COAD‑READ. (C) Relationships between the TMB pattern and the PRG risk score in the TCGA‑COAD. (D and E) Waterfall plots showing somatic mutation 
of the high and low PRG risk score subgroups in the TCGA COAD‑READ. PRG, pyroptosis‑related gene; TMB, tumor mutational burden; MSI, microsatellite 
instability; ‑L, low; ‑H, high; MSS, microsatellite stability; TCGA, The Cancer Genome Atlas; COAD, colonic adenocarcinoma; READ, rectal adenocarcinoma.
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had the poorest clinical outcome, suggesting that a high PRG 
risk score may indicate a poor prognosis in CRC. The findings 
of the present study also confirmed that the PRG risk score 
was closely linked to the clinicopathological features of CRC. 
The predictive value of the PRG risk score was validated by 
ROC for 1‑, 3‑ and 5‑year OS. A nomogram to estimate the 1‑, 
3‑ and 5‑year OS of patients with CRC was also established 
by integrating the PRG risk score and clinical parameters. 

The calibration curve showed that this nomogram had great 
accuracy.

Similar to the findings of the present study, a recent 
study has indicated that pyroptosis can lead to cell rupture, 
proinflammatory cytokine release and immune cell infiltra‑
tion (41). In the present study, cluster B was a population 
with upregulated PRGs and a more favorable survival. 
According to the results of the GSVA, cluster B was enriched 

Figure 8. Drug sensitivity analysis. (A‑F) Sensitive drugs for patients with low PRG risk score CRC. (G‑J) Sensitive drugs for patients with high PRG risk score 
CRC.CRC, colorectal cancer; PRG, pyroptosis‑related gene.
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in signaling pathways involved in inflammation and immune 
response, such as natural killer cell‑mediated cytotoxicity, 
nod‑like receptor signaling pathway, T cell receptor signaling 
pathway and chemokine signaling pathway. Consistently, 
the abundance of almost all immune cells was significantly 
increased in cluster B, indicating that upregulation of 
PRGs can activate inflammatory signaling pathways and 
promote immune cell infiltration. GO and KEGG analyses 
of gene cluster‑related DEGs reported similar results. The 
relationship between the PRG risk score and the immune 
score was also analyzed to elucidate the correlation between 
pyroptosis and the immune response and it was observed 
that patients with CRC and low PRG risk scores had higher 
immune scores. Since genes related to PRG risk score were 
all favorable factors, a low PRG risk score predicted high 
PRG expression. The correlation between the PRG risk score 
and the tissue infiltration of each type of immune cell was 
also analyzed. It was found that a high PRG risk score was 
positively associated with the abundance of follicular helper 
T cells, M0 macrophages, M2 macrophages, memory B cells 
and Tregs. M2 macrophages are a type of anti‑inflammatory 
macrophage that primarily inhibit immune responses 
by secreting anti‑inflammatory factors. In the TME, M2 
macrophages can promote tumor growth and angiogenesis 
while suppressing antitumor immune responses (42). Tregs 
are a type of T cell with immunosuppressive functions, 
primarily maintaining immune balance by inhibiting the 
function of other immune cells. In the TME, Tregs can 
suppress antitumor immune responses, thereby promoting 
tumor growth  (43). A previous study has reported that a 
high abundance of Tregs can inhibit the antitumor immune 
response, leading to a worse prognosis (44). These findings 
are consistent with the findings of the present study and 
explain why high PRG risk scores are associated with poor 
clinical outcomes. Pyroptosis is closely correlated with 
immune cell infiltration and the PRG risk score may predict 
the tumor immune microenvironment in CRC.

Antitumor drug resistance is a major cause of progression 
and mortality in patients with CRC  (45,46). Current anti‑
neoplastic drugs have limited efficacy; therefore, identifying 
patients who are sensitive to antitumor drugs can improve 
the efficacy of treatment and reduce resistance. In the present 
study, by integrating the PRG risk score with drug‑related data 
from the GDSC database, it was found that patients with low 
PRG risk scores had an improved response to cisplatin, pacli‑
taxel, gemcitabine, sorafenib, camptothecin and Epothilone.B. 
By contrast, patients with a high PRG risk score may have 
an improved response to imatinib, dasatinib, shikonin and 
CGP.60474 (a VEGFR‑2 inhibitor).

There have been studies that have reported pyrop‑
tosis‑related prognostic models for CRC; however, only one 
model also included the MMP3 gene, while the other genes 
were different or similar. These previous studies generally 
have limitations such as a small sample size, few included 
genes and no experimental validation (47‑49). The present 
study solves the aforementioned limitations and provides a 
more accurate prognostic model for CRC treatment. However, 
the present study had some limitations. First, the present study 
employed retrospective data from public databases and the 
accuracy of the results needs to be verified by prospective 

studies. Second, further experiments are needed to explore the 
relationship between the PRG risk score and immune cell infil‑
tration in CRC. Third, application of the PRG risk score has 
certain limitations. CRC has a high degree of heterogeneity 
and there may be significant differences in gene expression 
patterns between different individuals, which may lead to 
large differences in the performance of the model in different 
patients. The changes in gene expression levels over time are 
very dynamic, and a single detection may not capture these 
dynamic changes, which can affect the accuracy of model 
predictions. Different genetic testing platforms and technolo‑
gies may produce different results. For instance, there may be 
differences in the results of RNA‑sequencing and microarray 
chips, which can affect the consistency and reproducibility 
of the model. Additionally, the relatively high cost of genetic 
testing may limit its widespread application in resource‑limited 
areas. In terms of potential clinical application value, the PRG 
risk score can help doctors to identify high‑risk patients and 
develop personalized treatment plans. Based on the correlation 
between the PRG risk score and the tumor immune microen‑
vironment, the state of the tumor immune microenvironment 
could also be preliminarily determined by the PRG risk score 
to guide the decision‑making in immunotherapy. In addition, 
the PRG risk score can also be used for disease monitoring, 
regularly monitoring the changes in the expression of pyrop‑
tosis genes, so as to understand the progress of the disease in a 
timely manner and provide a basis for adjusting the treatment 
plan.

In conclusion, the mutation and expression characteris‑
tics of PRGs in CRC were analyzed and a prognostic PRG 
signature was constructed. This signature may help estimate 
the immune cell infiltration and therapeutic response in CRC. 
Thus, this signature may advance the treatment and prognosis 
evaluation of CRC.
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