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Abstract
The advent of high-resolution imaging has made data on 
surface shape widespread. Methods for the analysis of 
shape based on landmarks are well established but high-
resolution data require a functional approach. The starting 
point is a systematic and consistent description of each 
surface shape and a method for creating this is described. 
Three innovative forms of analysis are then introduced. 
The first uses surface integration to address issues of regis-
tration, principal component analysis and the measurement 
of asymmetry, all in functional form. Computational issues 
are handled through discrete approximations to integrals, 
based in this case on appropriate surface area weighted 
sums. The second innovation is to focus on sub-spaces 
where interesting behaviour such as group differences are 
exhibited, rather than on individual principal components. 
The third innovation concerns the comparison of individual 
shapes with a relevant control set, where the concept of a 
normal range is extended to the highly multivariate setting 
of surface shape. This has particularly strong applications 
to medical contexts where the assessment of individual pa-
tients is very important. All of these ideas are developed 
and illustrated in the important context of human facial 
shape, with a strong emphasis on the effective visual com-
munication of effects of interest.
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1  |   INTRODUCTION

Statistical shape analysis is a research topic which has seen very substantial growth and development 
in recent years. Early work in this area focused on representations of shape through carefully chosen 
landmarks, as point locations with an interpretation which corresponds across different shapes. Dryden 
and Mardia (2016) provide a very comprehensive description of methods for the analysis of landmarks, 
but the later chapters of the book also indicate the much wider array of data types which are becoming 
available, driven by rapid advances in imaging technology. A particular example is the increasing avail-
ability of sensors which employ techniques such as laser scanning or stereo-photogrammetry to create 
high-resolution data on surface shape in three dimensions. This has a very wide variety of applications 
and it is the focus of the present paper. Figure 1 shows an image of a human face as an example of the 
kind of three-dimensional (3D) surface data which is now easily obtainable.

Single instances of 3D surface data can be displayed in a variety of ways; in particular, the rgl 
package (Adler and Murdoch, 2019) is an indispensable tool for those from the R (R Core Team, 2019) 
community, as it provides access to the OpenGL industry-standard tools for 3D display. However, the 
effective display of patterns and variation in collections of 3D objects is more challenging. Bowman 
and Bock (2006) gave some discussion of this for 3D points and curves, but the aim of the present 
paper is to provide new tools for the modeling and visualisation of samples of 3D surface data.

The starting point is a description of an individual surface which has a consistent meaning across 
all the surfaces in the data set. This can be approached in different ways and the particular method 
adopted here is described in Section 2. Some obvious issues of analysis then commonly arise. These 
include the need for methods to:

•	 register the surfaces to a common co-ordinate system;
•	 characterise the variation present in a sample of surfaces;
•	 compare surface shapes across groups;
•	 assess the surface shape of an individual against a relevant control set.

These problems are tackled here from a functional perspective. Adaptations of standard methods of 
Procrustes analysis are introduced in Section 2, using a metric based on an approximated surface 
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F I G U R E  1   An example of a 3D facial image, at different orientations
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integral rather than individual point locations. Non-linear registration through warping is also de-
scribed as a means of displaying the results of analysis at higher resolution, for visual effect. Basic 
methods of visualising surface differences are also reviewed. Section 3 discusses the use of principal 
components in exploring the variation in surface data and in comparing groups. Again a functional 
perspective is adopted, based on surface integration. This section also discusses how effects can be 
visualised by characterising the shape changes associated with appropriate subspaces, rather than 
through examination of individual components. Section 4 addresses the situation where there is a 
need to assess the characteristics of individual surfaces, and in particular of any shape features which 
are not consistent with control shape. Some final discussion and reflection is provided in Section 5.

The methods proposed in the paper are illustrated throughout on images of human facial shape. 
There is a strong emphasis on the creation of visual displays which communicate patterns in the 
data, the evidence and nature of group differences, and the distinctive characteristics of individuals, 
as clearly as possible. Graphics are provided in static form but animations are also available in the 
Supplementary Information.

2  |   SOME FUNDAMENTAL TOOLS FOR SURFACES

2.1  |  Facial models

A model for an individual surface should provide a structured representation of shape whose com-
ponents have a consistent interpretation across the other surfaces in the data set. This then allows the 
investigation of pattern and variation in shape. Landmarks satisfy this criterion and so, while the infor-
mation they carry is limited, they have often been used as the starting point for more complex models. 
(Hammond et al, 2004; Mao et al, 2006; Paulsen and Hilger, 2003) give examples of this approach 
where a template of a human face is ‘warped’ onto an observed image. Landmarks on the template 
are transformed in a non-linear manner to match those on the image exactly, with the surface of the 
template then adjusted further to improve the match with the surface of the image. This might be done 
by locating closest points or by matching the characteristics of local surface curvature. The resulting 
transformed template then provides a model for the surface whose meaning corresponds across all the 
images in the data set.

In an alternative approach, Vittert, Bowman and Katina (2019) took the view that ridge and val-
ley curves provide the key information on shape, as these capture the locations where curvature is 
strongest. The two left-hand images in Figure 2 give examples of facial curvature, here in the form 
of Gaussian curvature and shape index; see Appendix A for details. Curvature information can then 
be used to fit a model consisting of a set of ridge, valley or other geodesic curves, with landmarks as 
end-points. A full surface representation can easily be constructed by interpolation across the surface 
patches bounded by these curves, although Vittert, Bowman and Katina (2019) give examples where 
the focused representation based on curves alone can be more informative. An example of the result-
ing facial model is shown in the right-hand panel of Figure 2, which uses colour and size to indicate 
the hierarchical nature of the information captured in landmarks, curves and surface patches.

2.2  |  Registration

A key issue in the analysis of shape is that the observed images do not necessarily lie in a common 
co-ordinate system. The process of data capture does not usually give each image the same origin or 
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orientation. The relative sizes of the images may also be viewed as unimportant from a shape perspec-
tive. It is therefore necessary to remove these extraneous aspects before statistical analysis. Different 
approaches to this are outlined below. These are described in the context of transforming an image X 
to match a reference image Y, where X and Y are J × 3 matrices whose rows give the 3D positions of 
a fitted model in the discretised form of J point locations. The process of transforming X to match Y 
is referred to as registration.

2.2.1  |  Procrustes methods

A very effective approach is to find the rotation matrix Γ, scaling parameter � and translation vector � 
which bring X as close to Y as possible. Adopting a similar notation to Dryden and Mardia (2016, chapter 
7), the method is expressed as:

where � �Z � � =
√

trace(ZTZ) is the Euclidean norm, X and Y are assumed to have centroid 0, the column 
vectors xj, yj correspond to the jth rows of X and Y, and 1J denotes a column vector containing J 1’s. This 
is a standard example of an approach referred to as Procrustes registration. The ideas and methods of im-
plementation involved are comprehensively described by Dryden and Mardia (2016, chapter 7).

These methods arose in the context of shape representations based on landmarks, often well-separated spa-
tially. The representations we are now dealing with may have a discrete point-based form, for convenience, 
but they represent a continuous surface. This leads immediately to a functional data analysis perspective, as 
described by Ramsay and Silverman (1997). In the current setting, functional registration is achieved through

(1)min
�,Γ,�

||Y−�XΓ−1J�
T||2 =min

�,Γ,�

J∑

j= 1

||yj−�ΓTxj−�||2,

(2)min
�,Γ,�∫SY

||y−�ΓTx(y)−�||2dy,

F I G U R E  2   The two left-hand images show plots of Gaussian curvature and shape index. The crosses at the 
end of the Gaussian curvature colour scale indicate that exceptionally high values have been truncated. The right-
hand image shows a fitted facial model, with landmarks (red), anatomical curves (blue) and surface patches (black) 
superimposed on an observed image (grey) [Colour figure can be viewed at wileyonlinelibrary.com]
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where SY denotes the surface indexed by Y. The function x(y) indexes the point x on the surface SX which 
has geometrical correspondence with the point y on surface SY. This correspondence is established by the 
model, which uses the same geometrical features to characterise each surface and so, for example, the set 
of points which provide a discrete representation of each nose ridge have a point-by-point correspondence. 
The integral can now be approximated in discrete form as

where the weight aj gives the surface area which surrounds point yj and A is a diagonal matrix containing 
the aj.

The weights aj can be calculated easily from a surface triangulation associated with the discrete repre-
sentation of each model. If 1,…, T denote the set of surface triangles and j is the set of indices of trian-
gles which have xj as a vertex and |·| denotes area, then the weights are simply aj =

1

3

∑
t∈j

�t �. The divisor 
3 apportions one third of the area of each triangle to each of its three vertices. Clearly the approximation 
accuracy of the integral will increase with the density of the discrete representation. More sophisticated 
numerical methods are available; see Reeger, Fornberg and Watts (2016), for example.

The effect of the weighted registration (3) is substantially to remove the effect of the particular 
form of discrete representation used, together with its associated triangulation, by approximating the 
surface integral. In contrast, the unweighted version (1) has the undesirable property that it will give 
greater weight to those locations where the discrete representation happens to be more dense. It is not 
possible to create a discrete representation with uniform spacing across an arbitrary manifold.

Expansion of the right-hand side of expression (3), following the derivation of the unweighted case 
in Dryden and Mardia (2016, chapter 7), shows that the minimum is achieved when the matrices AX 
and AY are column-centred, with

where YTAX = � �
√

AY � � � �
√

AX � � VΛUT, with Λ diagonal. Brignell, Dryden and Browne (2015) dis-
cuss more complex forms of weighting for other purposes.

The case of matching one shape X to another Y is referred to as ordinary Procrustes registra-
tion. This provides the building block for generalised Procrustes registration which seeks a common 
registration of multiple shapes X1,…, Xn. The aim now is to minimise the sum of the deviations of 
transformed shapes from a common mean surface SM with discrete model representation M. This can 
be expressed in functional form as

with the transformation parameters � i,Γi, � i;i = 1,…, n. The weights in the diagonal matrix A are now 
the areas surrounding the vertices of the mean shape M. Following again the general structure out-
lined in Dryden and Mardia (2016, chapter 7), and beginning with each AXi column centred, minimi-
sation can be achieved by successive ordinary weighted Procrustes registration of the adjusted shapes 

(3)
J�

j= 1

aj��yj−�ΓTxj−���2 = ��
√

AY−�
√

AXΓ−
√

A1J�
T��2,

�̂ = 0,

Γ̂= UVT,

�̂= tr
{

YTAXΓ̂
}
∕ tr

{
XTAX

}
,

n�

i= 1
∫SM

��m−� iΓ
T
i
xi(m)−� i��2dm

≈

n�
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��
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T
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XP
i
= � iXΓi + 1J�

T
i
 onto the mean M, which itself is estimated simply as the average of the XP

i
. A size 

constraint is required to ensure that the solution does not degenerate to 0. From a functional perspective, 
size is expressed in the surface area of each shape and this is easily calculated in discrete form as the trace 
of A. Notice that integration is carried out over the mean surface SM, so that A changes with each iteration.

Figure 3 provides an illustration from a sample of 61 males and 69 females, all adults of UK or-
igin, where Procrustes registration has been applied to each sex separately and the resulting means 
matched by a further Procrustes step. Human sexual dimorphism has been extensively studied (see, 
e.g. Armann and Balthoff, 2012; Bruce et al, 1993; Claes et al, 2012; Wilkinson, 2004). Figure 3 
highlights the key differences on average, with males exhibiting greater prominence in nasal, chin and 
brow ridge areas while females correspondingly exhibit more prominent cheeks.

This simple example also raises a key issue of visualisation, namely how to compare two 3D sur-
faces most effectively. The Figure adopts the simple strategy of superimposing the surfaces which 
gives a clear indication of which of the two shapes is more prominent in each area. Other strategies 
will be considered in Section 3. Colour choice is also an important aspect of visualisation and this is 
discussed very helpfully by Zeileis, Hornik and Murrell (2009), with effective solutions for comparing 
groups and displaying values on a continuous scale, including the presence of a reference value. These 
colour choices have been adopted through the paper.

In order to avoid noisy areas of the image around the eyes and nostrils, the facial models displayed 
in Figure 3 reduce the description at the brow and columella (between the nostrils) to two curves. These 
curves are included in surface-based registration, and in later analysis, simply by considering a small 
patch around each curve point, with area set to the average of the areas surrounding the surface points.

2.2.2  |  Warping

Procrustes registration brings the co-ordinates of shape X as close as possible to those of shape Y, 
within the limits imposed by the use of translation, rotation and scaling only. However, there are situa-
tions where it is useful to match these two shapes exactly. This arises in some of the methods involved 
in constructing facial models, described in Section 2.1, where a template is initialised on an observed 
image by exact matching of a set of landmarks. A further example is in the improvement of the visual 
comparison of shapes such as those in Figure 3. If a high-resolution facial template is available, with 
an embedded shape model Z which corresponds to that of X and Y, then a smooth function which 
transforms Z to X exactly can be identified, in a process known as warping. This function can then be 
applied to the template to create a visual display which has smoother and more attractive surfaces than 
the lower resolution model X and which adds in detailed features such as nostrils and eyes, giving a 

F I G U R E  3   Procrustes matched male (green) and female (pink) mean shapes, in frontal and lateral orientations, 
using model meshes (left two images) and warped facial templates matched to these mean shapes (right two images). 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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more effective and interpretable display of a human face. While care should be taken not to interpret 
the form of these very detailed features, the principal characteristics of the display all reflect the un-
derlying model. Use of a template can also help to anonymise individual faces. The right-hand images 
in Figure 3 show the effects of employing templates in this way on both male and female means.

In the analysis of 2D shapes based on landmarks, the concept of a deformation grid to describe 
shape change is a very old one; see Thompson (1917, chapter 9). This uses a function which maps one 
set of landmarks to another exactly but, as it is expressed in functional form, this function can also 
be applied to a regular grid of locations over the first image to create a warped grid which expresses 
the underlying transformation. Methods based on pairs of thin-plate splines were first introduced 
in 2D by Bookstein (1989) and developed further by Bookstein (1997, chapter 7). The topic is also 
explained clearly by Dryden and Mardia (2016, chapter 12). Corresponding methods in 3D were first 
introduced by Gunz, Mitteroecker and Bookstein (2005) and applied to skulls by Mitteroecker et al. 
(2004) and Mitteroecker and Bookstein (2008), to long bones by Frelat et al. (2012), and to mice 
heads by Waddington et al. (2017). The literature on radial basis functions uses the same techniques 
but employs a different language. The technical details of warping in 3D are described in Appendix B.

2.3  |  Visual comparison of two shapes

The male and female example of Figure 3 raises the question of how two shapes can most effectively 
be compared visually. The challenge is that in addition to the 3D shapes themselves, comparison 
involves a vector field of differences, with a displacement vector at each position on the individual 
shapes. A helpful strategy is to display one shape and use colour to inform on the shape difference from 
the other shape at each location. Figure 4 illustrates this by plotting the female mean face and using 
colour to indicate distances to the male mean. The distances in the separate x, y and z co-ordinates 
are shown. These co-ordinates can be given clear interpretations by orienting the female mean so that 
nominated landmarks such as the outer corners of the eyes (exocanthions) define the direction of the 
x-axis and others such as the top of the nose ridge between the eyes and the central point at the base 
of the nose (nasion and subnasale) define the y-axis. The final two images use colour to indicate the 
distance between the corresponding points on the female and male means projected along the normal 
direction at the surface of the female mean, and the Euclidean distance between corresponding points, 
with sign determined by whether the projection along the normal is positive or negative.

None of these devices captures the information in the shape difference completely, because the 
change is in 3D while the colour scale can represent only a single dimension, but they provide options 
for detailed exploration. The simple superimposition of surfaces illustrated in Figure 3 is usually a 

F I G U R E  4   The mean female face painted with colours to represent the movement (mm) required in different 
dimensions to reach the mean male face [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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good place to start as it shows the broad, qualitative differences between the shapes, with the other op-
tions available as follow-up. For small-scale movements, the normal and signed-Euclidean distances 
are often effective and can give greater detail on the nature and size of the movement, as the two sur-
faces are generally close. Other plotting devices are available, such as the use of transparent surfaces, 
or one transparent surface with a wireframe representation. The best choice of display will depend on 
the particular features and differences of the shapes involved.

One of the most effective means of displaying differences is through animation, with the display 
of a sequence of intermediate steps along a path between the two shapes to be compared. Several of 
the plots in this paper have animated versions which are available in the Supplementary information.

3  |   VISUALISING SHAPE DATA SETS

3.1  |  Exploring variation

While a visual comparison of means is useful, an understanding of the variation involved in a data 
set is necessary for any form of statistical analysis. A simple device is to display the size of the varia-
tion at each location on the model. Figure 5 shows the value of log |det(Σ̂j) |, where Σ̂j is the empirical 
covariance matrix of the x-, y- and z-coordinates at location j after Procrustes registration. The regions 
of higher variability include the eyes, whose reflective surface can introduce some inaccuracy, the 
forehead, which lies at the edge of the facial surface, and the chin and nasal tip, where the degree 
of prominence can vary considerably. Effects associated with the model curves which traverse the 
cheeks, where flatness can induce some variability in location, are also apparent.

Descriptions which capture the correlation between locations are clearly required. These also need 
to deal with the difficulty that the dimensionality of the shape representation (for example, 917 3D 
points in a discrete representation of a surface) often exceeds by a large margin the number of shapes 
present. Principal components offers an immediate route to the creation of a lower dimensional space 
which captures the principal features of shape variation. Procrustes registration places the aligned 
shapes Xi in a non-linear space but the approximate tangent co-ordinates, vec (Xi − X), can be an-
alysed very effectively as a linear space. Here the vec operator creates a vector of length 3J from 

F I G U R E  5   The variability in British female faces [Colour figure can be viewed at wileyonlinelibrary.com]
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the J × 3 matrix X by stacking its columns. The eigenvectors ek and eigenvalues �k of the covariance 
matrix of the tangent co-ordinates then capture the directions along which variation is sequentially 
maximal. For the kth direction, a description of the variation involved is provided by considering 
c
√
�kek which, when reassembled into a J × 3 matrix using the vec−1 operator, represents shape vari-

ation from the mean along the principal component direction in multiples of the standard deviation. 
The multiplier c is often set at ±2, or ±3 if some magnification is required. Dryden and Mardia (2016, 
chapter 7) give all the details.

A functional data analysis perspective can be applied in this setting by following the pattern de-
scribed by Ramsay and Silverman (1997). When the data are in the form of functional objects, x(s), 
where s lies in an appropriate sample space , principal components are then defined as orthonormal 
functions �(s) which successively maximise the variance of ∫ �(s)x(s)ds. In many settings, the sample 
space  is a time interval or a spatial region in standard Cartesian form. In the present setting, the 
functional object has the much more complex form of a 2D manifold embedded in 3D space. The 
immediate problem is how to parameterise this in a suitable sample space . A solution is provided by 
setting this to be the Procrustes mean shape, �. Any other shape in the sample can then be expressed 
through the three functions {x(s), y(s), z(s)} which give the 3D deviations of this shape from the mean 
at location s.

This takes us to the realm of multivariate functional principal components which seek to maximise 
the variance of

as discussed by Ramsay and Silverman (1997, section 6.5.1). As usual, computations are conveniently 
based on discrete approximations to these integrals. The model form of each shape has a consistent trian-
gulation so, for example, a convenient approximation can be written as

where, as previously, j indexes the discrete surface representation and aj is the area surrounding sj. This 
allows functional principal components analysis to be implemented simply by applying standard princi-
pal components analysis to the discrete representations of a sample of n surfaces in the weighted form 
{(xi(sj)

√
aj, yi(sj)

√
aj, zi(sj)

√
aj);i = 1,…, n}. The square-root weights attached to the �’s ensuring that 

the coefficient functions have norm (approximated integral of the square) equal to 1.
Figure 6 shows the results of applying functional principal components to the British female data. 

Given the high dimensionality of shape surfaces, the number of components required to capture a 
high proportion of the variation in the data may be reasonably large, with 9 components required to 
capture 82% of the variation in this case. Figure 6 shows the scores, vec (Xi − X)Tek, on these principal 
components, with the diminishing widths of the boxplots illustrating the gradual reduction in variation 
across the components. The shape changes associated with the first four principal components are in-
dicated by superimposing the faces which correspond to c = ±2 standard deviations (pink and green). 
Methods for investigating individual components are discussed below in the context of comparing 
groups but the variation in a single group can be helpfully displayed through the idea of a ‘grand tour’, 
proposed for general multivariate data by Asimov (1985). A very simple version of this uses a vector 
of p independent normal random variables r to create a random sample of locations in the space of the 
first p principal components, {rk

√
�kek;k = 1, … , p}. Turning these into shapes and tracking between 

��

�x(s)x(s)ds + ��

�y(s)y(s)ds + ��

�z(s)z(s)ds,

��

�x(s)x(s)ds ≈
�

j

�x(sj)x(sj)aj =
�

j

�
�x(sj)

√
aj

��
x(sj)

√
aj

�
,
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successive pairs by simple interpolation creates an animation which randomly explores the variation 
in shape. Figure 6 illustrates five random positions which form the staging posts of a tour and so pro-
vides a visualisation of the range of shapes exhibited in the population of interest. This approach forms 
the basis of a comparison between individuals and a control data set in Section 4.

3.2  |  Assessing differences between groups

When groups representing different populations are present in a data set, Procrustes registration is 
usually applied to the whole data set, to create a common shape space. (This is in contrast to the 
simple illustration used in Figure 3.) Principal components provide a helpful way of reducing the di-
mensionality of the space in which comparison takes place, while retaining as much of the variability 
as possible. If components are constructed from the combined data set, without reference to the group 
structure, then the variation captured by each component will contain both intra- and inter-group 
contributions. The top left-hand plot in Figure 7 displays the scores for the principal components 
constructed in this way for the sexual dimorphism data. Over 80% of the variation is captured by 10 
principal components. As the signs of the eigenvectors which define the components are arbitrary, 
these have been reversed where necessary to ensure that the male mean score is higher, for ease of 
interpretation. It is often the case that the first few components capture large scale variation (greater 
width and smaller height etc.) which is common across groups, with group differences associated with 
more subtle aspects of shape.

F I G U R E  6   The top left-hand plot shows the scores for the first 10 principal components for British females. 
The four top right-hand plots show the nature of the shape change associated with the first 4 principal components. 
The lower plots show randomly generated faces from a ‘grand tour’ of the variation in British female faces. See the 
Supplementary information for animations [Colour figure can be viewed at wileyonlinelibrary.com]

PC 1
34%

PC 2
14.9%

PC 3
9.4%

PC 4
7%

PC 5
4.8%

PC 6
3.5%

PC 7
3.2%

PC 8
2.3%

PC 9
2%

−800

−400

0

400

sc
or

es

www.wileyonlinelibrary.com


      |  701KATINA et al.

In the reduced space of the first p components, a global assessment of the evidence for mean differ-
ences in male and female shape is provided by Hotelling’s T2 statistic, T2 =

1

(1∕nm +1∕nf)

(
vm − vf

)T
Σ̂

−1 (
vm − vf

)
,  

where vm, vf  denote the mean p-dimensional score vectors, nm, nf  denote the group sample sizes and 
Σ̂ denotes the usual estimate of the common covariance matrix of the scores. It is also tempting to 
explore the nature of any evidence of differences by examining the t-statistics, (vkm − vkf)√

(1∕nm +1∕nf)�̂k

, where �̂k 
denotes the estimate of the common standard deviation of the groups on the kth component. However, 
there are concerns about the appropriateness of the usual reference distributions for these statistics, 
particularly in a situation where dimensionality exceeds sample size. Bedrick (2019) also shows that 
even in the ‘non-sparse’ case the distributional properties of test statistics can be affected by the con-
struction of the component directions in terms of optimising variance, under some circumstances. In 
light of both of these issues, a permutation approach is attractive. Here the reference distributions for 
the test statistics are generated empirically simply by recomputing the values from the data set with 
group labels randomly permuted 500 times. The top right-hand panel of Figure 7 illustrates this. In 
order to make the distribution for the global test comparable with the others, the values of 

√
T2∕p have 

been plotted and the individual t-statistics have been placed on an absolute value scale. The values of 
the test statistics computed from the observed data are shown as a triangle (global) and dots (compo-
nents), with the empirical p-values noted at the top of the plot. The global test gives strong evidence 
of differences in means while components 3, 5 and 10 are identified as strong sources of difference. 
To adjust for the multiple comparisons involved, a Bonferroni threshold for the empirical p-values has 
been adopted as 0.05∕10 = 0.005 and colour (red) has been used to indicate where that threshold has 

F I G U R E  7   The top row shows the scores for males and females for the first 10 principal components constructed 
in tangent space and the simulated test statistics (boxplots) and observed values (triangle and dots) for a test of 
identical distributions. Test statistics showing evidence for differences are plotted in red. The second row shows the 
shape change associated with each significant component and their combination. Green and pink refer to the male and 
female ends of the scale respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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been exceeded. As Bedrick (2019) points out, it is important to note that the p-values associated with 
individual components should be interpreted in the context of the null hypothesis that the mean scores 
are identical for all components simultaneously.

The images in the lower part of Figure 7 indicate, for those components which exhibit evidence 
of differences in groups, the nature of the associated shape change in the usual form of ±2

√
�k from 

the mean. The image corresponding to the positive end of the scale is more strongly associated with 
male shape (green) and the negative end of the scale with female shape (pink). The association of male 
shape with more prominent nose, chin and eyebrows, and female shape with more prominent cheeks, 
is apparent. However, the individual components cannot be given special status in the description 
of male-female differences as they were constructed simply by maximising the variation explained 
across the whole data set. The strongest differences may in fact lie in directions which are combina-
tions of components. In order to explore the nature of shape differences, following a significant global 
T2 test, it is therefore helpful to construct a combined display which corresponds to movement simul-
taneously along all the components which exhibit evidence of differences. This is aided by the earlier 
modification of components to ensure that positive signs are more strongly associated with males. 
Movement to ±2

√
�k in all components simultaneously would construct a rather extreme shape so the 

values ±2
√
�k∕

√
q are used, where q denotes the number of components in simultaneous movement 

(here q = 3). This ensures that the resulting shape sits on the same quantile contour of a multivariate 
normal distribution as the shapes which move the individual components to ±2

√
�k. The result for the 

sexual dimorphism data is shown at the right-hand end of the row of facial images in Figure 7. This 
gives a very helpful representation of the combined effects of the individual components which carry 
evidence of differences. It also has the attractive property of giving stronger weight to those compo-
nents which explain larger amounts of variation. The overall difference in shape change is clear and 
corresponds closely to the comparison of means in Figure 3 but this is now backed up by convincing 
statistical evidence.

When group differences are of interest, an alternative approach to principal components is through 
the intra-group covariance. As pointed out by Dryden and Mardia (2016, chapter 9), the T2 statistic 
can be written as

where the �k denote the eigenvalues and vk1, vk2 the mean principal component scores, using the eigen-
vectors derived from an estimate of the common covariance matrix. Dimensionality reduction follows 
from the truncation to p terms, with each individual term having the attractive interpretation of the square 
of a two-sample t-statistic on the scores from each component. The warnings about distributional prop-
erties again apply, with a permutation test providing a convenient solution. However, this time the eigen 
decomposition needs to be performed for every random permutation because estimation of the common 
covariance matrix depends on the group structure.

Figure 8 shows the results of this ‘group shape space’ approach on the sexual dimorphism data, 
with p = 10 to remain consistent with the earlier example. The absolute value scale has been used 
again for the boxplots. This loses the property that the global statistic is a simple average of its com-
ponents but the t-statistic scale is helpful, and there is no effect on the performance of the tests. The 
smaller facial images show the nature of the shape change associated with the individual components 
(3, 5, 7) where there is strong evidence of differences between males and females. There is no reason 
why the differences in mean shape should align with the axes of the common covariance matrix so, 

T2 =

p�

k= 1

�
vk1 − vk2√

�k(1∕n1 + 1∕n2)

�2

,
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again, the individual components do not have special status. The larger facial image shows the shape 
change associated with the combination of these three components. This characterises the sub-space 
where the evidence for difference is strongest and it is reassuring to see that this is very similar to the 
sub-space identified from the principal components which do not exploit group structure, as displayed 
in Figure 7. This underlines the case for identifying and interpreting the sub-space as a whole, with 
the components simply providing particular indexing bases.

3.3  |  Affine/non-affine decomposition

A further sub-space approach is available through partitioning the variation in the data into affine and 
non-affine components. The former involves linear transformations which apply across the whole 
object of interest. The latter space contains non-linear transformations which describe local and more 
complex effects. Rohlf and Bookstein (2003) showed that these sub-spaces can be easily created from 
the Procrustes aligned shapes {Xi;i = 1,…, n} through the regression models

where the �i denote 3 × 3 matrices of regression coefficients. The affine co-ordinates XAi are then avail-
able as the fitted values while the non-affine co-ordinates XNi are obtained by adding the residuals to the 
mean as

where �̂i denotes the least squares estimates. More formally, the algebra associated with linear regres-
sion, particularly the independence of residuals and fitted values, separates the space of the Procrustes 
shape co-ordinates Xi into two orthogonal sub-spaces which capture the affine and non-affine behaviours. 
Analysis can therefore proceed separately within these sub-spaces to provide complementary descriptions 
of the variation in the data set.

Xi = X�i + �i,

XAi = X�̂i,

XNi = X+ (Xi−XAi),

F I G U R E  8   The left-hand plot shows the simulated test statistics (boxplots) and observed values (triangle and 
dots) for a test of identical male and female distributions, using the components derived from the common covariance 
matrix. The small faces shows the shape change associated with each significant component and the larger face 
illustrates their combined effect [Colour figure can be viewed at wileyonlinelibrary.com]
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The comparison of British and Chinese female facial shapes provides a simple example. Visual 
discrimination between these two ethnic groups is usually straightforward but examination of mean 
shapes allows the distinctive features to be identified and quantified. Figure 9 shows the nature of 
shape change in different sub-spaces, based on a sample of 69 British and 26 Chinese adult subjects. In 
overall tangent space, there is only one significant component, with the associated shape change dis-
played in the central image in the usual form of ±2 standard deviations around the mean. This draws 
attention to the more prominent central areas in British subjects (pink), including the brow ridge, nose, 
oral region and chin. Correspondingly, the overall shape of Chinese faces (green) is flatter than that 
of their British counterparts, with more prominent cheek areas. This is an example where intergroup 
differences dominate the variation in the data. Indeed, the strength of this difference is indicated by the 
fact that there is no overlap between the scores of the British and Chinese faces on the first principal 
component in tangent space (not shown).

It is interesting to explore whether these differences can be explained by affine transformation or 
whether non-affine transformations are required. In the affine sub-space, only the first principal com-
ponent shows clear evidence of difference between the groups and it is already clear that the lower 
brow of the British faces is not captured in this sub-space. This is confirmed by analysis in the non-
affine sub-space where there are two principal components which exhibit clear evidence of differences 
between the groups and whose combined effects are displayed in the right-hand image of Figure 9.

4  |   VISUALISING THE SHAPE OF INDIVIDUALS

In the previous section, evidence for systematic differences between groups was considered, while 
allowing for the presence of individual variability. This section considers situations where interest lies 
in the evaluation of individuals. Traits which can be expressed in single values are considered, as well 
as more general characterisation of the particularities of individual shapes.

4.1  |  Asymmetry

For shapes whose ideal form is symmetric, deviations which disturb this symmetry are important fea-
tures. The left/right symmetry of human faces is a major example, where any strong departure from 
symmetry creates a striking visual impression. However, real faces are all asymmetric to some degree 
so, as part of the process of evaluating an individual shape, it is important to characterise the asym-
metries found in an appropriate reference population.

When a shape is represented by a set of point locations, some of which are paired as left/right coun-
terparts, quantification of asymmetry is generally based on the degree of post-registration mismatch 

F I G U R E  9   From left to right, the images show the mean Chinese female face, the mean British female face, and 
the combined principal components of shape change in tangent, affine and non-affine spaces respectively [Colour 
figure can be viewed at wileyonlinelibrary.com]
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between the shape and its reflection with the left/right labels swapped. Theoretical development of 
this idea was undertaken by Mardia, Bookstein and Moreton (2000) and Kent and Mardia (2001) in 
the context of landmarks, and many authors have exploited this thinking in biological contexts. Bock 
and Bowman (2006) proposed a decomposition of global asymmetry which allowed local sources to 
be identified and separated into contributions from individual features and their configurations.

The first step in computing a functional measure of asymmetry for a surface X(s) is to apply (func-
tional) Procrustes matching of the mirror image onto the original surface, to create the new surface 
X̃(s). The mirror image is created in practice by reflecting and relabelling the configuration of points 
which express the shape model. The integrated comparison and its discrete approximation are then 
easily constructed as

where, to be even-handed,  is the surface formed from the average of X(s) and X̃(s), A() denotes its sur-
face area and, as usual, the aj give the areas surrounding the discrete surface points sj. The final asymmetry 
score is achieved by applying a square root transformation, so that the scale of the end result matches the 
scale of the original co-ordinate measurements.

Earlier applications in the paper have been based on human sexual dimorphism but the new context 
of orthognathic surgery in now introduced. This involves the repositioning of the maxilla or mandible 
of a patient to improve the alignment of teeth and to address issues of facial appearance. Vittert et al. 
(2018) included asymmetry in their assessment of post-surgical outcome, identifying evidence of a 
reduction in mean asymmetry in the upper lip region. However, asymmetry scores also give the oppor-
tunity to assess patients individually. Figure 10 shows the facial image of one post-surgical patient to-
gether with comparison of the reflected and matched image in both superimposition and colour-coded 
forms. Interpretation of this information is informed by quantifying the asymmetry scores exhibited in 
an adult control population, with the distributions represented in the right-hand side of Figure 10 by 
density strips (Jackson, 2008). The global asymmetry scores, for both pre-surgical and post-surgical 
facial shapes of this patient, have been superimposed on the bottom density strip. These scores are 
entirely typical of controls and in particular they provide reassurance that surgery has not introduced 
any marked asymmetry overall. The scores have also been computed for a variety of sub-regions, indi-
cated in the top right-hand image of the four facial images in Figure 10. The scores and density strips 
indicate strong nasal asymmetry, but this is apparent both before and after surgery and so it cannot be 
attributed to surgical intervention.

4.2  |  Closest controls

For more general assessment of the shapes of individual cases, an approach analogous to the concept 
of a ‘normal range’ for univariate data is required. In the surgical context, characterising any differ-
ences between a post-surgical patient and a control population could provide helpful guidance on the 
nature of any further surgery which may be required. Bowman and Bock (2006) outlined an approach 
based on the concept of a ‘closest control’. This identifies the shape which is as close as possible to 
the individual of interest but which lies on the surface of a 95% prediction ellipsoid and so lies within 
the ‘normal range’ associated with controls. Any remaining shape differences then characterise the 
features of the individual shape which are different from controls.

1

A()� ��X(s)− X̃(s)��2ds≈
1�∑J

j= 1
aj

�
J�

j= 1

��X(sj)− X̃(sj)��2aj,
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Bowman and Bock (2006) derived the algebra of this in a simple case involving curve data, using a 
principal component regularisation to reduce dimensionality across both cases and controls. The con-
cept is applied here to surface data but the ideas are developed further in two important ways. Firstly, 
principal components are constructed from the control data only. This gives a clear interpretation of 
the components which is unaffected by the particular cases available. Secondly, variation unexplained 
by these components is also considered, in order to give a complete description of the observed data.

If a new shape Z, such as a post-surgical patient, is registered onto the control mean then it can be 
projected into the space of the first p principal components, denoted by p, by computing the score 
vector v(Z) = vec (Z − X)TEp, where Ep is the matrix whose columns contain the first p principal 
component vectors derived from the control data. Within this space, the Mahalanobis distance of the 
new shape from the mean control shape is

where Σ̂ is a diagonal matrix containing the variances of the principal components. The Mahalanobis dis-
tance has a �2

p
 distribution approximately. If d(Z) is less than the 95th percentile of this distribution, denoted 

by �2
p
(0.95), then the new shape falls within the ‘normal range’ of controls in this space. If d(Z) > 𝜒2

p
(0.95) 

then the closest control in this p-dimensional space can be found by shrinking v towards 0 until its 
Mahalanobis distance matches �2

p
(0.95). The shrinking factor �1 is easily found as �1 =

√
�2

p
(0.95)

d(Z)
, by solving 

the equation �1v(Z)TΣ̂
−1
�1v(Z) = �2

p
(0.95). The scores of this new location �1v(Z) are then converted into 

tangent co-ordinates as �1v(Z)ET
p
, and expressed as a shape by reconfiguring the tangent co-ordinates into a 

three column matrix in the usual manner as

d(Z) = v(Z)TΣ̂
−1

v(Z)

ccp(Z) = X + vec−1{�1v(Z)ET
p
}.

F I G U R E  1 0   The four facial images show, in clockwise order from top left, a post-surgical patient, the sub-
regions used to compute asymmetry scores, the colour-coded distance between the shape and its matched reflection, 
and the superimposition of the shape and its matched reflection. The density strips show the asymmetry scores from 
control faces, with the pre- and post-surgical scores for the individual superimposed. (The facial images have been 
anonymised by warping to a reference shape.) [Colour figure can be viewed at wileyonlinelibrary.com]
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This finds the closest control in p. However, the case of interest may well have shape features which 
cannot be captured in this space so characterisation in the complementary space, denoted by p, is also 
required. The projection of Z onto Cp is

so the relevant information is found in the residual shape R(Z) = Z − Z̃. The length of the residual at 
each model location can be quantified in the vector L(Z) =

√
R(Z)213, where here the square-root and 

the exponent 2 are applied element-wise. A measure of variation in the lengths of the residuals at each 
model location for controls is then available in the vector � whose jth element is the standard deviation of 
{L(Xi)j;i = 1,…, n}, where L(Xi)j denotes the jth element of L(Xi). A simple measure of variation is then

This averages the lengths of the residuals across the model locations, standardised at each model location 
by the variation in control residual length. The value of r(Z) may be regarded as atypical if it lies beyond 
q95, the 95th percentile of {v(Xi);i = 1,…, n}. A closest control in the residual space, Rp, can then be con-
structed by shrinking the residual shape to �2Z, where �2 = q95∕r(Z). An overall closest control for z can 
now be constructed as

which combines the closest controls in the sub-spaces Rp and p.
Figure 11 shows the results of applying the concept of closest control to two post-surgical orthog-

nathic cases. The left-hand histogram shows the Mahalanobis distances of controls in p, the space of 
the first p principal components for controls. The use of p = 9 was determined by the smallest number 
of components which explained at least 80% of the variation in the controls. Case 1 clearly lies in the 
tails of the control distribution while case 2 is unexceptional. The right-hand histogram shows that 
both cases exhibit unusual behaviour in the residual space, p. However, shape differences in this 
residual space may be small. The facial images in the lower part of Figure 11 compare case 1 (green) 
with its closest control (pink) by superimposition and by normal distances. (The facial images have 
been anonymised by warping to a reference shape while preserving the contrast with the closest con-
trol.) This characterises the unusual features of the case as a slightly more prominent lower face than 
in controls, particularly in the mandible (lower jaw). This is potentially valuable feedback on surgery 
which involves repositioning of the underlying bones. A display of the closest control information for 
case 2 is deferred to the next sub-section.

4.3  |  An integrated patient assessment

The methods described in this section provide valuable tools for the characterisation of individual 
shapes of interest. The combination of these tools forms the basis of an integrated patient assess-
ment. This is illustrated in Figure 12, using case 2 from Figure 11. This brings together the observed 
pre-surgical and post-surgical shapes, comparisons of this case with control shape both for closest 
control analysis and for asymmetry, and illustrates differences in shape through superimposition and 
normal distances. (The facial images have again been anonymised by warping to a reference shape.) 

Z̃ = vec−1
{

v(Z)ET
p

}
,

r(Z) =
1

J

J∑

j= 1

L(Z)j∕�j.

cc(Z) = ccp(Z) + �2R(Z)
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An interactive display would allow those reviewing the case to inspect the shapes in 3D and to query 
further information. However, this static display gives a helpful summary of the effects of surgery on 
this particular patient.

5  |   DISCUSSION

This paper has proposed methods of analysis for high resolution surface data and corresponding 
models which give consistent descriptions of each observed shape. A strong emphasis has been on 
the adoption of functional forms of analysis and practical implementation has been based on the ap-
plication of standard forms of analysis to suitably weighted versions of the discrete representations 
of each surface. Given the high dimensionality of these surface representations, more sophisticated 
methods of analysis such as those based on spiked covariance models (Johnstone, 2001) could also 
be applied.

Some forms of analysis required identification of a common sample space and this was overcome 
by using the mean surface as an indexing shape. This enabled functional forms of registration, princi-
pal components analysis and group comparisons to be developed. In applying these methods, strong 
emphasis was also placed on the use of principal components to identify sub-spaces of interest rather 
than inspection of individual components. In some applications, there may be prior information on 
particular regions where systematic differences are more likely to occur and this could be used to 
guide the particular sub-spaces examined. At the very simplest level, the methods described in the 
paper could be applied to particular sub-regions of the overall surface.

Tests have been applied to assess the evidence for shape differences and support an exploration 
of the nature of these differences. The use of a permutation approach should ensure that the size of 

F I G U R E  1 1   The histograms show the distances of the control shapes from the mean in the space of the first 9 
principal components (left) and in the residual space (right). The distances of two post-surgical cases from the control 
mean are superimposed. The lower images compare the facial shape of case number 1 (green) with its closest control, 
both through superimposition and as normal distances from case to closest control. (The facial images have been 
anonymised by warping to a reference shape.) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  1 2   An integrated assessment of patient 2 from Figure 11. The facial images have been anonymised by 
warping to a reference shape [Colour figure can be viewed at wileyonlinelibrary.com]

Pre-surgical shape Post-surgical shape

Closest control

Pre-surgery Post-surgery

Asymmetry

Pre-surgery Post-surgery

mm

Closest control

Pre-surgery Post-surgery

Asymmetry

Pre-surgery Post-surgery

www.wileyonlinelibrary.com


710  |      KATINA et al.

the tests are correct but an understanding of power would be helpful. Simulation studies would be an 
obvious way of investigating this.

Graphical displays of shape differences were also described. Particular attention was given to the 
comparison of individual shapes with a relevant control group. In additional to univariate measures 
such as asymmetry scores, the concept of a ‘closest control’ was developed in detail, to give a means 
of identifying any unusual characteristics of an individual shape of interest. We believe this to be a 
potentially very powerful approach and further practical implications of its use, particularly in surgical 
contexts, will be the subject of subsequent research.
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APPENDIX A

SURFACE CURVATURE
The local shape at a 3D location m = (x, y, z) on a differentiable manifold M can be characterised 
through the quadratic surface

z =
1

2

(
�1(m)x2 + �2(m)y2

)
,

http://dx.doi.org/10.5525/gla.researchdata.1130
http://dx.doi.org/10.5525/gla.researchdata.1130
https://doi.org/10.1111/rssc.12482
https://doi.org/10.1111/rssc.12482
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where z lies in the normal direction to the surface at m and the orthogonal axes x and y lie on the tan-
gent plane, associated with the directions of maximum, �1(m), and minimum, �2(m), curvature. This is 
clearly described by Koenderink (1990) and many others, along with a wide variety of other key tools 
for studying surface shape. The coefficients, �1(m) and �2(m), are referred to as the principal curvatures 
and, along with their associated principal directions, d1 and d2, they provide the essential information for 
characterising curvature across the manifold. A wealth of further detail is available in Koenderink (1990).

There is a variety of summary measures of curvature. An important one is Gaussian curvature, 
defined as the product of the principal curvatures, �1(m)�2(m), which provides a summary of the size 
of curvature present at each location. Another particular quantity of interest is the shape index, which 
characterises the type of curvature present at each location. This is defined as

Koenderink and van Doorn (1992) provide further details.

APPENDIX B

3D WARPING
The technical details of warping are described here because the method is not widely used in 3D. We seek 
a function which maps X onto Y exactly. If an interpolant of a single co-ordinate of Y as a function of the 
three co-ordinates of X is considered, then the elegant functional analysis described by Duchon (1977) 
provides an immediate solution. The aim is to find the interpolating function f which has minimal bending 
energy, defined as

The solution can be expressed in terms of radial basis functions which parameterise the relationship be-
tween points x and y in ℝ3 as

where � jd are parameters and d denotes the three dimensions of ℝ3. Fitting this functional form to the 
mapping from the observed locations in X to those in Y requires Y = S�1, where S is a J × J matrix, with 
Sij = �

(
||xi − xj||

)
, and �1 is a J × 3 matrix whose (j, d)th element is � jd.

It is helpful to separate the mapping into affine and non-affine components, with the former captur-
ing the linear part of the transformation, including possibly different scalings in different co-ordinate 
directions (shear), and the latter describing non-linear bending. If Q denotes the matrix (1J X), where 
1J is a column vector of 1’s, then the transformation can be written in the multivariate form

where �2 is a 4 × 3 matrix filled with parameters. This system is now overparametrised, with (J + 4) × 3 
parameters but only J × 3 defining equations. This can easily be resolved by adopting suitable constraints, 
for example through the extended system

S(m) =
2

�
tan−1

(
�2(m) + �1(m)

�2(m) − �1(m)

)
.

�3

{
3∑

p= 1

3∑

q= 1

(
� 2f

� xp � xq

)2
}

dx
1
dx

2
dx

3
.

yd(x) =

J∑

j= 1

�
(
||x − xj||

)
� jd,

Y = S�1 + Q�2,
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where the 0 entries indicate matrices filled with 0’s of the dimensionality required by the context. These 
constraints require the sum of the entries of each column of �1 to be 0 and the sum weighted by the co-
ordinates of each dimension of X also to be 0. By applying constraints to the affine component, the inter-
pretation of the non-affine component is left undisturbed.

The system of Equation (4) can be written in the condensed form Ye = Xe�, with obvious definitions 
of Xe and Ye. If the matrix S is invertible then so is Xe and, after some standard matrix manipulations, 
the solutions emerge as

When the bending energy matrix Be is post-multiplied by X, this generates the coefficients of the non-
affine part of the transformation. The bending energy itself can be expressed as tr

{
YTBeY

}
. Finally, the 

optimal radial basis function is shown simply to be �(z) = −
1

8�
z.

(4)

(
Y

0

)
=

(
S Q

QT 0

)(
�1

�2

)
,

Be =
(

S−1−S−1Q
(
QTS−1Q

)−1
QTS−1

)
,

�1 = BeY,

�2 =
(
QTS−1Q

)−1
QTS−1Y.


