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ABSTRACT

Detection of remote sequence homology is essen-
tial for the accurate inference of protein structure,
function and evolution. The most sensitive detection
methods involve the comparison of evolutionary
patterns reflected in multiple sequence alignments
(MSAs) of protein families. We present PROCAIN,
a new method for MSA comparison based on the
combination of ‘vertical’ MSA context (substitution
constraints at individual sequence positions) and
‘horizontal’ context (patterns of residue content at
multiple positions). Based on a simple and tractable
profile methodology and primitive measures for the
similarity of horizontal MSA patterns, the method
achieves the quality of homology detection compa-
rable to a more complex advanced method employ-
ing hidden Markov models (HMMs) and secondary
structure (SS) prediction. Adding SS information
further improves PROCAIN performance beyond
the capabilities of current state-of-the-art tools.
The potential value of the method for structure/
function predictions is illustrated by the detection
of subtle homology between evolutionary distant
yet structurally similar protein domains. ProCAIn,
relevant databases and tools can be downloaded
from: http://prodata.swmed.edu/procain/download.
The web server can be accessed at http://prodata.
swmed.edu/procain/procain.php.

INTRODUCTION

Recent progress in structural biology, including structural
genomics initiatives (1) has significantly increased the
coverage of existing protein folds by representatives with
solved 3D structures (2). According to some analyses (3),
this coverage is close to completion, which means that
any given protein is likely to have a structure similar to
a solved one. The existence of such structural templates

opens the opportunity for structure modeling and poten-
tial function prediction for a majority of protein
sequences. However, as demonstrated by the recent
Critical Assessment of Techniques for Protein Structure
Prediction, CASP8 (4), the presence of homologs with
known a structure does not warrant the quality of
sequence-based structure prediction. The largest current
challenge in the prediction process is the ability to detect
a distant homolog and to construct an accurate alignment
between this homolog and the target sequence. Thus,
there is a strong demand for more powerful automated
methods for remote homology detection and alignment
construction.

Historically, most progress in sequence-based homol-
ogy detection was made by considering sequence patterns
that reflect evolutionary, structural and functional con-
straints in protein families. Introduction of numerical
profiles (5) and hidden Markov models (HMMs) allowed
comparing a sequence to a multiple sequence alignment
(MSA) rather than its single representative (6–8). As a
further improvement, methods for profile-profile (9–12)
and HMM–HMM (13) comparison were aimed at detect-
ing similarities in amino acid preferences at sequence
positions in two distant families. In addition to the res-
idue substitution preferences (‘vertical’ signals), MSA
can reveal patterns of interdependence between amino
acid content at different positions (‘horizontal’ signals).
These patterns, dictated by structure and function,
are often preserved better than the sequence and thus
can help detecting protein similarity where individual
sequence positions diverged beyond recognition.
Currently, such ‘horizontal’ information is used by only
a few methods (13,14), mainly in the form of secondary
structure (SS) prediction.

Here, we complement sensitive profile–profile compari-
son with the consideration of various structure- and func-
tion-related patterns revealed by MSA: similarity in SS,
amino acid conservation and MSA motifs. The resulting
tool for MSA comparison, PROCAIN, improves homol-
ogy detection and alignment quality beyond the range of
current state-of-the-art methods.
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METHODS

Multiple sequence alignments

Profiles are generated as described elsewhere (9) from
multiple sequence alignments that are constructed and
processed using a program (buildali.pl) generously pro-
vided by J. Soding. Starting from a single sequence,
this program runs up to eight iterations of PSI-BLAST,
filtering PSI-BLAST alignments at each iteration. We find
that this filtering results in better homology detection by
resulting profiles.

Score for similarity of residue content in MSA columns

To measure the positional similarity of residue content, we
use the formula originally implemented in the COMPASS
method (9).
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Sequence motif score

In the alignments of homologous protein sequences,
matches of similar positions tend to cluster together along
the sequence (17). These clusters often correspond to similar
functional motifs (18). Thus, we introduce a simple
additional score that rewards such clusters, i.e. diagonals
of positively scoring matches in the dynamic programming
matrix. If a pair of profile positions has a positive score
for residue content, and both immediate neighbors of this
pair also score positively, then the score of the central pair
is increased by the sum of these three sequence similarity
scores, sm, multiplied by a weight wm=0.5.

Residue conservation score

Strong residue conservation normally indicates important
functional positions, such as binding sites; therefore
matches and mismatches of such positions should be of
special importance for homology detection (19). In order
to further emphasize similarity between conserved posi-
tions, we introduce a separate conservation score.
Residue conservation is calculated using an entropy-
based method (17), with the final measure normalized to
the range [0;1]:

C ¼
X
i

fi ln fið Þ þ ln 20

 !
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Here fi is the total residue frequency in the compared
columns 1 and 2. This conservation value is then com-
bined with the sequence similarity score as follows:

sc ¼ sseq � wcC

where wc=0.5 is the weight for the conservation score.
This term additionally rewards the matches between
highly conserved positions if these positions are similar
and penalizes these matches if the positions are dissimilar.

Secondary structure score

PROCAIN incorporates SS information in the form of SS
prediction by PSIPRED (20). A 3� 3 secondary structure
substitution matrix derived from structural alignment of
SCOP domains is used for this purpose. The confidence
levels of secondary structure prediction are considered as
follows:

Sss ¼ Sseq
mean � CD1 � CD2 � SS12

Sseq
mean ¼

Xn
i¼1

Xm
j¼1

S
seq
ij =ðn�mÞ

Here Sseq
mean is the average of all positions to all positions

sequence similarity scores. wss is the weight factor, a con-
stant for all query sequences after it is trained. CD1 and
CD2 are the secondary structure prediction confidence
levels (0–9) of columns 1 of the query profile and columns
2 of the subject profile. SS12 is the secondary structure
substitution value of the two columns. n and m are the
lengths of the query protein sequence and subject protein
sequence. S

seq
ij is the sequence similarity scores of columns

i of the query profile and columns j of the subject profile.
An important characteristic of how PROCAIN incor-

porates these three types of information is that sequence
similarity scores or its average value are involved in every
additional score.

Database

A calibration database of 935 protein SCOP domains
is formed by picking a representative protein domain
from each SCOP fold (13). The subject database is com-
posed of 4147 SCOP protein domains. MSAs are formed
for all the protein sequences for both databases by run-
ning buildali.pl and then converted into numerical profiles.
SS is predicted for all the proteins in both databases using
PSIPRED (20). An all-to-all profile comparison is per-
formed within the subject database; for each protein
domain, the average score to nonhomologs is calculated.
Similarly, each protein profile of the calibration database
is compared to all the profiles of the subject database
using PROCAIN. The corresponding average scores
are calculated and recorded. The average scores for both
calibration and subject database profiles serve as rough
measures of their propensity to produce a large score in
a random comparison.
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Statistical significance estimation

As part of database construction, we precompute and
store background score distributions for profiles of the
searching database. First, for every profile A we calculate
the set of similarity scores (21) against all nonhomologous
profiles B in the same database and find the mean value
of this set, <s>A. Then we process this set by subtracting
the mean score of the counterpart profile B from each
score sAB: s

0
AB= sAB – <s>B. The resulting distribution

of scores {s0AB} for profile A is stored and used during the
search.
For every profile C in the calibration database, we

precompute the set of similarity scores {sCA} against
entries of the searching database and then calculate the
mean value of this set, <s>C. When the query profile
Q is compared to profiles in the calibration database,
the mean score of each profile C is subtracted from its
similarity score to the query sQC: s

0
QC= sQC – <s>C.

During the actual search, when query Q is compared to
profile A in the searching database, the distribution of
adjusted calibration scores for the query, {s0QC}, is com-
bined with the distribution of adjusted background scores
for the subject, {s0AB}. The resulting distribution is fitted
with EVD to estimate EVD parameters k and �, which are
then used in the Karlin–Altschul formula to calculate the
E-value: E ¼ kmne��S, where m and n are effective lengths
of the two profiles and S= sQA – 0.5(<s>QC+<s>A) is
the adjusted score for query against the database profile A.

Quality of homology detection by individual queries

We construct sorted lists of hits for each query domain,
and consider sensitivity (sensitivity= recall=TP/(TP+
FN), where TP and FN are the numbers of true positives
and false negatives, respectively) at a given level of selec-
tivity (selectivity= precision=TP/(TP+FP), where FP
is the number of false positives). These sensitivity values
for the evaluated methods are compared using paired
t-test and nonparametric paired Wilcoxon rank test. We
find that a 50% level of selectivity reveals the most signif-
icant differences between the compared methods, and
results are similar for the t-test and Wilcoxon test.

RESULTS

Numerical profiles describe amino acid content at MSA
positions and reflect, in a simple way, evolutionary process
in a protein family at the level of individual residues in
polypeptide chain. However, profile comparison position
by position cannot detect subtler yet powerful sequence
features that are dictated by structural or functional con-
straints and remain preserved long after the divergence of
two homologous sequence families. One obvious example
of such feature is the conservation of SS: as a rule, even
extremely distant homologs share SS elements that are
part of their common structural fold. We find that two
more features significantly improve the quality of homol-
ogy detection: the level of amino acid conservation at
individual positions and the presence of similar extended
motifs without insertions or deletions.

Alignment construction and scoring

Given MSA for a query protein family, PROCAIN per-
forms a search in a profile database, constructs profile–
profile alignments and reports significant similarities. We
introduce new approaches to both alignment construction
and estimating statistical significance of these alignments
(Figure 1). Profile–profile alignments are based on the
scores for similarity between individual positions of com-
pared MSAs. These scores include four terms (Figure 1): a
standard measure for the similarity in residue composition
(9) combined with three additional measures that reflect
local similarity in secondary structure, amino acid conser-
vation and sequence motifs:

s ¼ sseqð1þ wcCÞ þ wsssss þ �mwmsm

where sseq is the score for similarity of residue content at
the two compared MSA columns [the same measure as
used in COMPASS (9)], C is a measure of total conserva-
tion in the two columns, normalized to the range [0;1], wc

is the constant weight for the conservation term; sss and
wss are the score for similarity in predicted SS and the
corresponding constant weight. The last term rewards
aligned motifs: dm=1 if the two aligned positions have
a positive residue content score and belong to a longer
alignment segment that includes at least one position
with a positive score on each side, dm=0 otherwise; sm
is the sum of scores for similarity of residue content for the
given pair of positions and for its two immediate neigh-
bors (see Methods for details). Importantly, the motif
score is always non-negative: it rewards positive-scoring
segments of profile–profile alignment without indels but
does not additionally penalize gaps or mismatches. The
resulting positional scores s are used for the construction
of the optimal local Smith–Waterman alignment (22) of
the two profiles.

Estimating statistical significance

Accurate estimation of statistical significance of the opti-
mal alignment score (P-value or E-value) is essential for
the confident discrimination of even most distant homo-
logs from nonhomologs. In this respect, profile–profile
comparison presents a particular challenge: the optimal
alignment scores strongly depend on residue composition,
secondary structure, and other features of specific pairs
of compared profiles. As a remedy, Soding (13) suggested
constructing individual distributions of random alignment
scores for each query, based on the query’s comparison to
a calibration database. This database includes a single
protein representative from each structural fold and thus
should not contain more than one protein homologous
to the query; therefore the produced set of scores should
represent random comparisons of the query to unrelated
profiles. The resulting score distribution is used to esti-
mate statistical significance of a score between the query
and any given family.

Although this calibration adjusts statistical estimates
to individual properties of each query, it does not distin-
guish between various families present in the database.
These families also differ in their propensity to produce
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random high-scoring alignments with nonhomologs. We
develop this approach further and consider individualized
distributions on each side of the comparison, for both the
query and the database profiles. The most straightforward
way to construct a distribution of random scores for a
database profile would be to perform a calibration on
the same representative database as for the query. We
find, however, that the quality of homology detection ben-
efits from considering the composition of the specific data-
base where an actual search is performed. A typical search
would be aimed at 3D structure prediction and would
therefore involve a database of protein families with
known structures, for example, MSAs of sequence homo-
logs for PDB, SCOP or CATH representatives. In such a
database, we take advantage of knowing the actual rela-
tionships between database entries. For each database
profile, we precompute the set of similarity scores to non-
homologs in the same database. We then use the means of
these sets to further compensate for the different proper-
ties of database entries: each score for a given database
profile A against another profile B is individually adjusted
by subtracting the mean score of B (see ‘Methods’ section
for details). The resulting distribution of adjusted scores
for profile A is later used for the E-value estimation in the
actual search.

Similarly, for every profile in the calibration database
we precompute the mean score against all profiles in the
searching database. When the query is compared to the
calibration profiles, the corresponding means are sub-
tracted from the similarity scores, producing the calibra-
tion distribution. Finally, when the actual search is
performed, we combine calibration distributions for the
query and the database profiles and estimate the E-value
using approximation (23) of the combined distribution by
extreme value distribution (EVD) (24,25) (see ‘Methods’
section for details).

Quality of homology detection

To assess PROCAIN’s performance from different angles,
we use a number of evaluation tests. These tests are
based on a statistically balanced set of divergent protein
domains from SCOP (26), whose relationships are defined
by complementing SCOP annotation with a rigorous
Support Vector Machine (SVM)-based algorithm (2) and
combining a number of metrics for sequence and structure
similarity. Our evaluation of detection quality includes
complementary approaches to the definition of true/false
positives: reference-dependent approaches use ‘gold
standard’ domain relationships, whereas reference-
independent approaches focus on the quality of structural
matches predicted by the sequence alignment (2).
Results of several evaluations are shown in Figure 2.

Each plot includes ROC curves (27) for two versions of
PROCAIN (with and without consideration of SS),
PROCAIN’s predecessor COMPASS (9) and the current
state-of-the-art method employing SS prediction,
HHsearch (versions with and without consideration of
SS). In Figure 2a, true positives are defined as all
domain pairs that share the same SCOP superfamily or
have a significant similarity detected by our evaluation
system using Support Vector Machine (SVM) (2).
Comparison of these plots leads to important conclusions.
First, PROCAIN without SS significantly outperforms
COMPASS, the method based only on the residue simi-
larity at the profile positions. Moreover, performance of
PROCAIN without SS is similar to that of HHsearch with
SS (Figure 2a). This improvement is due to considering
residue conservation and motif matches, as well as the new
estimates of statistical significance. Second, introducing
the comparison of SS in either PROCAIN or HHsearch
further improves detection quality, especially in the
area of remote homologs (the right part of the plot).

Figure 1. Schema of PROCAIN procedures for construction of sequence alignments (green) and estimation of their statistical significance (orange).
For the two compared multiple sequence alignments (MSAs), scores between individual positions are calculated by combining the standard measure
for the similarity of residue content in the alignment columns (step 3a) with the motif (3b), conservation (3c) and secondary structure (3d) terms. The
resulting scores for positional matches are used to construct the optimal local alignment by Smith–Waterman algorithm. To estimate the statistical
significance of the optimal alignment score, we perform comparisons to unrelated profiles for both the query and subject MSAs. The query is
compared to the calibration database, whereas the subject is compared to unrelated profiles in the searching database. The combined distribution of
the resulting random scores is approximated with extreme value distribution (EVD) and used to calculate E-value.
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Indeed, conservation of SS becomes more important for
highly diverged proteins with low sequence similarity.
Third, performance of PROCAIN with SS is significantly
higher than that of HHsearch, which is considered a cur-
rent standard in the field (Figure 2a).
Although information about SS improves the discrimi-

nation between homologs and nonhomologs, it might
potentially scramble the ranking of evolutionary distances
between detected homologs and the query. If overempha-
sized, SS similarity to a distant relative might bring this
protein to the top of the list of detected homologs, above
the query’s immediate relatives. This effect would diminish
the method’s value for evolutionary analysis and predic-
tion of structure and function. As a control for this effect,
we evaluate the quality of detecting only closest homology
relations, by disregarding more remote homologs as false
positives. Figure 2b shows ROC curves where true positive
matches are defined as sharing the same SCOP superfam-
ily, which generally corresponds to the similarity detected
by PSI-BLAST. Notably, in this range of evolutionary
distances PROCAIN and HHsearch have similar quality
of homolog ranking, unaffected by the addition of SS
information (Figure 2b).
For the purpose of structure and function prediction,

a method should not only correctly rank the detected

similarities but also provide meaningful sequence align-
ments. Figure 2c shows the quality of detecting all homo-
logs, including remote, with additional requirement for
the accuracy of produced alignments. Similarity to a
homolog is considered a true positive only if the corre-
sponding alignment has a certain level of quality, either
reference-dependent (matching a ‘gold-standard’ struc-
tural alignment) or reference independent (generating a
reasonable structural superposition). In this experiment,
alignments are required to either correctly reproduce �5
residue matches in the reference DALI (28) alignment,
or to generate structure superposition with GDT_TS
(29) score �0.15 (see ‘Methods’ section for details).
According to these criteria both versions of PROCAIN
have a higher detection quality than HHsearch version
with SS, which indicates improvement in the alignment
accuracy for the detected homologs (Figure 2c).

As a more direct evaluation of structure modeling, we
use an approach conceptually similar to the one in the
Critical Assessment of Techniques for Protein Structure
Prediction (CASP) (30). We define true positives accord-
ing to their value for structure prediction rather than to
a fixed reference of protein relationships and alignments.
In this reference-independent evaluation (Figure 2d), any
detected protein superpositions with GDT_TS � 0.15 are

Figure 2. Quality of homology detection by PROCAIN compared to other methods. ROC plots are shown for PROCAIN and HHsearch, both with
and without consideration of SS, and for PROCAIN predecessor COMPASS. Light and dark green, PROCAIN without and with SS, respectively.
Blue and purple, HHsearch without and with SS, respectively. Red, COMPASS. (a) True positives include all homologs as annotated by SCOP and
predicted by a combination of similarity measures (see text for details). (b) True positives defined only as close homologs. (c) True positives defined
as in (a), with additional requirement for the level of alignment accuracy. (d) True positives defined in a reference-independent fashion, as alignments
corresponding to meaningful structural superpositions (GDT_TS > 0.15).
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considered true positive; all others false positives. Both
versions of PROCAIN show a significantly higher refer-
ence-independent detection quality than other methods
(Figure 2d).

Homology detection by individual queries

Evaluation based on all-to-all comparisons (Figure 2)
might be biased if a subset of queries produces many
highly significant hits that dominate the beginning of the
ROC curve. To control for such a bias, we compare the
performance of the methods query by query. For each
query in our set, we consider the sorted list of hits and
calculate sensitivity at a given level of selectivity (see
‘Methods’ section in Supplementary Data). For a pair of
methods, sensitivity values for each query are compared
using the paired t-test. Table 1 shows t-test P-values for
sensitivity at 50% selectivity; data for other sensitivity
levels are included in SI Table S8 and S9. Consistent
with the results of all-to-all comparisons (Figure 2),
at the level of individual queries PROCAIN performs
significantly better than other methods.

Homology detection in protein classes

PROCAIN performs differently in different major protein
classes. Results of evaluation of homology detection qual-
ity within the main SCOP classes (all a, all b, a/b and
a+ b) can be found in Supplementary Figures S3–S6.
PROCAIN performance in the a/b class is very similar
to the overall performance, whereas the other three
classes show significant differences. Similar, yet somewhat
smaller, differences are observed for HHsearch (see
Supplementary Figures S3–S6). We hypothesize that
these differences may reflect the composition of the train-
ing set that is used to optimize the weights (wc, wss and wm)

of additional terms in PROCAIN score. This set consists
of domains randomly chosen from the total evaluation set,
and therefore shows a similar distribution of representa-
tives among the main classes. As the protein world in
general, this set is dominated by the homologs from the
a/b class (47.9%), whereas all a, all b and a+ b classes are
less represented (17.6%, 9.6% and 8.9%, respectively).
The observed difference in performance suggests that

adjustment of scoring parameters according to the
query’s class may be a plausible further direction to
increase the detection quality. For example, for all a or
all b proteins, the improvement introduced by considering
SS is smaller compared to the whole set (Supplementary
Figures S3 and S4). Indeed, an SS prediction string that
consists mainly of a single SS type bears less additional
information for an aligner than a string with clearly delim-
ited SS elements of different types. Therefore, in all a and
all b proteins, using a lower relative weight for the SS
score may put more emphasis on the direct amino acid
similarity, which might be more important to detect.

Alignment quality

Similar to the evaluation of homology detection, we use
both reference-dependent and -independent criteria for the
assessment of alignment quality. Figure 3 shows the qual-
ity of alignments produced by COMPASS, HHsearch and
PROCAIN evaluated by three measures. Accuracy with
respect to the reference alignment is defined as the fraction
of correctly aligned positions among all aligned residue
pairs. Coverage is the ratio of alignment length to the
overall length of the reference structural alignment. As a
reference-independent measure, we use GDT_TS (29) of
the structural superposition guided by the alignment
under evaluation.
PROCAIN generally produces much longer alignments

with coverage of 40% larger than COMPASS and almost
200% larger than HHsearch (Figure 3b). Manual inspec-
tion of alignments suggests that PROCAIN aligns the
same relatively easy sequence segments as HHsearch
or COMPASS, and additionally extends the alignment
in both directions. These extended regions often have
lower similarity and are harder to align. Lower accuracy
in these regions reduces the overall alignment accuracy
(Figure 3a). However, the less accurate alignments that
include more divergent protein parts may better reflect
structural and functional protein similarities. Such align-
ments may be especially beneficial in structure modeling,
being more informative than clear-cut yet short align-
ments covering only a few SS elements. Accordingly,
PROCAIN alignments are favored by reference-
independent evaluation based on structure superposition
(Figure 3c).

Subtle homology relations detected by PROCAIN

In our SCOP data set, PROCAIN confidently (E-value
<0.01) detected 405 pairs of distant homology relation-
ships between SCOP domains that belong to different
superfamilies while structurally similar. These relation-
ships were missed by HHsearch (HHsearch probability
<0.20). On the other hand, approximately 68% fewer

Table 1. Paired tests for detection quality on individual queries

50% sensitivity COMPASS HHsearch_
noss

ProCAIn_
noss

HHsearch_
ss

HHsearch_noss 9.01e-46
�4.6e-36
8.3e-04
0e+00

ProCAIn_noss �2.24e-146 �1.28e-194
�6.23e-54 �8.52e-05
�1.31e-126 �1.94e-113
1.22e-105 �0e+00

HHsearch_ss �3.77e-171 �0e+00 8.09e-01
�1.03e-60 �7.43e-28 �4.05e-02
�7.96e-76 �5.69e-242 1.46e-06
0e+00 �0e+00 0e+00

ProCAIn_ss �6.43e-300 �1.27e-261 �1.63e-189 �3.73e-94
�8.45e-87 �1.21e-12 �3.59e-15 �1.39e-03
�3.32e-298 �3.6e-252 �3.47e-191 �3.73e-121
�6.01e-66 �0e+00 �0e+00 �0e+00

Methods are compared by sensitivity values at 50% selectivity, calcu-
lated separately for each query. The cell for each pair of methods
contains P-values of paired t-test for four criteria of true/false positive
distinction, the same as used in Figure 2a–d (from top to bottom):
reference dependent, close homologs only, reference dependent with
alignment quality, and reference independent. Plus and minus signs
by the P-values denote, respectively, positive and negative difference
between the method on the left and the method on the top.
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distant relationships (129 domain pairs) are detected by
HHsearch (probability >0.91, which corresponds to
PROCAIN E-value of 0.01) and missed by PROCAIN
(E-value >2.13, which corresponds to HHsearch probabil-
ity of 0.20). Full lists of these similarities are included
in Supplementary Data. The considerable amounts of
remote homologs uniquely detected by either of the meth-
ods reflect conceptual differences between PROCAIN
and HHsearch. Thus, as is often the case in sequence ana-
lysis, a user searching for distant protein similarities would
benefit from combining both methods.

Figure 4 shows two examples of subtle homology
relationships detected by PROCAIN. The nitrilase
Nit domain of NIT-FHIT fusion protein from
Caenorhabditis elegans (PDB ID 1emsA, domain 2,
Figure 4a) is similar to the mre11 nuclease from achreon
Pyrococcus furiosus (PDB ID 1ii7A, Figure 4b), with
a significant PROCAIN E-value of 9.9 10–3. Mre11 is a
central component of a protein complex responsible
for homologous recombination, telomere length mainte-
nance and DNA double-strand break repair in eukariotes
(31). The NIT-FHIT protein is involved in purine

(a) (b)

(c) (d)

lems HFIAVCQMTSDND=====LEKNFQAAKNMIERAGEKKCE=
1ii7 AHLADIHLGYEQFHKPQREEEFAEAFKNALEIAVQENVDF

MVFLPECFDFIGLNKNEQIDLAMATDCEYMEKYRELARKHNIWLS
ILIAGDLFHSSRPSPGTLKKAI=====ALLQIPKE==HSIPVFAI

LGGLHHKDPSDAAHPWNTHLIIDSDGVTRAEYNKLHLFDLEIPGK
EGNHDRTQRGPSVLN=====LLEDFGLVYVIGMRKEKVENEYLTS

VRLMESEFSKAGTEMIPPVDTPIGRLGLSICYDVRFPELSLWNRK
ERLGNGEYLVKG==VYKDLEIHGMKYMSSAWFEANKEILKRLFRP

RGAQLLSF=PSAFTLNTGLAHWETLLRARAIENQCYVVAAAQTGA
TDNAILMLHQGVREVSEARGEDYFEIGLGDLPEGYLYYALGHI==

HNPKRQSYGHSMVV===DPWGAVVAQCSERVDMCFAEIDLSY
HKRYETSYSGSPVVYPGSLERWDFGDYEVRYEWDGIKFKERY

1g9g FLDLFTKDTGTPAKQFKYTNAPDADARAVQATYWADQWAKEQG
2sqc YLLSCQKDEGYWWGPLXISPVWDT=GLAVLALRAA========

KSVSTSVGKATKMGDYLRYSFFDKYFRKIGQPSQAGTGYDAAHYLLSW
=GLPADHDRLVKAGEWLL=======DRQITVPGD=============W

YYAWGGGIDSTWSWIIGSSHNHFGYQNPFAAWVLSTDANFKPKSSNGA
AVKRPNLKPGGFAFQFDNVYYPDVCDTAVVVWALNTLRLPDERRR===

SDWAKSLDRQLEFYQWLQSAEGAIAGGATNSWNGRYEAVPSGTSTFYG
===RDAMTKGFRWIVGMQSSNGGWG=====AYDVDNTSDLPNHIPFSD

MGYVENPVYADPGSNTWFGMQVWSMQRVAELYYKTGDARAKKLLDKWA
FGEVTDPPSED============VTAHVLECFGSFGYDDAWKVIRRAV

KWINGEIKFNADGTFQIPSTIDWEGQPDTWNPTQGYTGNANLHVKVVN
EYLKR EQ==KPDGSWF=====------=========GRWGVN=====

YGTDLGCASSLANTLTYYAAKSGDETSRQNAQKLLDAMWNNYSDSKGI
===YLYGTGAVVSALKAVGIDTRE====PYIQKALDWVEQHQNPDGGW

STVEQRGDYHRFLDQEVFVPAG========WTGKMPNGDVIKSGVKFI
GEDCRSYEDPAYAGKGASTPSQTAWALMALIAGGRAESEAARRGVQY=

DIRSKYKQDPEWQTMVAALQAGQVPT===QRLHRFWAQSEFAVANGVY
=LVETQRPDGGWD==EPYYTGTGFPGDFYLGYTMY=RHVFPTLALGRY

Figure 4. Subtle homology relations detected by PROCAIN. (a, b) Similarity between a Nit domain (PDB ID 1emsA, domain 2) and mre11 nuclease
(PDB ID 1ii7A). (c, d) Similarity between CelF endocellulase (PDB ID 1g9gA) and squalene-hopene cyclase (PDB ID 2sqcA, domain 1). Matched
protein regions corresponding to blocks in PROCAIN alignments are shown in the same color, from blue to red. Unmatched regions are colored
gray. Sequence alignments are colored according to predicted secondary structure, with a-helices and b-strands shown in red and cyan, respectively.

Figure 3. Quality of alignment between homologs. Color-coding is the same as in Figure 2: light and dark green, PROCAIN without and with SS,
respectively; blue and purple, HHsearch without and with SS, respectively; red, COMPASS. Average parameters of alignment quality are shown for
several bins of remote sequence identity: 0–5%, 5–10%, 10–15% and 15–20%. (a) Reference-dependent accuracy. (b) Coverage. (c) GDT_TS of
alignment-guided structure superposition. See text for details.
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metabolism (32). In vertebrates, Nit and Fhit homologs
are expressed as two separate interacting proteins. Fhit is
a nuleotide-binding domain strongly associated with car-
cinogenesis and tumor suppression (32), whereas the sub-
strate and cell biology of Nit are unknown. SCOP assigns
mre11 and Nit to different superfamilies within metallo-
dependent phosphatase fold of a+ b class (carbon-
nitrogen hydrolases and metallo-dependent phosphatases,
respectively), noting that these superfamilies share ‘some
topological similarities’ in structure but not establishing
homology. The detected sequence similarity should have
significant implications for the evolution and biology of
both double-strand DNA repair and purine metabolism in
eukaryotes.

As another example, PROCAIN predicts homology
(with E-value=3.0 10–3) between two bacterial all-a
proteins: processive endocellulase CelF from Clostridium
cellulolyticum (PDB ID 1g9gA, Figure 4c) and squalene-
hopene cyclase from Alicyclobacillus acidocaldaris (PDB
ID 2sqcA, domain 1, Figure 4d). These domains share a
significant structure similarity (DALI Z-score=16.7) yet
belong to different SCOP superfamilies: six-hairpin glyco-
sidases and terpenoid cyclases/protein prenyltransferases,
respectively. CelF is a component of cellulosome, protein
complex responsible for the degradation of cellulose and
similar substrates outside the cell. Squalene-hopene
cyclase is a membrane protein with the active site located
in a large central cavity (33,34). The detected homology
between these domains may suggest a similar functional
role of the internal cavity in enzymatic activity of CelF.

DISCUSSION

Here we present a new method for sequence profile
comparison that complements ‘vertical’ context of MSA,
i.e. substitution constraints at individual sequence posi-
tions, with ‘horizontal’ context, i.e. patterns of residue
contents at multiple positions. We find that the additional
‘horizontal’ information, in the form of similarity in pre-
dicted SS and local sequence motifs, significantly expands
the range of detected remote protein relationships.
Combining this information with the new approach
to the estimation of statistical significance, PROCAIN
provides the quality of homology detection beyond the
capabilities of current state-of-the-art methods.

Contribution of SS prediction

Similar to others (13,14), we find that considering SS pre-
diction leads to significant improvement in both similarity
detection (Figure 2) and alignment accuracy (Figure 3).
As expected, this improvement is more pronounced for
extremely distant homologs, where direct sequence signals
are weak yet SS is conserved. SS prediction itself (20)
involves the analysis of various types of information
derived from sequence profiles: periodic patterns of hydro-
phobicity, residue propensities for occurrence in SS ele-
ments, specific sequence motifs, and so on. Thus, for the
purposes of homology detection, similarity between SS
predictions, regardless of their accuracy, may be consid-
ered as a simple representation of ‘horizontal’ sequence

patterns in the compared protein families. After testing
different ways of including SS predictions in the profile
comparison, we find that the best performance results
from a simple addition of the weighted substitution
score for SS types. The optimal weight value, wss=0.1,
appears to be similar to that used in HHsearch (13), sug-
gesting that this might be a general optimal ratio of mixing
residue and SS information.

Contribution of additional non-SS features

Although the comparison of SS predictions is a major
contributor to the increased quality of homology detection
(Figure 2), it does not dominate the improvement as much
as reported for HHsearch, a conceptually similar method
based on the comparison of HMMs (13). Interestingly,
inclusion of simple profile features (positional conserva-
tion and the presence of ungapped segments in profile
alignment), as well as the new protocol of statistical esti-
mation, results in a performance comparable to that of
HHsearch with SS included (Figure 2a). HHsearch (13)
is based on HMM–HMM comparison allowing for flexi-
ble gap penalties in alignment construction, and is consid-
ered among the best performing methods for homology
detection. We find that a similar detection quality can be
achieved by a simpler profile aligner with fixed gap penal-
ties and no SS consideration (Figure 2). Addition of
SS improves the quality of PROCAIN detection further,
beyond the previously achievable levels (Figure 2). The
simplicity of profile–profile comparison makes it more
tractable for analyzing contributions of different
score terms and procedures, providing potentially an
easier platform for finding directions of major improve-
ment. However, evaluation of the effects of additional
PROCAIN procedures on HMM comparison would be
extremely interesting.
An important PROCAIN feature that differs from

previously reported methods is the score that rewards
clusters of positive matches in continuous motifs but
does not penalize for their absence. In such a cluster,
each positional match receives additional score input
from neighboring matches. This scheme boosts the impor-
tance of longer stretches of similar sequence positions,
which are typical in homologs, and evens out the scores
within a stretch, so that the signals from extremely con-
served positional matches are further distributed over
their closest neighbors.

E-value estimation based on symmetrized calibration

A significant contribution to PROCAIN’s performance
comes from the new approach to the estimation of statis-
tical significance of detected similarities. In our symme-
trized calibration scheme, the background score
distributions are derived for both query and its database
counterparts. When used as queries, different profiles are
known to differ in the heaviness of the tail of random
score distribution: the same score value may be quite sig-
nificant for one query and marginal for another. These
differences are caused by variations in profile properties,
some of which are easier to model separately (length,
sequence diversity), whereas others are more difficult
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(residue composition, SS content, etc.) In the same fash-
ion, profiles in the searching database have different pro-
pensity to appear as highly scored matches when
compared to an unrelated query. Thus, a random model
of individual comparison between a query and a database
profile would be more accurate if the background distri-
butions for both query and subject are considered.
Our scheme does not affect the computational speed
of the search, since all distributions for the database
profiles are pre-computed and analytically approximated
in advance. Given the power of today’s computational
resources, building distributions based on com-
parisons of unrelated entries in the search database is fea-
sible and may be beneficial for various other search
applications.
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