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Brain‑dead and coma patients 
exhibit different serum metabolic 
profiles: preliminary investigation 
of a novel diagnostic approach 
in neurocritical care
Tomasz Dawiskiba1,5*, Wojciech Wojtowicz2,5, Badr Qasem2, Marceli Łukaszewski3, 
Karolina Anna Mielko2, Agnieszka Dawiskiba3, Mirosław Banasik4, Jan Paweł Skóra1, 
Dariusz Janczak1 & Piotr Młynarz2*

There is a clear difference between severe brain damage and brain death. However, in clinical practice, 
the differentiation of these states can be challenging. Currently, there are no laboratory tools that 
facilitate brain death diagnosis. The aim of our study was to evaluate the utility of serum metabolomic 
analysis in differentiating coma patients (CP) from individuals with brain death (BD). Serum samples 
were collected from 23 adult individuals with established diagnosis of brain death and 24 patients 
in coma with Glasgow Coma Scale 3 or 4, with no other clinical symptoms of brain death for at least 
7 days after sample collection. Serum metabolomic profiles were investigated using proton nuclear 
magnetic resonance (NMR) spectroscopy. The results obtained were examined by univariate and 
multivariate data analysis (PCA, PLS‑DA, and OPLS‑DA). Metabolic profiling allowed us to quantify 
43 resonance signals, of which 34 were identified. Multivariate statistical modeling revealed a highly 
significant separation between coma patients and brain‑dead individuals, as well as strong predictive 
potential. The findings not only highlight the potential of the metabolomic approach for distinguishing 
patients in coma from those in the state of brain death but also may provide an understanding of the 
pathogenic mechanisms underlying these conditions.

Abbreviations
1D  One-dimensional
2D  Two-dimensional
ATP  Adenosine triphosphate
AUC   Area under the curve
BCAAs  Branched chain amino acids
BD  Brain death
CAC   Citric acid cycle
CI  Cerebral infarction
COSY  Correlation spectroscopy
COW  Correlation optimized warping algorithm
CP  Coma patients
CV  Coefficient of variation
CV-ANOVA  Analysis of variance of the corss-validated residuals
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FDR  False discovery rate
GC  Gas chromatography
HSQC  1H–13C heteronuclear single quantum correlation
ICH  Intracerebral hemorrhage
LC  Liquid chromatography
MS  Mass spectrometry
NMR  Nuclear magnetic resonance
NSE  Neuron-specific enolase
OPLS-DA  Orthogonal partial least squares discriminant analysis
Par  Pareto scaling
PCA  Principal component analysis
PLS-DA  Partial least squares discriminant analysis
PQN  Probabilistic quotient normalization
ROC  Receiver operating characteristic
STOSCY  Statistical total correlation spectroscopy
TOCSY  Total correlation spectroscopy
UV  Unit variance scaling
QCV  Coefficient of quartile variation

In classical terms, human death as a whole has been identified by the irreversible cessation of breathing and 
blood  circulation1,2. Shifting the boundary of death and extending it to patients with critical brain damage was 
revolutionary and changed the paradigms of modern medicine. It is assumed that it is impossible to determine 
either the beginning or the end of death, but medical criteria that most certainly confirm the irreversibility of 
this phenomenon should be provided at any time in its duration. The diagnosis of brain death in most cases can 
be based only on clinical examination with a detailed analysis of the causes, mechanisms and effects of brain 
 damage3–6. Situations in which clinical tests allowing the diagnosis of brain death cannot be executed or clearly 
interpreted include cases of subtentorial brain damage, cases of extensive facial injuries, situations with the 
presence of abnormal neurological reflexes, and cases of being under the influence of certain contaminants or 
specific pharmacological  agents2,7. The diagnostic process must then be complemented by additional tests such as 
cerebral arteriography, which are not always easily accessible. It should be noted that laboratory diagnostics still 
have not proven to be a useful tool in such situations. Recognition of brain death, or at least suspicion of brain 
death, could resemble in such cases the diagnosis of acute myocardial infarction with the fundamental role of 
serum troponin determination. So far, the presumed potential of only two proteins has been initially disclosed 
S100B  protein8–10 and neuron-specific enolase  NSE9,11, but these are single reports only, and no comprehensive 
analysis applying modern proteomic methods has yet been performed. It can therefore be concluded that, despite 
the seriousness of the problem, this theme is a kind of terra incognita in medicine, scientific reports dedicated 
to this subject are practically nonexistent, and the search for new methods of brain death diagnosis seems to be 
an absolute necessity.

The concept of metabolomic studies is based on the observation that with the development of pathological 
processes, both local and systemic, the first symptoms appearing at the cellular level are directly reflected in 
the chemical composition of tissues subject to these processes and also in body fluids. These processes may be 
minor changes involving the disruption of the quantitative ratio between different chemical compounds as well 
as changes that are easier to detect, such as the appearance of entirely new chemical compounds (biomarkers of 
disease) or the disappearance of specific molecules present in homeostasis. The analysis of the abovementioned 
issue allows for the creation of predictive and discriminatory models by which the detection of even subtle 
changes in the concentrations of metabolites constitute the differentiating  factor12–14. Metabolomics research is 
primarily based on gas or liquid chromatography–mass spectrometry (GC–MS/LC–MS) and nuclear magnetic 
resonance (NMR)  platforms12–15.

The aim of our research was to answer the question of whether there are changes in the profile of low 
molecular weight compounds present in blood serum in the process of brain death and to identify the metabolic 
biomarkers of this condition. This is the first such report in the literature.

Materials and methods
Serum sample collection. Serum samples of brain-dead (BD) individuals and coma patients (CP) were 
collected mainly at the Department of Anesthesiology and Intensive Therapy of Wroclaw Medical University. 
Additionally, biological material from brain-dead cadavers was collected in other hospitals in the region of Lover 
Silesia during organ procurements performed by surgeons of the Department of Vascular, General and Trans-
plantation Surgery of Wroclaw Medical University (the same protocol). The study was approved by the Com-
mission of Bioethics at Wrocław Medical University (Approval no. KB-25/2018), and written informed consent 
was obtained from legal representatives of all the patients before enrollment in the study. All these research were 
conducted according to The Code of Ethics of the World Medical Association (Declaration of Helsinki).

The samples were collected from March 2018 to April 2019 from adult individuals with established diagnosis 
of brain death (n = 23) and comatose patients (n = 24) (Table 1). The diagnosis of brain death was determined and 
certified by three independent specialists according to current Polish  law16,17 and was not related to the research 
project. The control group was formed of patients in coma in Glasgow Coma Scale 3 or 4, with no other clinical 
symptoms of brain death for at least 7 days after collection of serum (preservation of brain stem reflexes and/
or of respiratory drive). No analgosedation was applied in the enrolled patients. The primary causes of brain 
death and coma were hypoxic-ischemic brain injury, traumatic brain injury and nontraumatic intracerebral 
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hemorrhage (detailed information in Table 1). Patients with other causes of death or coma (e.g., brain tumors 
or meningitis) were excluded from the study, as well as those below 18 years, cases with evidence of malignancy 
or xenobiotic intoxication and individuals subjected to renal replacement therapy. No pregnant women were 
enrolled in the study. Signals related to medications (mannitol, furosemide, proton-pump inhibitors, antibiotics, 
noradrenaline, steroids, low molecular weight heparins and antipyretics) were eliminated from the statistical 
and chemometric evaluation.

Serum was sampled from the peripheral vein and collected using serum vacuum tubes (BD Vacutainer 
ref. 369032) that were then centrifuged at 1000 × rpm for 15 min at 4 °C. The samples were stored in Eppendorf-
type tubes and kept at − 80 °C until analysis. Transport was accomplished with the use of liquid nitrogen storage 
dewars.

Samples preparation and NMR measurements. The collected serum samples were prepared accord-
ing to a well-established  protocol18,19. The serum samples were thawed at room temperature and vortexed. Each 
serum sample (200 μL) was mixed with 400 μL of saline solution (0.9% NaCl, w/v) containing 20%  D2O and 
centrifuged (10 min, 12 000 RPM, 4 °C). Supernatant (550 μL) from each sample was transferred into a 5-mm 
NMR tube (SP, 5 mm ARMAR Chemicals). The samples were kept at 4 °C before measurement.

The one-dimensional (1D) NMR spectra of serum samples were recorded at 298 K using an Avance II spec-
trometer (Bruker, GmBH, Germany) and cpmg1dpr pulse sequence with water presaturation (Bruker notation), 
which was operating at a proton frequency of 600.58 MHz. The serum sample spectra were collected as 128 fol-
lowing scans with spin-echo delay of 1000 μs, 80 loops, relaxation delay of 3.5 s, acquisition time of 2.73 s, size 
of FID (TD), 65,536 points, spectra width of 20.01 ppm, line-broadening factor (LB), 0.3 Hz and transmitter 
frequency offset (O1P), 4.722 ppm.

Two-dimensional (2D) NMR experiments were recorded and processed for selected samples. The performed 
experiments included 1H−1H correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), and 
1H−13C heteronuclear single quantum correlation (HSQC).

Processing of NMR spectra and resonance signal identification for data analysis. The col-
lected 1D 1H NMR spectra were processed with LB of 0.3 Hz and manually phased and baseline corrected with 
MestReNova software (Mestrelab Research v 12.0.4). The spectral chemical shifts were referenced on the glucose 
anomeric carbon signal group δ = 5.225 ppm. Spectral processing was performed in the 0.500 ppm–10.000 ppm 
chemical shift range. Spectral sections from 4.400 to 5.000 ppm, corresponding to water resonance signal sup-
pression, were removed from the data matrix. The alignment of resonance signals was carried out with the use 
of the correlation optimized warping algorithm (COW)20 and the icoshift algorithm implemented in MATLAB 
(v R2019a, Mathworks Inc.)20. All of the spectra were normalized by the PQN (probabilistic quotient normaliza-
tion)  method21. The calculation of the relative integral of NMR measured metabolites was obtained as a sum of 
data points of the nonoverlapping resonances or a cluster of partly overlapping resonances from the data matrix 
consisting of 46,842 data points for each spectrum in n dimensions. The third quartile values of the noise region 
(0.625 ppm) were subtracted from the calculated relative integrals to decrease the influence on the final values.

The 1H NMR resonance signals and corresponding chemical shifts were analyzed with statistical total cor-
relation spectroscopy (STOSCY)22 and identified in accordance with assignments published in the literature. 
Chenomx software (v 8.4 Chenomx Inc. Edmonton, Alberta, Canada) and online databases: Biological Magnetic 
Resonance Data  Bank23 (www. bmrb. wisc. edu) and Human Metabolome Data  Base24 (www. hmdb. ca).

Univariate and multivariate data analysis. All univariate data analyses were carried out with MAT-
LAB software (v R2019a, Mathworks Inc.) on non-scaled data. Values below the limit of quantification were 
replaced with the third quartile value of the noise region (0.625 ppm) for a specific variable. Levene’s test was 
used to assess homogeneity of variation. Normality of distribution was verified with the Shapiro–Wilk test. 
Depending on the results of normality and variance tests, a parametric (equal/unequal variance Student’s t-test) 
or nonparametric (Mann–Whitney–Wilcoxon test) variant was calculated. Multigroup univariate analysis was 
performed with the Kruskal–Wallis test with Dunn-Sidak post hoc tests. The false discovery rate (FDR) based 
on the Benjamini–Hochberg procedure was applied for the tested variables. All univariate statistical tests were 
calculated at a significance level of α = 0.05. Dispersion of variables was represented by the coefficient of variation 

Table 1.  Demographic data and clinical profile of patients.

Brain-dead individuals Coma patients

Number of patients − overall 23 24

Hypoxic-ischemic brain injury 5 8

Traumatic brain injury 4 8

Nontraumatic intracerebral hemorrhage 14 8

GCS 3/GCS 4 23/none 13/11

7/30/90 days survival − number of patients None 24/18/13

Sex (male/female) 17/6 14/10

Average age (mean/range) 49.3 (22–74) 56.7 (19–87)

http://www.bmrb.wisc.edu
http://www.hmdb.ca
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(CV) for normally distributed data or otherwise by the coefficient of quartile variation (QCV). Assessment of 
classifier performance was represented by ROC curve analysis using the perfcurve MATLAB (v R2019a, Math-
works Inc.) function.

The model calculations were performed using unit variance (UV) scaling for the relative integral values, 
while Pareto (Par) scaling was applied to a data matrix containing data from the entire spectrum. Both data 
sets were then used for calculations in the SIMCA 15.0.2.5959 program [Sartorius Stedim Data Analytics AB, 
2018)]. Principal component analysis (PCA) was applied for data overview and for extreme outlier detection 
based on Hotelling’s T2 range (99%). Discriminant analysis was performed by the partial least squares method 
(PLS-DA) for relative integral data (43 variables corresponding to the range of specific resonance signals) and 
orthogonal partial least squares (OPLS-DA) for whole spectra data (46,842 variables as matching data points for 
chemical shifts). OPLS-DA data visualizations are presented together with Hotelling’s T2 range (95%) ellipse. 
The reliability of the PLS-DA and OPLS-DA models was assessed by analysis of variance of the corss-validated 
residuals (CV-ANOVA) at a significance level α = 0.05. Discrimination model score plots are also presented as 
cross-validated versions in the Supplementary  Materials25. The prediction effectiveness of the PLS-DA model is 
presented by a receiver operating characteristic (ROC) curve with the use of the perfcurve function in MATLAB 
(v R2019a, Mathworks Inc.). For this purpose, the true negative rate and true positive rate were determined 
according to sample class assignation, applying the sevenfold cross-validated predicted values from the modeled 
observations using the YPredcv function for the PLS-DA model (implemented in SIMCA 15.0.2.5959 software, 
Sartorius Stedim Data Analytics AB, 2018).

Results
The 1H NMR spectra measurements allowed us to quantify 43 resonance signals: 34 identified and 9 unknown 
compounds. Two data types were used to assess the possible distinction between the studied groups: the first 
based on the abovementioned specifically selected quantified resonance signals (Figs. 1, 2) and the second with 

Figure 1.  Principal component analysis (PCA) score plot (left) and corresponding loading plot (right) with all 
quantified 1H NMR variables for patients enrolled in the study. Light gray—coma patients (CP); gray—brain-
dead individuals (BD).

Figure 2.  Partial least squares discriminant analysis (PLS-DA) score plot with two standard deviation range 
from mean for each group together with receiver operating characteristic curve (ROC) on first PLS-DA latent 
variable for sample classification. Light gray—coma patients (CP); gray—brain-dead individuals (BD); red circle 
on the ROC curve marks the optimal operating point.
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46,842 data points (Fig. 3). Details of the chemical shifts and resonance signals taken for analysis are presented 
in the supplementary data (Table S1).

The data obtained were elaborated by univariate and multivariate analysis. The exploratory analysis that was 
accomplished with the use of a PCA model based on the relative integrals of resonance signals revealed spontane-
ous separation between the studied groups (CP vs BD), although its extent was not substantial. In addition, PCA 
based on the Hotelling T2 range with a significance level equal to 0.01 revealed no extreme outliers, enabling the 
use of all observations for discriminant analysis based on PLS and OPLS models. The variables that influenced 
the positions of observations in the PCA model are presented in Fig. 1.

Both calculated multivariate models demonstrated favorable separation between the CP and BD groups, 
attained high predictive potential and were strongly statistically relevant (Table 2). The PLS-DA model vali-
dation based on cross-validated analysis of variance (CV-ANOVA) revealed statistical significance with a p 
value = 1.56E−07, while the OPLS-DA model had a p value = 4.54E−05. The PLS-DA discriminant model was 
also assessed with the use of a receiver operating characteristic curve (ROC) and the area under the curve value 
(AUC). Its sensitivity and specificity were calculated from sample class prediction during the cross-validation 
procedure (YpredCV) in SIMCA v15.0.2.5959 software (Sartorius Stedim Data Analytics AB, 2018). The discrimi-
nant model obtained a high AUC value equal to 0.944. The graphical representations for PLS-DA and OPLS-DA 
comparisons between the CP and BD groups for the two latent variable models are shown in Figs. 2 and 3. To 
verify the influence of resonance signals that were not quantified, the OPLS-DA model based on whole-spectra 
analysis was calculated along with a graphical representation of the importance of the variables in the predictive 
component versus the chemical shift (Fig. 3, right). The graph is colored according to model loadings scaled as 
coefficients of correlation between the models and original data (Fig. 3, right).

Verification of potentially important single variables as valuable classifiers between coma patients and brain-
dead individuals proceeded with the use of univariate analysis. Statistically important metabolites are presented 
together with descriptive statistics and ROC curve (AUC) values (Table 3). Univariate analysis revealed significant 
differences in 15 resonance signals, of which 9 were identified according to chemical shift, STOCSY analysis 
and 2D NMR spectra, while 6 remained unidentified. For those statistically important metabolites, fold change 
values were calculated (Fig. 4), as well as their AUC values (Fig. 5). Seven metabolites were increased in the BD 
group (Unk 1, Unk 5, methanol, acetone, Unk 2, acetate, 3-methyl-2-oxovalerate), and 8 were decreased (Unk 
7, isoleucine, betaine, Unk 6, methylhistidine, glycine, Unk 9 valine). The highest change was observed in the 
relative integral of the singlet resonance signal for methanol, with a fold change equal to 11.13. Of the above-
mentioned statistically important metabolites, 5 exhibited AUC values above 0.800 (Unk 1, Unk 5, methanol, 
Unk 7 and acetone), including 2 values even exceeding 0.900 (Unk 5 and methanol). The whole-spectra analysis 
by the OPLS-DA model confirmed the results of PLS-DA, indicating the two most important 1H NMR spec-
tra resonance signals with p(corr) > 0.700 at 1.15 ppm and 3.34 ppm (corresponding to Unk 1 and methanol, 
respectively). The response permutation testing plots for the PLS-DA and OPLS-DA models are presented in 
the supplementary data (Fig. S1).

Figure 3.  Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot with corresponding 
s-line plot. Light gray—coma patients (CP); gray—brain-dead individuals (BD).

Table 2.  Main model parameters from PLS-DA for comparison between coma patients and brain-dead 
individuals.

Comparison Model type N PC/LV R2X (cum) R2Y (cum) Q2 (cum) p value (CV-ANOVA)

CP vs BD (relative integral) PCA 47 2 0.279 – – –

CP vs BD (relative integral) PLS-DA 47 2 0.254 0.792 0.562 1.56E−07

CP vs BD (spectra) OPLS-DA 47 1 + 4 + 0 0.671 0.914 0.613 4.54E−05
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Discussion
Our 1H NMR-based metabolomic approach demonstrated serum metabolic differences between patients in 
coma and individuals with diagnosis of brain death. The results obtained showed favorable separation and model 
parameters in cross-validated PLS-DA and OPLS-DA models with high predictability in both relative integral 
and whole spectra data for the studied sample. The discrimination potential between groups was also confirmed 
for specific metabolites with high ROC AUCs. The findings not only establish the potential of metabolomics in 
neurocritical care but may also provide an understanding of the pathogenic mechanisms underlying brain death. 
This is the first scientific publication in the literature relating to metabolomic studies of brain death.

In recent years, a few research projects aimed at metabolomic assessment of clinical conditions associated 
with central nervous system pathologies have been conducted; the goal in most cases was to identify diagnostic 
biomarkers for stroke or traumatic brain injury. The use of multivariate statistical analysis has made it possible 
to demonstrate significant separation between patients with cerebral pathology and healthy individuals in most 
of the  studies15,26–37. For example, in the case of stroke the group of potential biomarkers includes, among oth-
ers:  lactate27,29,31,32,  pyruvate27,29,32,  glycolate27,  formate27,  glutamine27,  methanol27,  acetate29,32,  cysteine26, folic 
 acid26, S-adenosyl  homocysteine26, oxidized  glutathione26,  tyrosine15,30,31,  tryptophan31,  serine30–32,  isoleucine28,30, 

Table 3.  Univariate analysis for quantified 1H NMR resonance signals compared between coma patients and 
brain-dead individuals. The metabolite order is based on ascending adjusted p values. Calculations made on 
(1) mean or (2) median. # CV (coefficient of variation). *QCV (quantile coefficient of variation). a t-test for equal 
variances. b t-test for unequal variances. c Mann–Whitney–Wilcoxon test.

Metabolite Fold change (BD/CP)
CV or QCV
(%) BD CV or QCV (%) CP FDR adjusted p-value AUC 

Unk 1 (1.158 ppm) (d) 1.62(1) 25.57# 30.51# 2.01E−05a 0.893

Unk 5 (2.060 ppm) (s) 2.25(1) 39.90# 16.79# 2.01E−05b 0.906

Methanol 11.13(1) 73.25# 44.00# 7.67E−05b 0.913

Unk 7 (2.903 ppm) (m) 0.56(1) 28.00# 38.03# 1.39E−04b 0.870

Acetone 2.13(2) 35.25* 18.05* 9.65E−04c 0.830

Unk 2 (1.169) (t) 1.95(2) 16.67* 23.75* 5.75E−03c 0.786

Acetate 1.97(2) 61.22* 39.90* 1.30E−02c 0.759

Isoleucine 0.88(2) 23.58* 18.36* 1.30E−02c 0.759

Betaine 0.69(1) 26.90# 43.51# 1.51E−02b 0.725

3-Methyl-2-oxovalerate 1.43(1) 37.20# 42.48# 1.51E−02a 0.754

Unk 6 (2.148 ppm) (s) 0.36(2) 44.73* 45.53* 1.51E−02c 0.745

Methylhistidine 0.75(2) 18.15* 12.29* 1.51E−02c 0.745

Glycine 0.41(2) 45.27* 47.42* 2.32E−02c 0.728

Unk 9 (7.138 ppm) (d) 0.41(2) 60.74* 52.23* 2.32E−02c 0.728

Valine 0.80(1) 24.78# 32.13# 3.50E−02a 0.745

Figure 4.  Relative integrals fold changes representation for brain-dead individuals vs coma patients among 
all statistically important metabolites in study. 1Student’s t-test, 2t-test for unequal variance, 3Mann-Whitney-
Wilcoxon test.  A1—Unk 1 (1.158 ppm) (d),  B2—Unk 5 (2.060 ppm) (s),  C2—methanol,  D2—Unk 7 (2.903 ppm) 
(m),  E3—acetone,  F3—Unk 2 (1.169) (t),  G3—acetate,  H3—isoleucine,  I1—betaine,  J2—3-methyl-2-oxovalerate, 
 K3—Unk 6 (2.148 ppm) (s),  L3—methylhistidine (s),  M3—glycine,  N3—Unk 9 (7.138 ppm) (d),  O1—valine.
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 valine15,28,30,32,  glycine32,  leucine15,28,  betaine30,32,  carnitine15,30 and ketone bodies (acetone, acetoacetate and 
β-hydroxybutyrate)29 as blood biomarkers;  citrate27,  hippurate27, and  glycine27 as urine biomarkers; and finally 
acetic  acid38, 3-hydroxyisovaleric  acid38, 3-hydroxybutyric  acid38, choline 38,  glycine38, pyruvic  acid38, l-lactic 
 acid38,  acetone38 and branched chain amino acids (valine, leucine, isoleucine)28 as cerebrospinal fluid biomark-
ers. Notably, in selected research projects, the adopted targeted metabolomic analysis proved to be helpful in 
differentiating cerebral infarction (CI) patients and those with intracerebral hemorrhage (ICH)15,30. Of course, 
the discriminatory power of the above-listed metabolites varied; however, statistical significance was maintained 
in each case. Similarly, favorable results have been obtained when using metabolomics in the analysis of states 
of traumatic brain injury (TBI), although far fewer research projects have been conducted here. The performed 
studies have shown that  proline33, phosphoric  acid33, β-hydroxybutyric  acid33,  galactose33,  creatinine33,  valine33, 
linoleic  acid33, arachidonic  acid33, medium-chain fatty acids (decanoic and octanoic acids)34 and sugar deriva-
tives including 2,3-bisphosphoglyceric  acid34 in the blood; as well as propylene  glycol35,  lactate35,36,  glutamine35, 
 creatine35 and  glutamate36 in the cerebrospinal fluid should be considered potential markers of acute TBI and 
could even serve as death  predictors36. As stated before, there are no reports in the literature on metabolomics 
in brain-dead patients; however, a few research projects using magnetic resonance spectroscopy and magnetic 
resonance imaging have been performed to study in vivo metabolic changes in brain tissue. The conclusions from 
these studies have been that high levels of lactate, choline and lipids and decreased levels of n-acetyl aspartate 
are prognostic factors of brain  death39–41. It has also been demonstrated that 31P magnetic resonance spectra 
in these individuals are dominated by intense inorganic phosphate signals and are characterized by a complete 
absence of adenosine triphosphate (ATP) and phosphocreatine at the same  time42,43.

Our results demonstrate that there are metabolites that can be considered potential biomarkers of brain death. 
The metabolomic serum analysis comparing brain-dead individuals to patients in coma revealed statistically 
significant increases in the concentrations of methanol, acetone, acetate and 3-methyl-2-oxovalerate and simul-
taneous statistically significant decreases in the concentrations of isoleucine, betaine, methylhistidine, glycine 
and valine. There were also significant changes in the concentrations of other metabolites that played significant 
roles in discrimination, although we were unable to identify them unambiguously (Table 3). All resonance signals 
underwent the primary identification procedure using statistical total correlation spectroscopy (STOCSY) and a 
two-dimensional NMR spectroscopic approach (analysis accuracy level 2 based on Sumer et al.44. The unidenti-
fied resonance signals were determined by their multiplicity patterns and chemical shifts. To precisely identify 
them, advanced methods of serum purification should be carried out, and then mass spectrometry (MS) analysis 
should be performed. We plan to accomplish these steps in the next stage of research.

Figure 5.  Boxplots and receiver operating characteristic curves (ROC) for statistically important metabolites 
with ROC area under curve (AUC) above 0.800 (AUC > 0.800). Boxplots are sorted by decreasing ROC AUC 
values. Statistical test used 1t-test for unequal variance, 2Student’s t-test or 3Mann–Whitney–Wilcoxon test: 
 methanol1, Unk  51 (2.060 ppm) (s), Unk  12 (1.158 ppm) (d),—Unk  71 (2.903 ppm) (m),  acetone3. For boxplots: 
whiskers—1.5 × interquartile range (IQR); bar—average; box—range between first quartile (Q1) and third 
quartile (Q3). Red circle on ROC curve marking optimal operating point.
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It is not possible to compare the results of our research with the analyses of other authors, as no studies on 
metabolomics in brain death have been conducted so far. Moreover, we did not make comparisons with healthy 
people but with comatose patients, which prevents the results of our research from being compared to analy-
ses known from the literature of other brain pathologies, where healthy individuals were always the reference 
points. As a result, a lower concentration of an individual metabolite in our comparisons does not exclude its 
being higher than in healthy persons and vice versa. In the case of brain death, it should also be noted that this 
condition affects not only brain tissue but also the functioning of the entire organism in a more extensive way 
than does any other brain pathology.

Medicine does not have any laboratory tests that are able to confirm brain death, so this condition is diag-
nosed only on the basis of clinical examination, optionally complemented by instrumental methods, which are 
not always easily accessible. From this point of view, the results of our study demonstrating the potential of 1H 
NMR-based metabolic serum fingerprinting with multivariate metabolomic data analysis are particularly valu-
able. Further studies in this field should not only be regarded as constituting a great scientific challenge but also 
as a necessity for modern medicine, especially intensive care and transplantation medicine.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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