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Abstract
Background: Radiomics has been considered an imaging marker for captur-
ing quantitative image information (QII). The introduction of radiomics to image
segmentation is desirable but challenging.
Purpose: This study aims to develop and validate a radiomics-based framework
for image segmentation (RFIS).
Methods: RFIS is designed using features extracted from volume (svfeatures)
created by sliding window (swvolume). The 53 svfeatures are extracted from
11 phantom series. Outliers in the svfeature datasets are detected by isolation
forest (iForest) and specified as the mean value. The percentage coefficient
of variation (%COV) is calculated to evaluate the reproducibility of svfeatures.
RFIS is constructed and applied to the gross target volume (GTV) segmentation
from the peritumoral region (GTV with a 10 mm margin) to assess its feasibility.
The 127 lung cancer images are enrolled. The test–retest method, correlation
matrix, and Mann–Whitney U test (p < 0.05) are used to select non-redundant
svfeatures of statistical significance from the reproducible svfeatures. The syn-
thetic minority over-sampling technique is utilized to balance the minority group
in the training sets. The support vector machine is employed for RFIS construc-
tion, which is tuned in the training set using 10-fold stratified cross-validation
and then evaluated in the test sets. The swvolumes with the consistent classi-
fication results are grouped and merged. Mode filtering is performed to remove
very small subvolumes and create relatively large regions of completely uni-
form character. In addition, RFIS performance is evaluated by the area under
the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity,
specificity, and Dice similarity coefficient (DSC).
Results: 30249 phantom and 145008 patient image swvolumes were
analyzed. Forty-nine (92.45% of 53) svfeatures represented excellent
reproducibility(%COV<15). Forty-five features (91.84% of 49) included five cat-
egories that passed test-retest analysis. Thirteen svfeatures (28.89% of 45)
svfeatures were selected for RFIS construction.RFIS showed an average (95%
confidence interval) sensitivity of 0.848 (95% CI:0.844–0.883), a specificity
of 0.821 (95% CI: 0.818–0.825), an accuracy of 83.48% (95% CI: 83.27%–
83.70%),and an AUC of 0.906 (95% CI:0.904–0.908) with cross-validation.The
sensitivity, specificity, accuracy, and AUC were equal to 0.762 (95% CI: 0.754–
0.770), 0.840 (95% CI: 0.837–0.844), 82.29% (95% CI: 81.90%–82.60%), and
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0.877 (95% CI:0.873–0.881) in the test set,respectively.GTV was segmented by
grouping and merging swvolume with identical classification results. The mean
DSC after mode filtering was 0.707 ± 0.093 in the training sets and 0.688 ±

0.072 in the test sets.
Conclusion: Reproducible svfeatures can capture the differences in QII among
swvolumes. RFIS can be applied to swvolume classification, which achieves
image segmentation by grouping and merging the swvolume with similar QII.
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1 INTRODUCTION

Radiomics provide quantitative information on medical
imaging data by extracting and analyzing quantitative
imaging features1 and can hold predictive information to
guide personalized radiotherapy (RT).2 The application
of radiomics to image segmentation is of great interest
since it may contribute to designing more personalized
RT plans, thereby reducing radiation toxicity.

Segmentation of computed tomography (CT) images
is a critical step in RT plan design,3 which is usually
carried out manually by radiation oncologists follow-
ing recommended guidelines. Considering the low soft
tissue contrast, CT-based image segmentation relying
on visual assessment remains challenging for radia-
tion oncologists.4,5. Deep-learning (DL) technology has
been applied to medical image processing, and Unet-
based models have achieved remarkable success in
medical image segmentation tasks.6 However, the great
performance of end-to-end DL networks comes at the
cost of high complexity and numerous parameters.
We could not explain why certain classifications were
made in image segmentation in DL networks. The final
outputs of DL networks are accepted without justifi-
cation, reducing physicians’ confidence in DL network
applications.

In addition, the training time and limited dataset also
pose challenges to the application of DL networks in
image segmentation. Numerous parameters result in
the time-consuming training of DL-based segmentation
networks. Due to cost constraints and privacy protec-
tion, it is intractable to acquire mass medical images
for the DL network.7 Moreover, advanced models may
underperform simple models if data samples change.6

Simple and efficient unsupervised clustering algorithms
have been used for image segmentation, such as the K-
means clustering algorithm.8,9 However, identifying the
biological and/or clinical significance of the volume seg-
mented by unsupervised clustering algorithms is still
troublesome. For this reason, it is under urgent demand
to develop a simple and supervised medical image
segmentation model with ideal generalization.

Radiomics,capable of capturing the quantitative infor-
mation within medical images, have been applied in

medical image analysis.10 Radiomic features provide
objective and quantitative methods for tumor phenotype
assessment and enjoy widespread potential applica-
tions in oncology.11,12 For example, radiomic features
have shown promise in treatment response prediction,
intratumor heterogeneity capturing,13 and radiation tox-
icity assessment.14 Despite this, the current radiomics
workflows are designed to extract features unsuited
for image segmentation due to their reliance on the
predefined region of interest (ROI). Current radiomics
analyses are not spatially explicit in nature. Quantita-
tive boundary, shape, and texture features are typically
generated over an ROI comprising the entire volume.15

Additionally, current radiomics approaches assume that
ROI for feature extraction is homogeneous or heteroge-
neous but well mixed.16 Radiomics features extracted
from the entire region cannot be used to obtain subre-
gional quantitative image information (QII). Therefore, it
is important to develop radiomics-based methods used
for segmentation to better characterize the heterogene-
ity within ROI.

Subregional radiomic features have been proposed
to capture QII of subvolumes created by the clus-
tering method (c-subvolume).17 Subregional features
extracted from magnetic resonance imaging (MRI) and
CT images could capture QII differences between c-
subvolumes.18,19 For example, the lung tumor was
classified into three c-subvolumes (i.e., marginal sub-
region, fragmental subregion, and inner subregion) to
detect the epidermal growth factor receptor mutation
using MRI images,19 among which inner subregion fea-
tures displayed the optimum predictive performance.
These results indicated the potential application of QII
difference in subvolume classification. The use of the
image intensity in different MRI sequences for ROI seg-
mentation has been described.16 However, no study has
examined the feasibility of radiomic information in image
segmentation.

Assuming that volumes can be segmented by group-
ing and merging subvolume with similar QII, this study is
designed to develop a radiomics-based framework for
image segmentation (RFIS). The feature reproducibility
for image segmentation is investigated using phantom
images. In addition, RFIS is constructed and applied to
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F IGURE 1 Flowchart of the RFIS procedure. His, Tex, GLF, Wav, ML, and SW denote histogram, textural, Gaussian Laplacian filtering,
wavelet features, machine learning, and sliding windows, respectively. Swvolume and Svfeature mean subvolume created by the sliding window
and feature extracted from swvolume, respectively

gross target volume (GTV) delineation of lung cancers
(RFISLC) to verify its feasibility.

2 MATERIALS AND METHODS

2.1 Study concept and design

RFIS comprised five structures: manual image label-
ing, svfeature extraction, svfeature selection, swvolume
classification, and segmentation, as shown in Figure 1.
In RFIS, features were extracted from the volume
(svfeature) created by a sliding window (swvolume).
Radiomics-based feature maps could be reconstructed
using svfeatures. The reproducible and non-redundant
svfeatures were selected (feature set G in Figure 1)
for RFIS construction. Then, the trained RFIS was
applied for the classification of unlabeled swvolumes.
The swvolumes with identical classification results were
grouped and merged.Post-processing was performed to
remove minimal subvolumes and create relatively large
regions.

The workflow of this study consisted of two parts, as
shown in Figure 2. In the first part, the reproducibility
of the svfeature was assessed using phantom images.
In the second part, the feasibility of RFIS was investi-
gated using non-small cell lung cancer (NSCLC) patient
images. RFIS was constructed for the GTV segmenta-
tion from the peritumoral region (GTV with a 10 mm
margin).

2.2 Image datasets

Credence cartridge radiomics (CCR) phantom was
designed to investigate the robustness of radiomic
features.20 The CCR phantom images acquired using
different imaging protocols and scanners have been
provided to The Cancer Imaging Archive (TCIA) (www.
cancerimagingarchive.net) by Mackin et al.21,22 CCR
phantom images used in the present study were down-
loaded from TCIA.21 The selected CCR images were
acquired using chest protocol and were taken by six GE
(General Electric Healthcare, Chicago, IL, USA) and five
Philips (Philips Medical System, Netherlands) scanners.
The scanning parameters contained a tube voltage of
120 kV and a slice thickness of 2.5 or 3 mm.More details
about the parameters for CCR image acquisition and
reconstruction can be found in Table S1.

The retrospective image database encompassed
CT images from 127 NSCLC patients treated using
intensity-modulated RT or three-dimensional (3D) con-
formal RT. This retrospective study was approved by the
local ethics committee.All images were acquired using a
Philip Brilliance Big Bore CT (Brilliance iCT 128, Philips
Medical System, Netherlands) scanner and randomly
divided into training sets and test sets (2:1). The scan-
ning parameters covered a tube voltage of 120–140 kV,
a tube current of 250–350 mA, and a slice thickness of
3 mm.

Anthropomorphic heterogeneous chest phantoms
(AHCP, Model 002LFC, 82 CIRS, Norfolk, VA, USA) were

http://www.cancerimagingarchive.net
http://www.cancerimagingarchive.net
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F IGURE 2 Workflow of this study. SMOTE, ROC, Acc, Sen, and Spe denote synthetic minority over-sampling technique, receiver operating
characteristic (ROC) curve, accuracy, sensitivity, and specificity, respectively. N and f mean the feature sets and svfeature value, respectively

imaged at 15-minute intervals using Philip Brilliance
Big Bore CT in our hospital to facilitate the test-retest
method. Spiral CT scans were performed using a 3 mm
stacked axial slice technique with a pitch of 0.938. The
resolution of those test and retest images was 512 ×

512 pixels.

2.3 Image segmentation

The CCR phantom image datasets provided by Mackin
et al.22 contained a set of contours as digital imaging

and communications in medicine (DICOM) RT struct
files. This set provided contours of 8 × 8 × 2 cm3 for
the cartridge in each scan. The cartridge of homoge-
nous polymethyl methacrylate (acrylic) with a density of
1.1 g/cm3 was analyzed to evaluate the reproducibility
of the svfeature.

For NSCLC images, radiologists delineated GTV in
the lung (level, −450 HU; width, 1500 HU) and medi-
astinal (level, 40 HU; width, 400 HU) window settings
using the Eclipse treatment planning system (Varian
Medical Systems, Inc., Version 15.5, USA, TPS). The
peritumoral region was defined as the GTV with a
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10 mm margin, and swvolume was selected from the
peritumoral region. Swvolumes with tumor voxels were
labeled positive, while other swvolumes were labeled
negative.

For the test-retest images, 20 ROIs (AHCP-ROI),
including different materials,were delineated on the test
images and transferred to the retest images after rigid
registration using Eclipse TPS.

2.4 Svfeature extraction and outlier
control

Svfeatures were extracted in MATLAB (version 9.5.0,
MathWorks Inc.) using available radiomics analy-
sis toolboxes (https://github.com/mvallieres/radiomics/)
created by Vallières et al.23 and in-house developed
software, including 53 svfeatures. These radiomics tool-
boxes have been used for clinical prediction tasks24 and
radiomics feature robustness evaluation,25,26 bringing
enormous benefits to radiomics studies. The extracted
svfeatures were derived from five categories and
extracted from phantom and NSCLC images. They
encompassed 13 first-order statistical (FOS) features,
9 gray-level co-occurrence matrix (GLCM) features,
13 gray-level run-length matrix (GLRLM) features, 13
gray-level size zone matrix (GLSZM) features, and five
neighboring gray-tone difference matrix (NGTDM) fea-
tures (feature set N in Figure 2). The mathematical
definition of the radiomic features is listed in the Sup-
porting Information. All the features were extracted
from the original CT images, which were rescaled
to 8-bit images. All volumes were resampled to an
isotropic voxel size and set to the desired resolu-
tion using cubic interpolation before feature extraction.
In this study, the isotropic voxel size was scaled to
1 × 1 × 1 mm3.

The unintended inclusion of adjacent structures
such as bone could affect the reliability of radiomics
features.27 Such outliers might be accidentally included
in the swvolume, causing unrealistic svfeatures. The
model-based isolation forest (iForest)28 is a simple and
useful detecting method of outliers, and the number of
trees t = 100 was used for isolation tree building in this
study. Anomaly score (s) for each svfeature value was
calculated, with s > 0.6 indicating a potential anomaly.28

The outliers in the svfeature datasets were specified as
the mean value.

2.5 Reproducibility evaluation of the
Svfeatures

For the svfeatures extracted from all the CCR phan-
tom series, the percentage coefficient of variation

(%COV) was calculated to evaluate their reproducibility,
as expressed in Equation (1):

%COV =

|||||
(

SD
Mean

)
×100

||||| (1)

where %COV is the percentage of COV, SD and Mean
are the standard deviations. The mean of svfeatures
was calculated from all the CCR image series. Svfea-
tures with %COV < 15 were considered reproducible
(N1). In addition, the average svfeature in each CCR
phantom series was also calculated separately.

2.6 Feasibility evaluation of RFIS

2.6.1 Feature selection

Based on the training sets, the feature selection was
conducted using a three-step strategy to avoid model
overfitting and potential bias in classifying tumor and
peritumoral swvolumes. First, a test–retest method was
employed to remove nonreproducible features; even
measurement was carried out in images obtained from
the same phantom within 15 min using the same scan-
ner. Second, the value of Spearman’s rank correlation
coefficient between each pair of features was calculated
as a selection tool to remove highly corrected features.
Third, the Mann–Whitney U test was used to preliminar-
ily screen the features relevant to differentiating tumor
and peritumoral swvolumes.

For the test-retest purpose, the concordance cor-
relation coefficient (CCC) was calculated29 for the
features extracted from AHCP-ROIs. Features with an
average CCC greater than 0.85 (N2) were considered
reproducible and concordant.30

The non-redundant set of svfeatures (N3) extracted
from lung cancer images was selected using the
correlation matrix. The column-wise average abso-
lute correlation was calculated for each svfeature
where:

C =
1
n

∑
j

cij (2)

For each pair-wise correlation cij exceeding 0.8,
svfeatures with higher column-wise average abso-
lute correlation C were removed.31 To upgrade the
classification performance, Mann–Whitney U tests were
conducted using SPSS (SPSS version 19, IBM) to
screen out the statistical significance of svfeatures. In
this univariate analysis, svfeatures (N4) with p < 0.05
were considered statistically significant and were used
for RFISLC construction.

https://github.com/mvallieres/radiomics/
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2.6.2 Subsampling

The experiment considered the imbalance between
tumor and peritumoral swvolumes, inconsistent with
the balanced endpoint hypothesis of most machine
learning-based classification models. The synthetic
minority over-sampling technique (SMOTE) generated
synthetic minority class instances with hyperlink seg-
ments in feature space.32 SMOTE algorithm was applied
to synthesize more balanced training data with a 200%
oversampling rate. It is worth noting that the synthetic
new data merely appears in the training set.

2.6.3 RFISLC construction

RFISLC was constructed and assessed using the ten-
fold stratified cross-validation.A support vector machine
(SVM) was used to train the selected svfeatures in the
training sets. The hyperparameters were optimized by
Bayesian optimization using the fitcsvm function in MAT-
LAB. Model training was performed with the Gaussian
kernel function, with a kernel parameter of 1.31, a box
constraint of 0.91, and a misclassification cost of 1.

The receiver operating characteristic (ROC) curve
with the corresponding area under the ROC curve (AUC)
was calculated to evaluate the classification perfor-
mance of the swvolume, which was also assessed by
the sensitivity, specificity, and accuracy, as defined in
Equations (3)–(5):

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

FP + TN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP and FN are the numbers of correctly and
incorrectly classified positive samples, respectively; TN
and FP are the numbers of correctly and incorrectly
classified negative samples, respectively. The confi-
dence intervals of the test sets were obtained by
bootstrapping the test data sets of 2000 random
samples.

The swvolumes with identical predicted results were
grouped and merged to determine the GTV bound-
ary (GTVRFIS). Window-based mode filtering33,34 (filter
size: [7 7 3]) was performed to remove minimal sub-
volumes and create relatively large regions. The Dice
similarity coefficient (DSC) represents the overlapping
degree of GTVRFIS with the manually segmented GTV,
as computed as follows:

DSC = 2×
|GTVM ∩ GTVRFIS||GTVM|+ |GTVRFIS| (6)

where GTVM and GTVRFIS denote the manually delin-
eated GTV and RFIS, respectively.

3 RESULTS

3.1 Image datasets

For the 11 CCR phantom series,30249 swvolumes were
analyzed. The mean swvolume number of the 11 CCR
image series was 2749.91 ± 824.45. The swvolume
numbers for each CCR phantom series can be found
in Table S1.

A total of 127 NSCLC patients (85 males and 42
females, mean age: 65.27 years, range: 36–87 years)
were enrolled. The 86-image series were randomly
selected for RFISLC training, and 41 were selected
for external validation. A total of 145008 swvolumes
were analyzed, including 97374 (positive: negative =

23283: 74091) in the training sets and 47634 (positive:
negative = 10638: 36996) in the test sets.

3.2 Reproducibility evaluation of
Svfeatures

The 53 svfeatures were extracted from 30249 CCR
phantom swvolumes and 49 svfeatures with %COV
< 15 (N1). Six svfeatures had a mean %COV < 1,
seven svfeatures had a mean %COV ranging from 1
to 3, six svfeatures had a mean %COV fluctuating
between 3 and 5, and 24 svfeatures had a mean %COV
changing between 5 and 10, and six svfeatures had
a mean %COV between 10 and 13. Four svfeatures
(i.e., FOS-Skewness, FOS-Kurtosis, GLCM-Correlation,
GLSZM-LZLGE) with %COV > 15 were removed in the
remaining analysis steps. The variation range of the
mean value of the first-order svfeature was wider than
that of the textural-based (GLCM, GLRLM, GLSZM, and
NGTDM) svfeature, as shown in Figure S1.

3.3 RFISLC construction

3.3.1 Feature selection

For the 49 reproducible svfeatures (N1),45 features (N2)
had a CCC > 0.85. Four features (i.e., GLRLM-LRLGE,
GLRLM-GLV, GLSZM-SZLGE, and GLSZM-LGZE) with
CCC < 0.85 were considered nonreproducible and
removed. The correlation matrix was used to select the
non-redundant svfeatures extracted from the NSCLC
images, and 13 svfeatures (N3) passed this test. The
13 non-redundant svfeatures (N3) passed the Mann–
Whitney U tests (p < 0.05). Selected svfeatures for
RFIS construction are shown in Table S2. These
selected svfeatures from four categories and provide
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F IGURE 3 ROC curve of the training sets (a) and the test
sets (b)

independent information about an image. Combinations
of these categories can provide additional QII.

3.3.2 RFISLC construction and validation

A total of 149076 samples after subsampling (posi-
tive: negative: = 72762:76314) were used for RFISLC
construction. The average accuracy of RFISLC by the
ten-fold stratified cross-validation was 83.48% (95%
CI: 83.27%–83.70%). ROC analysis indicated that the
AUC was 0.906 (95% CI: 0.904–0.908), the sensitiv-
ity was 0.848(95% CI:0.844–0.883), and the specificity
was 0.821(95% CI: 0.818–0.825). The ROC curve of
the training sets is shown in Figure 3a. For the inde-
pendent external testing, RFISLC achieved an accuracy
of 82.29% (95% CI: 81.90%–82.60%), a sensitivity of
0.762(95% CI: 0.754–0.770), a specificity of 0.840(95%
CI: 0.837–0.844), and an AUC of 0.877 (95% CI: 0.873–
0.881). The ROC curve of the test sets is shown in
Figure 3b.

The CT image and corresponding svfeature map are
shown in Figure 4.The mean DSC was 0.707 ± 0.093 in
the training sets and 0.688 ± 0.072 in the test sets. The
comparison of GTVRFIS and human expectations of six
NSCLC cases is presented in Figure 5.

F IGURE 4 The CT images (a) and corresponding svfeature map
(b). Green lines indicate gross target volume (GTV) defined by
radiologists, and yellow lines denote the peritumoral region

4 DISCUSSION

This study presented and verified a radiomics frame-
work for image segmentation. Our results indicated that
the svfeatures could capture the QII difference between
swvolumes and be applied for image segmentation.

Outlier control is an essential factor affecting
radiomics features.35 The unintended inclusion of
outliers within volumes will greatly affect GLCM and
GLRLM.27 Outlier removal (values larger or smaller than
three standard deviations relative to the mean inten-
sity value, μ ± 3σ) has been identified to increase the
reproducibility of features in recent publications.23,36,37

However, image information may be distorted while
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F IGURE 5 The results of GTV contours between RFIS (yellow lines) and human experts (red lines). Six cases of lung tumors with different
shapes and positions

removing intensities outside the range of μ ± 3σ. In
RFIS, all voxels within the image were analyzed to avoid
missing QII of swvolume. Outliers were detected by
iForest and specified as the mean subfeature value.
Previous research28 has identified that path lengths
usually converge well before the number of trees t =
100, and s > 0.6 was a potential anomaly. Therefore, we
used t = 100 and considered the cutoff value of 0.6 as
an outlier.

The %COV has been used to evaluate the feature
reproducibility, and features with %COV ≤ 20 were con-
sidered reproducible.38,39 In our study, a stricter and
more conservative %COV cutoff value (%COV < 15)
was used to minimize the possibility of false posi-
tives. The textual svfeatures (GLCM, GLRLM, GLSZM,
and NGTDM) showed better reproducibility and consis-
tency than the first-order svfeatures. The reproducibility
of svfeatures after outlier control was acceptable for
capturing the QII difference between swvolumes.

Radiomics features qualified as potential imaging
biomarkers should be robust. The test-retest method
was used to eliminate unreproducible features.40 In
addition, radiomics analysis is plagued by feature
redundancy because of the high correlation of many
features.41 The feature space was reduced into a non-
redundant subspace using correlation-based feature
elimination. The test datasets were used to avoid false-
positive results,40 and the RFIS predictive results were
found to be similar to those in the training data. The

great classification accuracy for swvolume indicated
the capability of svfeatures to capture QII difference
between swvolumes and its applicability to swvolume
classification.

The images were segmented by grouping and merg-
ing the swvolumes with similar QII in RFIS.The segmen-
tation of minimal subvolumes was deemed undesirable.
Mode filtering was applied to process 3D categorical
data to remove minimal subvolumes and create rel-
atively large regions of completely uniform character.
Compared with the mean filter, the mode filter could
avoid many undefined values halfway between two
classes. Mode filtering causes almost no loss in bound-
ary resolution because the filter output will not change
until most of the values change. Mode filtering could
improve the final texture segmentation in gray-scale
images, which has been regarded as the optimal way
of discrete attribute filtering.42 Many region sizes (3 ×

3, 7 × 7, and 15 × 15) of mode filtering have been used
in 2D image processing.34,42 Considering the region size
larger than 7 × 7 is rarely required in the mode filtering.33

Therefore, the region size of 7 × 7 was used in the left–
right and anterior–posterior axes. The superior–inferior
axis resolution of CT images was coarser than that of
the left–right and anterior–posterior axes. More accept-
able window sizes of three voxels were used in the
superior-inferior axes.

The local entropy within the volume was calcu-
lated by moving window (9 × 9) to create the local
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entropy map.18,19 Based on the local entropy map,
ROI was divided into several c-subvolumes using the
K-means clustering algorithm.8,9 Considering that the
K-means clustering was unsupervised, the biologi-
cal and/or clinical meaningfulness of the c-subvolume
was uncertain. Significantly, the biological and/or clin-
ical meaningfulness of the c-subvolume is usually
determined by radiomics.8,9 In RFIS, swvolumes were
classified using supervised machine learning algo-
rithms. Therefore, the biological and/or clinical signif-
icance of volumes segmented by RFIS was more
easily confirmed. In addition, the relationship between
features and tumor biology has been clarified.43 For
example, the long-run high-grey-level emphasis fea-
ture extracted from CT images is positively associated
with tumor hypoxia.44 These findings are more con-
ducive to clarify the clinical significance of volume
segmented RFIS using features with clear biological
connections. In addition, more high-dimensional QII can
be used in RFIS compared to unsupervised clustering
algorithms, which may improve the accuracy of image
segmentation.

The previous researches45,46 have investigated the
performance of DL-based models in GTV segmenta-
tion for lung cancers. ResSE-Unet trained using 148
cases achieved an optimum performance with a DSC
of 0.74.45 Similar results were obtained in another lung
tumor segmentation research based on the 2D and
3D hybrid convolutional neural network (CNN) trained
using 180 cases, with DSC reaching 0.72.46 The DSC
of RFISLC was 0.707 ± 0.093 in the training sets and
0.688 ± 0.072 in the test sets. By using the DSC cut-
off values proposed by Yamamoto,47 the similarity was
interpreted as almost perfect (0.8 < DSC ≤ 1.0), sub-
stantial (0.6 < DSC ≤ 0.8), moderate (0.4 < DSC ≤

0.6), fair (0.2 < DSC ≤ 0.4), and slight (0 < DSC ≤

0.2). RFIS could segment substantial lung tumors, sim-
ilar to the results of DL. RFIS might not compete with
the current state of the art since it performed similarly
to the Unet-based methods but only segmented from
the 10 mm margin around the tumor. However, the RFIS
development paved the way for radiomics-based subre-
gional tumor segmentation. Assessing the feasibility of
RFIS is the first step in the development of radiomics-
based subregional tumor segmentation, and the results
of our study are sufficient to demonstrate the feasibil-
ity of RFIS. Subregional tumor segmentation is quite
hard due to the unavailability of the ground truth and
the greater challenges of coming up with a clean way
of validating the models.RFIS might have an advantage
over DL in subregional tumor segmentation since well-
formulated unsupervised methods based on radiomics
can be applied.

Compared with the DL segmentation network, RFIS
adopted fewer parameters and highly effective machine
learning classification algorithms,48 shortening the train-
ing time and dataset requirements. Radiomics features

combined with SVM for image segmentation were ben-
eficial to improving the generalization of the model.
Radiomics features describe the distribution pattern of
gray-level pixel values (first-order statistical features)
and the spatial relationship between each pixel and
its neighboring pixels (texture features). Radiomics fea-
tures are less sensitive to cohort size than DL features.49

SVM was used to perform non-linear classification using
the kernel trick that mapped to higher dimensional fea-
ture space. The hyperplane of SVM maximized the
margin between the two classes in the feature space.
SVM tolerated some points on the wrong side of the
boundary, improving the robustness and generalization
of the models.50

The DL networks are commonly referred to as a
“black box” with the internal decision processes failing
to be comprehended. In the RFIS framework, mathe-
matically defined features were designed to describe
specific gray-scale information,enabling us to clarify the
gray-scale information capable of being used to seg-
ment abnormal regions. Feature selection and shallow
machine learning classification algorithms are inher-
ently interpretable by humans. The predefined features
and the machine learning-based modeling process
bring several benefits as follows. First, specialists can
better understand the learning mechanism from data
and the failure mechanism of the models in the new
data. Second, physicians could further grasp the inner
workings of the utilized tools, thus increasing their con-
fidence in relying on the models. Moreover, svfeatures
may contribute to combining radiomics and CNN for
medical image segmentation. The 2D radiomics feature
maps have been fed into DL models for pneumonia
classification.51 The 3D radiomics svfeature maps and
medical images can be fed simultaneously into CNN
for image segmentation. This approach incorporated
the radiomics information into the CNN model, poten-
tially enhancing the performance of the CNN-based
segmentation framework.

Our study has a few limitations. First, the feasibil-
ity of RFIS was investigated only in CT images. The
RFIS performance should be further investigated in
many other imaging modalities, such as MRI and cone-
beam CT images. Second, a few kinds of svfeatures
were extracted and evaluated. More kinds of svfeatures
can capture more information from swvolumes, thereby
elevating the RFIS performance.

5 CONCLUSIONS

We presented and identified a radiomics framework for
image segmentation.The reproducibility of svfeatures is
acceptable for capturing QII within the swvolume. RFIS
could be applied to swvolume classification, achiev-
ing image segmentation by grouping and merging the
swvolume with similar QII.
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