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Lung transplantation (LTx) outcome is hampered by development of chronic rejection, 
often manifested as the bronchiolitis obliterans syndrome (BOS). Low serum levels 
of thymus and activation-regulated chemokine (TARC/CCL17), a chemoattractant, 
measured during the first month post-LTx are predictive for BOS development. Since 
TARC/CCL17 promotor polymorphisms correlate with serum TARC/CCL17 levels, 
we investigated seven single-nucleotide polymorphisms (SNPs) within this region and 
their potential association with LTx outcome. We analyzed donor and patient SNP 
configurations and haplotypes and observed a trend between a donor SNP (rs223899) 
configuration and patient TARC/CCL17 serum levels post-LTx (p = 0.066). Interestingly, 
this SNP configuration in patients did not show any correlation with pre-LTx TARC/
CCL17 serum levels (p = 0.776). Survival analysis showed that receiving a graft from 
a donor heterozygous for rs223899 has a disadvantageous impact on transplantation 
outcome. When stratified per donor SNP genotype, patients receiving a transplant from 
a heterozygous donor showed a lower BOS-free survival (p = 0.023) and survival rate 
(p = 0.0079). Since rs223899 is located within a NFκB binding site, heterozygosity at 
this position could result in a reduced TARC/CCL17 expression. Our data indicate that 
a single TARC/CCL17 promotor SNP in the donor correlates with lower serum TARC/
CCL17 levels measured 1 month after LTx and affects clinical outcome after LTx.

Keywords: lung transplantation, thymus and activation-regulated chemokine, chronic lung allograft dysfunction, 
bronchiolitis obliterans syndrome, chronic rejection 

Abbreviations: AR, acute rejection; BOS, bronchiolitis obliterans syndrome; CF, cystic fibrosis; CLAD, chronic lung allograft 
dysfunction; COPD, chronic obstructive pulmonary disease; ILD, interstitial lung disease; LTx, lung transplantation; PVD, 
pulmonary vascular disease; RAS, restrictive allograft syndrome; SNP, single-nucleotide polymorphism; TARC, thymus and 
activation-regulated chemokine.
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inTrODUcTiOn

For patients suffering from end-stage lung disease, lung transplanta-
tion (LTx) can be the final treatment modality. Currently, 5-year 
survival after LTx is 50%, predominantly due to the development of 
chronic lung allograft dysfunction (CLAD) (1). CLAD can present 
an obstructive (bronchiolitis obliterans syndrome, BOS) and a 
restrictive form (restrictive allograft syndrome, RAS) (2). CLAD 
pathogenesis is poorly understood; however, various donor and 
patient risk factors associated with disease development have been 
identified, particularly regarding development of BOS (3, 4). A clini-
cal diagnosis of BOS is often made using a 20% decline of the forced 
expiratory volume in 1 s compared to baseline in the absence of any 
other disease etiology (5). Thus, a clinical diagnosis is made at the 
time that obliterative bronchiolitis has fully developed. To prevent 
BOS, novel biomarkers reflecting preclinical development identify-
ing patients at risk early after transplantation are urgently needed (6).

Thymus and activation-regulated chemokine (TARC/CCL17) 
is a chemoattractant, which is secreted by various cell types, 
including endothelial cells, dendritic cells, keratinocytes, bron-
chial epithelial cells, and fibroblasts (7–10). It mainly functions 
as a chemoattractant for Th2 cells via the interaction with its 
receptor CCR4 (11, 12). TARC/CCL17 serum levels are associ-
ated with various types of lung diseases including idiopathic 
pulmonary fibrosis (13) and eosinophilic pneumonia (14), and 
as risk marker for lung cancer (15). Interestingly, previous results 
from our group have shown that serum levels of TARC/CCL17 
in the first month post-transplantation are predictive for BOS 
development after LTx (16).

The TARC/CCL17 gene is located on chromosome 16q13, in 
near proximity of the CCR4 interacting chemokine CCL22 and 
CX3CL1 (17). TARC/CCL17 expression is controlled by multiple 
pro-inflammatory cytokines, including tumor necrosis factor-α, 
interferon (IFN)-γ, interleukin (IL)-1, and IL-4 (18). The tran-
scriptional regulation of the TARC/CCL17 gene has partly been 
elucidated. Both the transcription factors STAT6 and NFκB have 
binding sites in the promotor region of TARC/CCL17 (18, 19). 
Several single-nucleotide polymorphisms (SNPs) in the TARC/
CCL17 promotor region correlate with serum levels of TARC/
CCL17 and are associated with a risk for Kawasaki disease and 
different allergic diseases (20–22).

As low early post-transplantation serum levels of TARC/
CCL17 predict a risk for post-LTx BOS, we hypothesized that 
TARC/CCL17 polymorphisms may be correlated to outcome after 
LTx. In this study, we genotyped and analyzed several SNPs in the 
TARC promotor region of patients undergoing LTx as well as in 
that of the donor. We show that a single donor SNP configuration 
in the promotor region of TARC/CC17 of the donor correlates 
with recipient TARC/CCL17 serum levels and relates to BOS 
development and overall survival after LTx.

PaTienTs anD MeThODs

Patients
A total of 144 patients undergoing LTx between January 2004 
and March 2013 in the Heart Lung Center of the University 
Medical Center Utrecht, The Netherlands, were included in this 

retrospective study. Written informed consent was obtained 
from all study participants, and the study was approved by the 
medical ethical committee of the University Medical Center 
Utrecht (METC 06-144), and all methods were carried out in 
accordance with the approved guidelines. Post-transplantation 
follow-up therapy was standardized and consisted of tacrolimus, 
prednisolone, and mofetil mycophenolate. In the first year after 
transplantation, spirometry was performed every week dur-
ing the first 3 months reducing it to every 4 weeks after a year. 
Lung volumes were routinely assessed every 6  months and on 
indication when spirometry or X-ray changed. Patients at high 
risk for cytomegalovirus (CMV) or Epstein–Barr virus (EBV) 
activation, i.e., CMV- or EBV-negative patients transplanted with 
a EBV- or CMV-positive donor, were treated with valganciclovir 
for 6 months after transplantation. A clinical diagnosis of BOS 
was made when FEV1 had declined by 20% of more compared 
to baseline (5). Since surveillance biopsies were not performed, 
acute rejection (AR) was defined as a spontaneous decline of lung 
function that was reversed after steroid pulse treatment and for 
which other causes of lung function decline were excluded.

Prior to transplantation, blood was obtained from donor and 
patient, as well as a spleen samples from the donor. Mononuclear 
cells from patient and donor samples were isolated using Ficoll-
paque (GE Healthcare, Little Chalfont, UK), which were then 
aliquoted and stored in liquid nitrogen until further use. In addi-
tion, serum from the patient was collected and stored at −80°C.

Dna extraction
Frozen mononuclear cells were used for DNA isolation via the 
MagnaPure Compact System (Roche Diagnostics, Switzerland) 
according to protocol. Cell samples were thawed at 37°C, 
dissolved in 9  ml RPMI-1640 (Lonza, Basel, Switzerland) sup-
plemented with 20%, v/v, fetal bovine serum (Bodinco, Alkmaar, 
The Netherlands), and centrifuged for 10 min at 1,800 RPM. Prior 
to DNA extraction, cells ware dissolved in phosphate-buffered 
saline (Sigma-Aldrich, USA) at a concentration of 5 × 106 cells/
ml. After DNA extraction, both concentration and purity were 
analyzed using the NanoDrop™ system (Thermo Fischer 
Scientific, Waltham, MA, USA).

snP selection and genotyping
Six SNPs (rs223895, rs223897, rs223898, rs223899, rs223900, 
and rs229827) in the promotor region of TARC/CCL17 that 
are frequent in the western European population were selected 
from the HapMap (http://hapmap.ncbi.nlm.nih.gov/) and the 
Ensemble databases (23). We also analyzed the configuration of 
rs229828, which configuration has previously been associated 
with CCCL17/TARC serum levels (20). Samples were genotyped 
using the Affymetrix “TxArray” (24, 25) containing 767,203 vari-
ants, and stringent quality control (QC) was conducted to remove 
low-quality SNPs and samples. Samples with a missing rate >3% 
were removed. We created a subset of high-quality, independent 
SNPs with missing rate <1%, Hardy–Weinberg p > 0.001, minor 
allele frequency >0.1, and LD pruning leaving no SNP pairs with 
r2 > 0.2. Using this subset, we removed samples with heterozygo-
sity >2 SD from the mean of all samples, related samples (keeping 
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Table 1 | Clinical and demographic parameters of lung transplant patients and 
donors.

all non-bOs bOs p-Value

Patients

Total number 144 100 44

gender
Male
Female

69 52 21 0.560
75 48 23

Mean age (years) 46 ± 13 44 ± 14 50 ± 11 0.026

Mean follow-up 
(months)

61.2 ± 36.8 59.2 ± 39.4 65.6 ± 30.2 0.341

Primary disease
CF
COPD
ILD
PVD

65 40 25 0.247
42 33 9
36 26 10
1 1 0

infection
EBV high risk
CMV high risk

14 7 7 0.115
32 21 11 0.456

Type of graft
Bilateral
Single

112 81 31 0.119
32 19 13

episode of acute 
rejection

20 14 6 0.495

ischemic times 
(min)

Bilateral
Single

312.3 ± 188.9 321.4 ± 216.9 288.6 ± 73.8 0.426
244.1 ± 53.5 238.2 ± 48.8 238.7 ± 73.0 0.314

Donors

gender
Male
Female

65 46 19 0.449
79 54 25

Donor age (years)

Mean age
>60

45 ± 14 44 ± 15 47 ± 14 0.184
17 12 5 0.579

Donor type
HB
Non-HB

116 20 8 0.497
28 80 36

smoking
Yes
No

52 35 17 0.407
92 65 27

Cohort overview of both patients and donors subdivided for the incidence of BOS after 
LTx.
BOS, bronchiolitis obliterans syndrome; CF, cystic fibrosis; COPD, chronic obstructive 
pulmonary disease; ILD, interstitial lung disease; PVD, pulmonary vascular disease; 
EBV, Epstein–Barr virus; CMV, cytomegalovirus; HB, heart beating; LTx, lung 
transplantation.
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only one samples of each pair with proportion of IBD > 0.2), and 
samples of non-European ancestry [based on principle component 
analysis using the 1000 Genomes Project (Phase 1) populations 
as reference (26)]. SNPs were removed if they had a missing rate 
>5%, Hardy–Weinberg p < 0.01, or if they were monomorphic. 
After QC, 543,637 SNPs and 133 patients and 131 donor samples 
remained. Untyped SNPs were imputed using a combined refer-
ence panel of the 1000 Genomes Project (Phase 3) (27) and the 
Genomes of the Netherlands (v5) (28). Samples were first phased 
with SHAPEIT (29) and then imputed with IMPUTE v2 (30).

Measurement of serum Tarc/ccl17 
concentrations
Serum concentrations of TARC/CCL17 were determined via a 
solid-phase ELISA kit (R&D systems, Minneapolis, MN, USA) 
according to protocol. Briefly, wells were first incubated with 
serum samples for 2 h, then with conjugate for 1 h, and finally 
with substrate. From OD450 values, levels were calculated by 
reference to a standard curve. Serum samples were briefly centri-
fuged prior to analysis. All samples where measured in duplicate. 
Inter- and intra-assay variability’s of the assay were 8.3 and 4.4%, 
respectively.

statistics
All statistical analyses were performed using GraphPad Prism 
version 6.02 (GraphPad Software Inc., San Diego, CA, USA) 
and SPSS version 21 (IBM Corp., Armonk, NY, USA). Data 
were tested for Gaussian distribution via the D’Agostino and 
Pearson omnibus normality test. Normally distributed data are 
represented as mean value ± SEM whereas data not following a 
Gaussian distribution are represented as median ± interquartile 
range. Depending on the distribution of the data, differences 
between groups were analyzed with the unpaired t test or the 
Mann–Whitney test, indicated in the respective figure legend. 
Differences in categorical data were analyzed using the Fischer’s 
exact test and in continuous variables via ANOVA. Survival 
analyses were conducted using Kaplan–Meier analysis with both 
BOS incidence and overall survival as endpoint parameters. A 
Cox-regression model was used for multivariate analysis includ-
ing known risk factors in patients and donors for BOS develop-
ment. A p-value <0.05 was considered to be statistical significant.

resUlTs

Patient Demographics
From the total cohort of 144 patients transplanted in our center, 65 
were treated with LTx because of chronic obstructive pulmonary 
disease, 42 because of cystic fibrosis, 36 because of interstitial lung 
disease, and 1 patient was diagnosed with pulmonary vascular dis-
ease prior to transplantation. Besides the fact that BOS + patients 
were slightly older at the time of transplantation, no significant 
demographic and clinical differences were observed between 
BOS+ and BOS− groups (Table  1). During transplantation 
follow-up, 44 patients developed BOS. No RAS was observed. In 
total, 44 patients deceased during the study period, whereas 20 
patients presented with one or more AR episodes.

TARC/CCL17 Promotor Polymorphisms
All extracted DNA samples from patient/donor couples were 
analyzed on the Affymetrix-based TxArray and selected SNPs 
were imputed as described in Section “Patients and Methods.” 
After stringent pre- and post-imputation QC, including deviation 
from Hardy–Weinberg equilibrium, sample and SNP missingness, 
heterozygosity checks, and principle component analyses (data 
not shown) (31), 133 patients and 131 donor could be genotyped 
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Table 2 | Genetic configuration of selected TARC/CCL17 promotor polymorphisms.

haplotypes Patients Donors

rs223895 rs223897 rs223898 rs223899 rs223900 rs223827 rs223828

Y Y K K Y Y Y n % n %

C C T G C T C 42 0.316 41 0.318
Y Y K K Y Y C 26 0.195 32 0.242
Y C T G C Y C 17 0.128 15 0.114
C C T G C Y C 12 0.090 13 0.098
Y Y K K Y Y Y 8 0.060 7 0.053
T Y K K Y C C 7 0.053 9 0.068
Y Y K K Y C C 4 0.030 3 0.023
T T G T T C Y 3 0.023 4 0.030
Y Y K G Y Y C 3 0.023 2 0.015
T T G T T C C 2 0.015 1 0.008
T T G K T C C 2 0.015 n.o n.o
T T G T T C T 2 0.015 n.o n.o
T Y K G Y C C 1 0.008 n.o n.o
T Y K K Y C Y 1 0.008 n.o n.o
T C T G C C C 1 0.008 n.o n.o
Y Y K G Y C C 1 0.008 n.o n.o
Y Y K K Y C Y 1 0.008 2 0.015
C C T G C C C n.o n.o 1 0.008
T Y K K Y Y C n.o n.o 1 0.008

C: 0.413 C: 0.538 G: 0.053 G: 0.564 C: 0.538 C: 0.170 C: 0.892 133 131
T: 0.129 T: 0.053 T: 0.538 T: 0.045 T: 0.053 T: 0.314 T: 0.008
Y: 0.458 Y: 0.406 K: 0.409 K: 0.391 Y: 0.409 Y: 0.515 Y: 0.10

Overview of incidence and frequency of single-nucleotide polymorphism (SNP) configurations (vertically) and observed haplotypes (horizontally) for both patients and donors. SNPs 
are displayed according to their relative distance from the transcription initiation site. All observed SNP frequencies were in concordance with the Ensemble database.
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for the selected TARC/CCL17 promotor SNPs (92.4 and 91.7% 
of the total cohort, respectively). From all samples identified, 
SNP genotypes were stratified per haplotype. Table 2 describes 
these results as well as haplotype and genotype frequencies of the 
individual SNPs. We observed no significant differences in either 
SNP or haplotype distribution between patients and donors. Also, 
the genotype frequencies of the selected TARC/CCL17 SNPs were 
in concordance with frequencies found in the HapMap and the 
Ensemble databases.

rs223899 influences serum Tarc/ccl17 
concentrations Post-Transplantation
From a subset of 67 representative patients (no differences on 
clinical and demographic parameters compared to the total 
cohort), serum samples obtained during the first month after 
transplantation were analyzed for TARC/CCL17 levels, based 
on serum sample availability. The relation between both donor 
and patient haplotypes and SNP genotypes, and serum TARC/
CCL17 levels were then analyzed. The strongest association was 
observed between donor SNP rs223899 and serum levels. Serum 
TARC/CCL17 levels in patients with lungs from donors with 
the homozygous (G/G) SNP configuration of rs223899, tended 
to be higher than those in patients with a lung from a donor 
with heterozygous (G/T) configuration (p = 0.066, Figure 1A). 
Notably, serum TARC/CCL17 levels before transplantation 
were not different in these patient groups (n = 38, p = 0.776, 
Figure 1B).

Donor snP rs223899 influences the 
clinical Outcome after lTx
Since we observed that patient serum TARC/CCL17 levels 
correlate with the configuration of donor SNP rs223899, and 
decreased serum levels of TARC/CCL17 predict a higher risk 
for BOS development after transplantation (16), we analyzed the 
genotyped donor haplotypes and individual donor SNP configu-
rations in a Kaplan–Meier survival analysis. For overall survival, 
all 131 patients for which the imputed donor SNP passed QC 
were included. For the analyses of BOS development, we excluded 
patients who had deceased within the first 4 months after trans-
plantation or from whom SNP analysis did not pass QC, resulting 
in the inclusion of 122 patients.

In total, six different donor haplotypes had a frequency above 
5% and were analyzed for correlation to outcome after LTx. None 
of the donor or patient haplotypes of the seven selected TARC/
CCL17 SNPs showed a correlation with either AR episodes, BOS 
incidence, or survival after LTx (data not shown). In contrast, 
we observed a significant difference in the development of 
chronic rejection when patients were stratified by donor SNP 
rs223899 genotype. Of the patients who received a transplant 
from a heterozygous (G/T) donor at position rs223899, 50% 
remained free from BOS within the first 100  months after 
transplantation. This percentage was significantly higher, 75%, 
in the patients who had received a graft from a homozygous 
(G/G) donor (p = 0.023, Figure 2A). This was confirmed in a 
multivariate analysis using a Cox proportional-hazards model 
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FigUre 1 | Donor rs223899 correlates with serum thymus and activation-regulated chemokine (TARC/CCL17) concentrations post-lung transplantation (LTx) LTx 
but not pre-LTx. (a) Serum TARC/CCL17 levels were measured in LTx patients 1 month after LTx stratified for the configuration of donor single-nucleotide 
polymorphism (SNP) rs223899 (homozygous, G/G, 286.0 pg/ml vs. heterozygous, G/T 170.5 pg/ml). A trend toward significance (p = 0.066) was observed with 
increased TARC/CCL17 serum concentrations in patients who received a graft genotyped homozygous for SNP position rs223899. Non-Gaussian distribution, 
median ± interquartile range, Mann–Whitney test, homozygous n = 41, heterozygous n = 26. (b) Serum TARC/CCL17 levels were also assessed pre-LTx in patients 
based on serum availability. No differences in serum TARC/CCL17 could be observed when patients were stratified for the respective rs223899 SNP genotype. 
Non-Gaussian distribution, median ± interquartile range, Mann–Whitney test, homozygous n = 22, heterozygous n = 16.

FigUre 2 | Donor rs223899 affects clinical outcome after lung transplantation (LTx). (a) Kaplan–Meier analysis on bronchiolitis obliterans syndrome (BOS) incidence 
after LTx. Patients were stratified according to the single-nucleotide polymorphism (SNP) configuration of rs223899 in the received allograft. Patients who received a 
graft genotyped as heterozygous (G/T) for this specific SNP have a lower BOS-free survival rate measured over the first 100 months after transplantation 
(p = 0.023). Lower table represents numbers at risk. All 131 patients for which the imputed donor SNP passed quality control (QC) were included. (b) Kaplan–Meier 
analysis on survival after LTx. Patients were stratified as mentioned earlier. Additional to an increase of chronic rejection after LTx, stratification of LTx patients for 
receiving a grafted organ genotyped heterozygous (G/T) at SNP position rs223899 resulted in a lower survival rate post-LTx (p = 0.0079). Lower table represents 
numbers at risk. Patients who had deceased within the first 4 months after transplantation or from whom SNP analysis did not pass QC were excluded, resulting in 
the inclusion of 122 patients. Log-rank test used in both analyses.
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for BOS development, which included both donor and patient 
risk factors for BOS development, and designated the risk variant 
of rs223899 as a significant predictor for the development of BOS 
after LTx (p = 0.018, Table 3). Also, this nucleotide substitution 
in the promotor region of TARC/CCL17 in the donor correlated 
with a lower survival rate of recipients’ post-transplantation (50 
vs. 80%, respectively, p = 0.0079, Figure 2B). None of the other 
individual donor SNPs correlated with BOS development or 
survival after LTx.

DiscUssiOn

In this study, we analyzed the relation of both donor and patient 
TARC/CCL17 genotypes to clinical parameters, but only found 
one single donor SNP to be correlated with BOS development. 
Interestingly, this specific promotor SNP configuration, heterozy-
gosity for rs223899, also correlated with lower serum TARC/
CCL17 levels, which is in concordance with previous observa-
tions that low serum TARC/CCL17 levels in the first month after 
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Table 3 | Multivariate analysis on bronchiolitis obliterans syndrome (BOS) 
incidence in patients treated with lung transplantation.

hazard ratio 
(95% ci)

p-Value

Thymus and activation-regulated chemokine single-
nucleotide polymorphism configuration

2.4 (1.2–5.0) 0.018

Donor age (≥60) 0.7 (0.2–2.5) 0.630
Donor smoking state 1.3 (0.6–2.6) 0.493
Cytomegalovirus reactivation 1.4 (0.6–3.3) 0.397
Epstein–Barr virus reactivation 2.2 (0.8–6.1) 0.131
Recipient age (≥60) 2.5 (1.1–5.7) 0.025
Episode of acute rejection 1.0 (0.4–2.5) 0.969

Cox proportional-hazards model including both known patient and donor factors 
associated with BOS development.
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transplantation are predictive for BOS development (16). We have 
also assessed patient–donor combinations stratified by rs223899 
genotype. We observed higher concentrations of serum TARC/
CCL17 in the first month after LTx when patients heterozygous 
for SNP rs223899 were transplanted with a homozygous donor. 
This was not observed in the other three combinations (patient/
donor homozygous, patient/donor heterozygous, and patient 
homozygous/donor heterozygous).

We only analyzed SNPs that are frequent in the European popu-
lation. Therefore, validation in an external cohort, and re-analysis of 
our findings in populations with other genetic backgrounds is expe-
dient. In this cohort, BOS was diagnosed according to international 
guidelines. However, surveillance bronchoscopy and transbronchial 
lung biopsies are not performed, which is a limitation of this cohort. 
Unresolved infections or undiagnosed episodes of AR could be a 
possibility of persistent lung function decline. Also, due to cohort 
constraints, we were not able to discriminate between early and late 
BOS onset and potential TARC/CCL17 SNP configurations.

Since TARC/CCL17 serum levels measured at month 1 post-
LTx are increased and a predictor for BOS development (16), 
we investigated these serum levels in relation to the donor SNP 
configuration of rs223899. Unfortunately, bronchoalveolar lavage 
samples were not available. TARC/CCL17 expression is controlled 
by various pro-inflammatory cytokines. The insignificant trend of 
lower serum TARC/CCL17 levels observed could be because of the 
immunosuppressive treatment which could potentially influence 
cytokine production and regulation of TARC/CCL17 production. 
Also, infections with community-acquired respiratory viruses 
could impact expression. However, we observed no differences 
in treatment regimen or the incidence of community-acquired 
respiratory viral infections in patients stratified for donor SNP 
genotype (Table S1 in Supplementary Material).

Most studies on the role of genetics in lung transplant complica-
tions have focused on the obstructive form of CLAD, BOS (32). 
These results are mainly obtained using patient DNA, illustrated 
by studies of Awad et al. concerning SNPs in IFN-γ and TGF-β1, 
in which the authors correlate gene polymorphisms with increased 
allograft fibrosis (33, 34). Also, an association between an IL-6 
polymorphism and BOS development was observed (35). However, 
these findings could not be validated in independent cohorts (36). 
Recently, our group has shown that a SNP in the promotor region 
of complement regulatory protein CD59 in the donor correlates 

with a higher risk for chronic rejection after LTx (37). Furthermore, 
a specific donor MBL promotor haplotype has been associated with 
graft survival and BOS development after transplantation (38). 
Taken together, these data stress the potential importance of both 
patient and donor SNPs on the clinical outcome after LTx.

The correlation between rs223828, another TARC/CCL17 pro-
motor polymorphism, and protein serum levels has been described 
previously in a cohort of Japanese patients (10). This polymorphism 
was also found to be associated with atopy and asthma in children, 
as well as with higher circulating levels of TARC/CCL17 (21). We 
could not confirm the correlation of this SNP with serum TARC/
CCL17 levels in our cohort of western European LTx patients, 
presumably due to low minor allele frequency in our patient 
cohort. Observations in patients suffering from Kawasaki disease 
have shown that rs223899 is associated with disease progression. 
However, individual SNPs, including rs223899, did not correlate 
with serum levels when stratified by genotype (22).

The genetic regulation of the TARC/CCL17 gene has partly 
been elucidated. Two STAT6 binding sites have been identified 
at position -213/-223 and -177/-187 relatively to ATG upstream 
of Exon 1. Furthermore, a binding-motif for NFκB is present 
upstream of the two STAT6 binding sites (18). Interestingly, 
using a RSV-inducible mice epithelial cell model, Monick et al. 
have shown that optimal TARC expression is achieved via the 
combined activation of both transcription factors, which would 
involve the recruitment of CREB-binding protein/p300 via NFκB 
and is essential for STAT-mediated transcription (19). The identi-
fied SNP rs223899 lies within consensus binding sequence for 
NFκB (39). Thus, the heterozygous configuration of rs223899 
could result in a less optimal NFκB binding, which would lead to 
a reduced expression of TARC/CCL17.

The role of serum levels of TARC/CCL17 in LTx outcome 
remains speculative. Bronchial epithelial cells have the potency 
to secrete large amounts of TARC/CCL17 when activated (7) and 
considering the small size of TARC/CCL17 (10.5 kDa), it seems 
logical to assume leakage from the allograft into the circulation 
that can subsequently be quantified in serum. Immunoregulatory 
functions have been attributed to TARC/CCL17 due to the pres-
ence of its receptor, CCR4, on a specific subset of regulatory 
T cells (40). A reduced secretion of TARC/CCL17 could lead to 
a diminished influx of regulatory T cells, which would result in 
less regulation of the overall immune response associated with 
transplant rejection (41, 42). Additional experiments are expedi-
ent to support this hypothesis.

In summary, our data indicate that heterozygosity for a single 
SNP in the promotor region of TARC/CCL17 located within the 
consensus sequence of the binding site of transcription factor NFκB 
correlates with serum levels of the TARC/CCL17 protein. Low 
serum TARC/CCL17 levels are predictive for BOS development 
following LTx. In line with these observations, we show that patients 
who receive a heterozygous allograft for SNP rs223899 present with 
a higher BOS incidence and impaired survival after LTx.
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