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Abstract
Salp swarm algorithm (SSA) is a relatively new and straightforward swarm-based meta-heuristic optimization algorithm, which
is inspired by the flocking behavior of salps when foraging and navigating in oceans. Although SSA is very competitive, it suffers
from some limitations including unbalanced exploration and exploitation operation, slow convergence. Therefore, this study
presents an improved version of SSA, called OOSSA, to enhance the comprehensive performance of the basic method. In
preference, a new opposition-based learning strategy based on optical lens imaging principle is proposed, and combined with
the orthogonal experimental design, an orthogonal lens opposition-based learning technique is designed to help the population
jump out of a local optimum. Next, the scheme of adaptively adjusting the number of leaders is embraced to boost the global
exploration capability and improve the convergence speed. Also, a dynamic learning strategy is applied to the canonical
methodology to improve the exploitation capability. To confirm the efficacy of the proposed OOSSA, this paper uses 26 standard
mathematical optimization functions with various features to test the method. Alongside, the performance of the proposed
methodology is validated by Wilcoxon signed-rank and Friedman statistical tests. Additionally, three well-known engineering
optimization problems and unknown parameters extraction issue of photovoltaic model are applied to check the ability of the
OOSA algorithm to obtain solutions to intractable real-world problems. The experimental results reveal that the developed
OOSSA is significantly superior to the standard SSA, currently popular SSA-based algorithms, and other state-of-the-artmeta-
heuristic algorithms for solving numerical optimization, real-world engineering optimization, and photovoltaic model parameter
extraction problems. Finally, an OOSSA-based path planning approach is developed for creating the shortest obstacle-free route
for autonomous mobile robots. Our introduced method is compared with several successful swarm-based metaheuristic tech-
niques in five maps, and the comparative results indicate that the suggested approach can generate the shortest collision-free
trajectory as compared to other peers.

Keywords Salp swarm algorithm . Lens opposition-based learning . Orthogonal experiment design . Dynamic learning .

Global optimization . Engineering design optimization . Photovoltaic models . Parameter extraction . Robot path planning

1 Introduction

Optimization problems are common in the field of engineer-
ing and need to be solved. The optimization method uses
mathematical methods to achieve a variety of search strategies
to optimize the objective function. However, for complex en-
gineering problems, due to the limitations of computing time,
algorithm conditions, and other factors, it is challenging to
obtain the optimal solution. The heuristic optimizationmethod
designs various search strategies based on the intuitive or prior
knowledge of the problem, which is of practical significance
for solving complex engineering optimization problems. In
recent years, numerous meta-heuristic techniques have been
developed and applied to realize real-world problems.
Because of its simplicity, efficiency, flexibility and low
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computational cost, meta-heuristic algorithms for solving
tricky problems have become a hot research topic [1–3]. In
[4], a genetic-moth swarm algorithm was proposed for deter-
mining the suitable locations and capacities of distributed gen-
erations in distributed system and successfully reduced elec-
trical power loss without violating security constrains. In [5], a
PSOGWO algorithm was introduced by combining the grey
wolf algorithm and particle swarm algorithm for parameter
estimation of photovoltaic model. Compared with some
well-performance methods, the experimental results demon-
strated that the developed algorithm outperform all competi-
tors. Moreover, metaheuristic techniques have been used ex-
tensively in PV model parameter estimation issues for a long
time and have provided accurate results that have contributed
to the development of this field [6–10]. Meanwhile,
metaheuristic techniques have become increasingly prevalent
in the field of Wireless Sensor Networks (WSNs). For exam-
ple, in [11], a modified version of artificial bee colony algo-
rithm was developed for optimal clustering in WSNs. The
proposed approach effectively handles the delicate balancing
of the network load and extends the network lifetime, the
promising performance proves that the proposed method is
an effective clustering tool for wireless sensor networks. In
[12], sine-cosine algorithm and harris hawks optimization
were integrated to form a better performing algorithm for
low and high-dimensional feature selection. Compared with
other recognized hybrid algorithms and state-of-the-art feature
selection approaches, the suggested method has competitive
performance and is useful for real-world applications.
Furthermore, in recently, many metaheuristic algorithm-
based feature selection approaches have been developed and
provide superior performance [13–16]. In [17], an improved
fractional-order cuckoo search algorithm was proposed for
COVID-19 X-ray images classification. The outcomes verify
that the involved method performs well in terms of classifica-
tion accuracy. In addition, many metaheuristic algorithms
contributed to battle against the coronavirus disease, which
greatly alleviated the work pressure of doctors while gaining
more treatment time for patients [18–21]. In [22], a novel
particle swarm optimization algorithm was developed for the
path planning and obstacle avoidance problems in autono-
mous mobile robots. The experimental results demonstrate
that the proposed approach can generate an optimal
collision-free route for mobile robots. Besides, a variety of
nature-inspired swarm-based techniques have been employed
to establish a safe and reasonable route for mobile robots, such
as artificial bee colony [23], chemical reaction optimization
[24], bat algorithm [25], ant colony optimization [26], and
cuckoo search algorithm [27]. Due to the powerful ability to
solve real-world problems, metaheuristic techniques are grow-
ing in popularity in many research areas, including image
processing [28], economic dispatch [29], design PID
controller [30], cloud computing [31], and environmental

engineering [32] . According to “no free lunch” (NFL) theo-
rem [33], there is no one method that can handle all optimiza-
tion problems well. In other words, an optimization algorithm
may achieve satisfactory results on some optimization prob-
lems, but it may perform poorly on other different problems.
Therefore, the study of meta-heuristic algorithm has a strong
practical significance.

Nature-inspired meta-heuristic algorithms solve optimiza-
tion problems by building biological or physical phenomena
as mathematical models, which can be divided into four clas-
ses: evolution-based, physics-based, human-based and
population-based methods. As the most popular meta-
heuristic algorithms, the population-based method simulates
the social behavior of fauna in nature. The most representative
algorithm is Particle Swarm Optimization (PSO) presented by
Kennedy and Eberhart [34], which is inspired by the flocking
behavior of birds. PSO uses several particles to travel around
in the search space to find the optimal solution. Another pop-
ular population-based method is Firefly Algorithm (FA), first
proposed by Yang [35], which is inspired by the swarming
behavior of fireflies in the nature. In fact, the collective intel-
ligence of fireflies in finding food through specific ways of
communication is the primary insight for this optimizer. It
uses several fireflies to move in the search space to find the
optimal solution. In addition, the Artificial Bee Colony (ABC)
algorithm [36] was proposed by Karaboga et al. inspired by
the cooperative foraging behavior of bees in the colony, and
has been successfully applied in many disciplines. In recent
years, many novel swarm intelligence based algorithms have
been presented, such as: Krill Herd (KH) [37], Bat Algorithm
(BA) [38], Coyote Optimization Algorithm (COA) [39],
Bacterial Foraging Optimization (BFO) Algorithm [40],
Grey Wolf Optimizat ion (GWO) [41] , Frui t Fly
Optimization Algorithm (FOA) [42], Spotted Hyena
Optimizer (SHO) [43], Poor and Rich Optimization
Algorithm (PRO) [44], Barnacles Mating Optimizer (BMO)
[45], Multi-Verse Optimizer (MVO) [46], Animal Migration
Optimization (AMO) [47], Dragonfly Algorithm (DA) [48],
Whale Optimization Algorithm (WOA) [49], Flower
Pollination Algorithm (FPA) [50], Galactic Swarm
Optimization (GSO) [51], Meerkat-Inspired Algorithm
(MIA) [52], Farmland Fertility Algorithm (FFA) [53],
Pathfinder Algorithm (PFA) [54], Falcon Optimization
Algorithm (FOA) [55], Harris Hawks Optimizer (HHO)
[56], Owl Optimization Algorithm (OOA) [57], Manta Ray
Foraging Optimization (MRFO) [58], Monarch Butterfly
Optimization (MBO) [59], Pity Beetle Algorithm (PBA)
[60], Earthworm optimization algorithm (EOA) [61] and
Salp Swarm Algorithm (SSA) [62]. Among these algorithms,
SSA has been widely studied in recent years because of its
distinctive perspective.

The SSA algorithm is a novel swarm-based stochastic op-
timization algorithm proposed by Mirjalili et al. in 2017,
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which is inspired by the phenomenon that the salps follow
each other to form a chain when they are navigating and for-
aging in the ocean. Through the process of leading and fol-
lowing, an efficient optimization scheme is constructed. The
SSA algorithm has been applied to various optimization prob-
lems because of its simple mechanism, dynamic nature and
strong global search ability. Such as extracting the parameters
of photovoltaic system cell [63, 64], optimization of software-
defined networks [65], train neural networks [66, 67], opti-
mize parameters of soil water retention [68], tariff optimiza-
tion in electrical systems [69], image segmentation [70,71],
target localization [72], optimal power flow problem [73],
estimation of optimal parameters of polymer exchange mem-
brane fuel cells [74], feature selection [75, 76, 77, 78, 79, 80]
and others. Although the SSA algorithm is very competitive, it
still suffers from some limitations such as poor convergence,
unbalanced exploration and exploitation capacities, which
may lead to local optimum stagnation when solving some
intractable optimization problems. To address these draw-
backs, many scholars try to adjust the exploration or exploita-
tion strategies to enhance the comprehensive performance of
the canonical SSA.

Qais et al. [81] modified the control parameters of SSA and
introduced a random parameter into the follower position up-
date formula to improve the convergence performance. Gupta
et al. [82] proposed a modified version of SSA. The concept of
opposition-based learning (OBL) is introduced to improve the
ability of canonical SSA to escape local optimal, and the levy
flight strategy is introduced to help explore the search space.
The comprehensive effect of OBL and levy flight mechanisms
strengthens the exploration-exploitation balance during the
search process. Zhang et al. [83] proposed an enhanced
SSA, which promotes the overall performance of the algo-
rithm by embedding multiple strategies into original SSA.
Among all the introduced strategies, OBL helps to enrich the
diversity of the initial population, orthogonal learning helps to
promote the probability of avoiding local optimal, and the
concept of quadratic interpolation can improve the conver-
gence accuracy. Ren et al. [84] proposed an improved version
of SSA, which introduces adaptive weight and levy flight
strategy into the traditional SSA to promote the comprehen-
sive performance of the algorithm. Among them, the adaptive
weight expands the exploration range, while the levy flight
strategy strengthens the exploitation of the solution space.
Gholami et al. [85] introduced a mutation mechanism to help
the algorithm jump out of the local optimum, which improved
the problem of insufficient accuracy of the algorithm. Sayed
et al. [86] proposed a chaos SSA, that introduces ten different
chaotic maps when updating the control parameters of SSA,
so as to solve the problem that the algorithm is easy to sink
into local optimum. Wu et al. [87] proposed a new version of
SSA, which reduced the probability of local optimal stagna-
tion by introducing dynamic weight factor and adaptive

mutation strategy. Ibrahim et al. [88] proposed an improved
SSA, called SSAPSO, which improves the flexibility of the
algorithm in the exploration phase by hybridizing SSA and
PSO. Singh et al. [89] proposed a novel method that mixes
SSA and Sine Cosine Algorithm (SCA) [90], which enhances
the exploratory ability of the algorithm. Li et al. combined
Gravitational Search Algorithm (GSA) [91] with SSA to
promote the probability of escaping the local optimum.
Among them, GSA and SSA have a clear division of
labor, the former is responsible for global exploration,
the latter is responsible for local exploitation. Yang
et al. [92] proposed a memetic SSA. The convergence rate
and convergence accuracy of the algorithm are enhanced
by using memetic behavior. Syed et al. [93] proposed a
weighted SSA, which improves the ability to balance ex-
ploitation and exploration during the search process by
introducing the concept of optimal location weighted
sum in the position update method. Bairathi et al. [94]
proposed an OBL-based SSA variant, which enriches the
diversity of the initial salp swarm by introducing the con-
cept of OBL during the population initialization stage,
thus promoting the convergence speed and enhancing
the exploitation ability. Chen et al. [95] proposed an im-
proved SSA. By introducing a non-linear attenuation fac-
tor that controls the search range, and the local search
ability was improved, and a dynamic learning strategy
was introduced to enhance the assistance of elite individ-
uals to the leader. Although each of the SSA variants
discussed above improves the performance of the original
SSA to some extent, there are still some drawbacks, such
as premature convergence, unbalanced global search and
local development capabilities. In addition, the above-
mentioned improved algorithms are only applicable to
specific optimization problems, and none of them can
solve all optimization problems well. Therefore, it is of
great practical significance to propose more effective al-
gorithms. Motivated by these two viewpoints, this study
presents a modified SSA variant, called OOSSA, which
improves the overall performance of the canonical SSA.
The main contributions of this investigation are summa-
rized as follows:

& An improved variant of SSA is presented and does not
affect the structure of basic SSA.

& An adaptive technique is presented for the number of
leaders in order to improve the global search ability and
to promote the convergence performance.

& The lens opposition-based learning mechanism is pro-
posed, and combined with orthogonal experimental de-
sign, an orthogonal opposition-based learning technique
is designed to overcome the local optima stagnation.

& A ranking-based dynamic learning strategy is presented to
enhance the local exploitation capability.
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& The balance between global search and local development
of the proposed methodology is held more stably.

& The efficiency of the proposed OOSSA is evaluated on a
comprehensive set of 26 well-known benchmark func-
tions with diverse difficulty levels, and compared with a
variety of competitive metaheuristic techniques, including
the canonical SSA, SSA variants, and other cutting-edge
swarm-based methods.

& Three real-world engineering optimization problems and
parameter extraction problem of PV model are used to
verify the efficiency and practicality of the proposed
algorithm.

AnOOSSA-based path planning approach is developed for
solving the path planning and collision avoidance problem in
autonomous mobile robots.

The remainder of this article is structured as follows:
Section 2 illustrates the preliminary knowledge. The proposed
SSA-based algorithm is specified in detail in Section 3. The
experimentation and verification of the proposed method on
benchmark functions are performed in Section 4. In Section 5,
the proposed method is used to solve three real-life engineer-
ing problems and determine the parameters of PV models. In
Section 6, the proposed OOSSA-based path planning and ob-
stacle avoidance approach is described and simulation and
comparative studies are discussed. Finally, Section 7 con-
cludes this investigation. The detailed flow of the article is
shown in Fig. 1.

2 Preliminary knowledge

2.1 Salp swarm algorithm (SSA)

Salps are translucent, colloidal marine organisms that resem-
ble jellyfish and move by inhaling and expelling seawater.
Researchers mathematicized the chain structure of salps and
proposed SSA. SSA divides salps into two types: leader and
followers. The leader is at the front of the salp chain, while the
followers are at the back, as shown in Fig. 2.

In SSA, the food source is the foraging target of the salp
chain, which guides the leader to update the position. The
mathematical model for updating the position of leader is as
follows:

X 1
j ¼

F j þ c1 ub j−lb j
� �

c2 þ lb j
� �

c3≥0:5
F j−c1 ub j−lb j

� �
c2 þ lb j

� �
c3 < 0:5

�
ð1Þ

where X1 j and Fj indicate the positions of the leaders and food
source in the jth dimension, respectively. ubj and lbj corre-
spond to the lower and upper boundaries of the jth dimension
in the search space, c2 and c3 are random variables evenly
distributed in the interval [0,1], which determine the step size
and moving direction respectively.

c1 is an important parameter in SSA, which is called dis-
tance control factor. The c1 parameter is defined as shown in
Eq. (2).

c1 ¼ 2e−
4t
Tð Þ2 ð2Þ
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where t is the current iteration and T is the maximum number
of iterations.

To update the states of the followers, Eq. (3) is applied:

X i
j ¼

1

2
X i

j þ X i−1
j

� �
ð3Þ

where i≥2 and Xi j shows the position of ith follower salp in
the jth dimension search area.

The search process of SSA algorithm includes two stages:
global exploration and local exploitation. During the initiali-
zation stage, the randomly generated initial population
searches randomly in the search space to help the algorithm
lock the optimal solution region. Then, the algorithm enters

the exploitation stage and makes an accurate search in the
limited area determined in the previous stage to improve
the convergence accuracy. It should be pointed out that
the distance control parameter c1 has an important influ-
ence on the search process. In the early stage of evolution,
the value of c1 is large, which can help the algorithm to
explore the whole solution space, parameter c1 is de-
creased adaptively over the course of iterations, and the
small value of c1 can help the algorithm to carry out
accurate exploitation in a specific search area. Since there
is no prior knowledge to know the position of the food
source, the global optimal solution obtained in each iter-
ation is set as the current food source position.

Fig. 3 demonstrates the flowchart of SSA.

2.2 Principle of lens imaging of light

Convex lens imaging (LI) law is a kind of optical law, which
means that an object is placed outside the focus and an
inverted real image is formed on the other side of the convex
lens [96], as shown in Fig. 4.

The mathematical model of LI can be obtained from Fig. 4
as follows:

1

u
þ 1

v
¼ 1

f
ð4Þ

where u and v are the object distance and image distance,
respectively, and f is the focal length.

2.3 Opposition-based learning

Opposition-based learning (OBL) is an effective tool that can
be used to improve the performance of stochastic search
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algorithms, first proposed by Tizhoosh [97] and has been app
lied to many intelligent optimization techniques. Its main idea
is to evaluate both the current feasible solution and the reverse
solution, and choose the better one to use. Reference [98]
shows that the reverse solution has a greater probability of
approaching the global optimum than the current solution.
Therefore, the OBL technique can effectively improve the
comprehensive performance of the stochastic algorithm. The
concept of OBL is defined as follows:

Definition 1 (Opposite number) [99] Let x∈[a,b] be a real
number and to calculate its opposite number ex, Eq. (5) is
presented.

ex ¼ aþ b−x ð5Þ

Extend the concept of opposite number to high dimension-
al space and give the definition of opposite point as follows:

Definition 2 (Opposite point) [99] Let X=(x1, x2,…, xD) be
a point in d-dimensional space, x1,x2,…,xD∈R and xi∈[ai,bi],
i=1,2,…,D. To calculate its opposite point eX ¼ ex1ð
;ex2;…;exDÞ, Eq. (6) is used.
exi ¼ ai þ bi−xi ð6Þ

2.4 Orthogonal experimental design (OED)

OED is an efficient tool for finding the optimal combination of
multi-factor andmulti-level experiments through a small num-
ber of experiments [100]. For example, for an experiment with
2-level-7-factor, 128 tests are required to discover the optimal
combination. If the orthogonal test design is used, according
to the orthogonal table L8(2

7), such as Eq. (7), the optimal or
better combination can be found through only 8 tests, which
greatly improves the test efficiency. Since there is no guaran-
tee that the optimal combination is in the orthogonal table
[101], when using the orthogonal table, it is usually necessary
to perform factor analysis to find the theoretical optimal com-
bination of the experiment, and combine all the combinations
in the orthogonal table to determine the best solution of the
experiment. For that reason, for the above-mentioned

experiments with 2 levels and 7 factors, eight groups of can-
didate combinations can be obtained first according to orthog-
onal table L8(2

7), then factor analysis is carried out to find a set
of theoretical optimal combinations. Finally, nine combina-
tions are evaluated to find the best combinations for the ex-
periment.

L8 27
� � ¼

1 1 1 1 1 1 1
1 1 1 2 2 2 2
1 2 2 1 1 2 2
1 2 2 2 2 1 1
2 1 2 1 2 1 2
2 1 2 2 1 2 1
2 2 1 1 2 2 1
2 2 1 2 1 1 2

266666666664

377777777775
: ð7Þ

3 Proposed OOSSA approach

3.1 Motivation

According to the previous section, the leader is constantly
moving in the direction of the food source, and the followers
follow closely behind the leader. In this case, the salp chain
successfully completed the foraging process under the leader-
ship of the leading salp. As can be known from Eqs. (1) and
(3), the current optimal solution, that is, the position of the
food source, only has a direct impact on the leading salp, while
the impact on the followers is indirect, and the force is rela-
tively weak. The food source provides the best guidance when
the salp swarm is foraging in the ocean, so it is very important
that the food source should be located in the global optimal
position. However, due to the lack of prior knowledge, it is
difficult to determine whether the current food source is in a
global optimal state. If the food source is in the local optimal
region, the salp chain will gather in the local optimum region,
resulting in the loss of population diversity, and finally
make the algorithm converge to the local optimal. Fig. 5
shows the 30 salps location of the Sphere problem with
three dimensions in the interval [-100, 100] observed at
various stages of SSA.

From Fig. 5, at the early stage of SSA (Fig. 5(a)), 30 indi-
viduals are scattered in the search space, and the rich popula-
tion diversity makes the algorithm have a good global explo-
ration ability. As the number of evolutions increases (Fig.
5(b)), the leading salp continues to approach the food
source, and followers follow each other. All salps form a
chain and move around the food source. In the middle
stage of the SSA (Fig. 5(c)), all individuals continue to
shrink to the food source position, and the search range
continues to narrow, until the end of optimization process
(Fig. 5(d)), all individuals gather near the current optimum

o
F A'

B

B'

Convex lens

A
u

v

f

Fig. 4 The convex lens image of light
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solution, and the population diversity is lost. If the food
source is located in a local optimal, then the leader will
lead the salp chain to gradually move to the local opti-
mum area, eventually causing SSA to fall into a local
optimum. Therefore, it is necessary to adjust the leader's
position update strategy to improve the diversity of the
SSA algorithm. The basic SSA is prone to search stag-
nation, so it is difficult to accomplish the goal of global
search-fast convergence balance. In addition to the rea-
sons analyzed above, the unreasonable number of leaders
and followers is also an important reason for this trage-
dy. In the canonical SSA algorithm, the leader is respon-
sible for global exploration, and the follower is respon-
sible for local exploitation. That is to say, the leader first
locates a rough approximation of the global optimum,
and then the followers accurately search in this area to
improve solution accuracy. There is always only one
leader in the standard SSA, which means that in the
early stage of the evaluation, the global search performed
by a single leader is insufficient, too many followers will
lead to excess local exploitation, which leads to prema-
ture convergence. This situation also exists in the later
iteration. To solve this problem, we propose an adaptive
mechanism for the number of leaders, i.e., the number of
leaders adaptively changes over the course of iterations,
trying to achieve the goal of exploration-exploitation bal-
ance. Additionally, the basic SSA has a poor perfor-
mance in terms of convergence accuracy. To settle this
problem, we adjust the follower position update mecha-
nism and propose a ranking-based dynamic learning
strategy.

The points discussed above have prompted the authors to
estimate that there are some limitations in basic SSA, so the
above point of view is the motivation behind our proposal
of an improved version of SSA. The new SSA-based
structure aims to solve the drawbacks of SSA through
different modifications, so as to improve the overall per-
formance of basic SSA. Detailed discussion on each of
the introduced operators are provided in the following
subsections.

3.2 The adaptive mechanism for the number of
leaders

In the basic SSA algorithm, the leader is the search agent at the
front of the salp chain, and the other salps are followers. The
working nature of the salp is determined by its own role. The
leader updates its own state based on the position information
of the food source, and the followers update their position by
following each other. With the increase of the number of evo-
lutions, the salp chain continues to move closer to the food
source under the leadership of the leading salp. However, it
can be seen from Eq. (3) that when the follower updates the

(a)  Iteration=1

(b)  Iteration=200

(c)  Iteration=300

(d)  Iteration=400

Fig. 5 Population distribution observed at various stages in SSA for
solving Sphere function (D = 3)
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position, it is only affected by its own state and the position of
the individual in front of it, while the global optimal solution,
that is, the food source position, only directly affects the
leader's position update. Therefore, if there is only one leader
in the salp chain, the global optimum solution provides too
little help to the salp swarm during the search process. Once
the leader falls into the local optima, the followers must follow
to the local optimal region, resulting in the premature conver-
gence. To solve this problem, wemade some improvements to
the number of leaders and followers. First, increase the num-
ber of leaders, which can help to improve the global search
ability and accelerate the convergence speed of the algorithm.
Then, an adaptive technique is presented for the number of
leaders. This can help to enhance the ability of exploration-
exploitation balance, and improve the solution accuracy.
Fig. 6 shows that how the number of leaders and followers
change adaptively over the course of iterations. To calcu-
late the number of leaders and followers, Eq. (8) is utilized.

leaderno ¼ ceil N � b � tan
−π l−1ð Þ

4T
þ π

4

� �� �� �
followerno ¼ N−leaderno

8<: ð8Þ

where leader no and follower no show the number of leaders
and followers, respectively, l is the current iteration, N is the
population size, T is the maximum number of iterations, b is a
parameter to adjust the number of leaders. After a large num-
ber of experiments, the value of b is set to 0.55.

Equation (8) shows that the number of leaders decreases
adaptively over the course of iterations, while the number of
followers increases accordingly. In the early iteration, a suffi-
cient number of leaders perform global exploration and a suit-
able number of followers perform local exploitation. In this
case, multiple leaders effectively explore unknown areas, thus
improving the algorithm's ability to jump out of local

optimum. At the same time, an appropriate number of fol-
lowers can ensure that the algorithm has a strong exploitation
capacity. As the number of iterations increases, the number of
leaders decreases adaptively and the number of followers in-
creases accordingly. In this case, a sufficient number of fol-
lowers can accurately search within the global optimum area
determined at the early iteration, so as to improve the conver-
gence accuracy.

3.3 Orthogonal lens opposition-based learning
strategy

In the canonical SSA, at the end of search process, the salp
chain tends to move in a small area near the food source. If the
food source is at the local optima, then the population will
converge to the local optima, resulting in the search stagna-
tion. Therefore, when dealing with intractable multi-modal
problems, SSA is prone to premature convergence.
Consequently, the ability to escape the local optimum has
become the most urgent problem for SSA to solve.
Therefore, this study presents a new Orthogonal Lens
Opposition-Based Learning (OLOBL) mechanism to help
the leading salps migrate to a potentially more promising
region.

Firstly, a Lens Opposition-Based Learning (LOBL) strate-
gy is presented as a technique to generate reverse solution in
OLOBL strategy. The essence of LOBL is a dynamic
opposition-based learning strategy designed by combining
OBL and optical LI principle, and its performance is better
than that of OBL. Next, the definition of LOBL is illustrated in
detail:

Definition 3 (Cardinal point) [102] Let o1,o2,…,om be sev-
eral points in D-dimensional space. The opposite of point

X=(x1,x2,…,xD) is eX ¼ ex1ð ;ex2;…;exDÞ, and the Euclidean
distances of their two to point oi (i=1,2,…,m) are di and d* i,
respectively. Let k=di/d* i, and k= 1,2,...,n, then oi is designat-
ed the cardinal point of X and eX when k=i.

Consider one-dimensional search space as an example,
suppose there is an object M with a height of h at x on the
coordinate axis, and x∈[a,b], and a lens with focal length r is
fixed at the cardinal position o, it should be pointed out that,
this paper takes the midpoint of the interval [a, b] as the car-
dinal point. Based on the LI principle, an image M* with
height h* can be procured. The one-dimensional spatial
LOBL process for the leading salp (x) is illustrated in Fig. 7.

In Fig. 7, x takes o as the cardinal point to get the corre-
sponding opposite point ex, the geometric relationships can be
specified as follows:

aþ bð Þ
2

−x

ex− aþ bð Þ
2

¼ h

h*
ð9Þ

splasforeb
mu

N

Iteration

leader no
follower no

T/2 T
1

N/2

N

0

Fig. 6 The number of leaders and followers changes adaptively over the
course of iterations
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Let h/h*=k, Eq. (9) can be modified as:

ex ¼ aþ bð Þ
2

þ aþ bð Þ
2k

−
x
k

ð10Þ

Let k=1, the Eq. (10) can be clarified to

ex ¼ aþ b−x ð11Þ
where the Eq. (11) is the OBL technique equation in [103].

Equations (10) and (11) show that the reverse individual
obtained from the OBL strategy is fixed, and that the reverse
individual obtained from LOBL is dynamic depending on the
k-value.

Extending Eq. (10) to the n-dimensional space and Eq. (12)
is presented.

exi ¼ ai þ bið Þ
2

þ ai þ bið Þ
2k

−
xi
k

ð12Þ

where xi and exi are the i-dimensional components of x and ex,
respectively, and ai is the upper boundary, bi is the lower
boundary.

OLOBL is a technique produced by combining OED and
LOBL. Compared with OBL, LOBL can further enrich the
diversification of the population, thus enhancing the global

exploration capability of the algorithm. Therefore, LOBL is
used to generate reverse solution in OLOBL mechanism.
However, according to the research of Park et al. [104], for a
solution, the reverse solution is only better than the current
solution in some dimensions. Therefore, taking the reverse
value of all the dimensions of the individual will cause dimen-
sion degradation, that is, some dimensions are far away from
the global optimal solution. To solve this problem, combined
with OED and LOBL, an orthogonal lens opposition-based
learning (OLOBL) strategy is designed, which fully considers
each dimensional component of the current individual and the
reverse individual, and combines their dominant dimensions
to produce a partial inverse solution.

The OLOBL strategy is embedded in the canonical SSA
algorithm, and the dimensionD of the problem corresponds to
the factors of the OED, and the individual and its opposite
individual are the two levels of the OED. The specific process
of constructing the partial inverse solution is as follows: a 2-
level-D-factor orthogonal experiment is designed for the cur-
rent individual and its opposite individual, and M partial re-
verse solution is generated, M is calculated according to Eq.
(13). When the partial reverse solution is generated according
to the orthogonal table, if the element in the orthogonal table is
1, the partial reverse solution takes the value of the current
individual in the corresponding dimension, if the element in
the orthogonal table is 2, the partial reverse solution takes the
value of the opposite individual in the corresponding dimen-
sion. Taking a 7-dimensional problem as an example, the pro-
cess of producing a partial inverse solution by using a 2-level-
7-factor orthogonal experiment is illustrated, as shown
in Fig. 8.

M ¼ 2 log2 Dþ1ð Þd e ð13Þ

According to the characteristics of the OED, the elements
in the first row of the orthogonal table are all 1, which means

o
h

xa
r

bh*

M

M*

Fig. 7 Lens opposition-based learning

Solution

x(x1, x2, x3, x4, x5, x6, x7)

Opposite solution

ox(ox1, ox2, ox3, ox4, ox5, ox6, ox7)

Orthogonal experiment 

design

oox7 (ox1, ox2, x3, x4, ox5, ox6, x7)

oox8 (ox1, ox2, x3, ox4, x5, x6, ox7)

oox9: Constructed by factor analysis

oox6 (ox1, x2, ox3, ox4, x5, ox6, x7)

oox5 (ox1, x2, ox3, x4, ox5, x6, ox7)

oox4 (x1, ox2, ox3, ox4, ox5, x6, x7)

oox3 (x1, ox2, ox3, x4, x5, ox6, ox7)

oox2 (x1, x2, x3, ox4, ox5, ox6, ox7)

oox1 (x1, x2, x3, x4, x5, x6, x7)
Fig. 8 Construct experimental
solution
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that the first set of experimental solutions is the current indi-
vidual itself and does not need to be evaluated. The otherM-1
sets of experimental solutions are the combination of the dom-
inant dimensions of the current individual and its reverse in-
dividual, that is, partial reverse solutions, which need to be
evaluated. According to the content mentioned above, when
using the OED, it is necessary to carry out factor analysis to
find out a group of theoretical optimal combination that is not
in the orthogonal table, which need to be evaluated. Therefore,
the number of function evaluations (FEs) required for each
execution of OLOBL is M times. To achieve a good balance
between enhancing the exploration ability of the algorithm
and reducing the number of FEs, only one leader is ran-
domly selected to perform the OLOBL strategy in each
iteration, and the other leaders only perform the LOBL
tactic, and choose the better one from the leader and its
reverse individual or partial reverse individual to enter the
later iteration.

3.4 Ranking-based dynamic learning strategy

According to Eq. (3), in the basic SSA, followers learn the
previous individual while retaining their own characteristics,
and complete the location update. The location update mech-
anism is relatively simple, once the leader falls into the local
optimum, the followers must follow to the local optimum area.
To enhance the flexibility of the follower's position update
mechanism, this paper proposes a ranking-based dynamic
learning strategy. Firstly, the ranking of the current search
agent and the previous search agent in the salp swarm is eval-
uated based on the fitness value, and then the influence weight
is designed according to the ranking, and it is applied to the
corresponding individual.

After introducing the ranking-based dynamic learning
strategy, Eq. (3) can be modified as:

X i
j ¼

1

2

ranki−1
ranki þ ranki−1

X i
j þ

ranki
ranki þ ranki−1

X i−1
j

� �
ð14Þ

where ranki and ranki-1 represent the ranking of the two indi-
viduals respectively.

The ingenuity of Eq. (14) is that for the current individual i
and the previous individual i-1, the ranking of the individuals
with better fitness is correspondingly higher, but the ranking
value is smaller, so the ranking value of the individual with poor
fitness is taken as the coefficient of the better individual, so that
the better individual has a larger influenceweight, and vice versa.

3.5 Proposed OOSSA

To enhance the comprehensive performance of SSA, we ana-
lyze the drawbacks of the method and propose three adjust-
ment mechanisms, and then embedded the improved search

mechanism into the basic SSA to present a novel and efficient
SSA-based algorithm called OOSSA. The detailed process of
OOSSA is as follows:

Step 1 Initialize parameters of the OOSSA method in-
cluding population size N, maximal number of FEs
Fmax, problem dimension D, the upper and lower bound-
aries of the i-th dimensional space, lbi, and ubi. Randomly
generate N individuals in the search space.
Step 2 Evaluate the initial population based on the fitness
value, and the position of the search agent with the best
fitness is set as the current food source.
Step 3 Calculate the number of leaders and followers
according to Eq. (8), and randomly select a leader and
mark it as OLOBL-Leader.
Step 4 Judge the role of salps. If the salp is a leader and is
not OLOBL-Leader, enter Step5; if the salp is OLOBL-
Leader, enter Step6; if the salp is a follower, enter Step7.
Step 5Use Eq. (1) to amend the state of the leading salp to
generate candidate solution 1. The current leader executes
the LOBL strategy according to Eq. (12) to generate can-
didate solution 2, and the search agent with better fitness
value is chosen as the new solution among candidate
solution 1 and candidate solution 2.
Step 6 Leader OLOBL-Leader executes the OLOBL
strategy.
Step 7 Update the state of the follower by Eq. (14).
Step 8 The one with the better fitness value among the
food source and the current optimal individual is set as
the food source.
Step 9 If the number of FEs does not exceed Fmax, return
to Step 3. Otherwise, output the food source position.

The flowchart of OOSSA is illustrated in Fig. 9.
While keeping the basic framework and overall flow of the

original SSA algorithm unchanged, OOSSA introduces the
LOBL strategy in the leader position update phase, randomly
selects an individual to implement the OLOBL strategy, and
modifies the follower position update equation. Suppose the
dimension of problem is D, population size is N, and
maximum number of iterations is T. The computational
complexity of population position updating is O(TND),
and the computational complexity of the leader executing
LOBL or OLOBL is O(TD2). Therefore, the eventual
computational complexity of OOSSA is O(TN2), which
is the same as that of the original SSA. This shows that
the algorithm is modified without increasing the compu-
tational overhead.

3.6 Justification of OOSSA

In this subsection, the proposed OOSSA algorithm is justified
in a metaphor-free way. A proportion of individuals in the
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population search the solution space according to Eq. (1), and
this search equation can be rewritten as

X 1
j ¼

F j þ V j c3≥0:5
F j−V j c3 < 0:5

�
ð15Þ

To calculate Vj, the following equation is employed

V j ¼ c1 ubj−lb j
� �

c2 þ lb j
� � ð16Þ

where c2 is a random number between [0,1], so c1((ubj-lbj)c2+
lbj) can be rewritten as c1((ubj-lbj)rand(0,1)+lbj). This equa-
tion is the same as the one used to allocate initial positions of
individuals, which means that the outcome obtained from this
equation is a randomly generated position in the jth dimen-
sional search space, which can also be interpreted as a step
size. c1 is an important parameter that decreases adaptively
during the iterations and is used to control the value of the
step size. Therefore, according to Eq. (16), Vj can be defined
as a step size that decreases adaptively over the course of
iterations and has a stochastic property.

In Eq. (15), Fj is the current optimal solution, which
searches the solution space by moving gradually in steps
Vj in the hope of finding more promising regions. The
parameter c3 determines the movement direction of the
current optimal solution. Since c3 is a random number
between [0,1], the current optimal solution searches to-
wards positive or negative infinity with equal probability,
which ensures that the whole solution space is adequately
searched.

Based on the above analysis, from Eq. (15), for the jth
dimensional search space, Fj is the current optimal position
and Vj is the step size. In the early iteration, larger c1 values

generate larger step sizes Vj, which can help the current opti-
mal solution to discover new promising regions in the search
space by moving significantly, thus identifying the region
where the global optimal solution is located. In the later iter-
ation, smaller c1 values produce smaller step sizes Vj, which
can help the current optimal individual to discover the global
optimal solution by exploiting the promising regions identi-
fied in the early iteration. In summary, Eq. (15) is responsible
for thoroughly searching the entire solution space in the early
evolution to pinpoint the potentially global optimal region and
finely exploiting this region in the later evolution to find the
optimal solution.

After an individual updates its position according to Eq.
(15), it jumps to an OLOBL individual based on the
OLOBL strategy, and this operator is analyzed below.

The literature [98] demonstrates that the reverse solution
has a higher probability of reaching the global optimal than
the current solution, and the literature [104] further demon-
strates that the reverse solution outperforms the current solu-
tion only in certain dimensions, i.e., opposite learning may
cause the dimensional degradation problem. The OED tech-
nique can solve this problem by discovering and combining
the dominate dimensions of the current and reverse solutions,
which is the OOBL strategy mentioned in the paper. The
OLOBL strategy proposed in this paper is a generalized ver-
sion of the OOBL, i.e. OOBL is a special case of OLOBL, so
OLOBL has the same properties as OOBL and is more effec-
tive. Consequently, an individual can improve the conver-
gence speed of the algorithm by executing the OLOBL strat-
egy to produce an OLOBL-individual that is closer to the
global optimum solution. In addition, if an individual is
trapped in a local optimum, by executing the OLOBL

Start
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population X
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population X
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best solution F

l = l + 1
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Fig. 9 The flowchart of OOSSA
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strategy, it can jump out of this trap and move to a more
favorable area for searching. In summary, OLOBL can im-
prove the convergence speed of the algorithm and enhance its
ability to jump out of the local optimum.

The remaining individuals in the population update their
position according to Eq. (14), which will be analyzed below
to reveal the search properties it implies.

As Eq. (14) is a modification of Eq. (3), we first analyze the
search properties implied by Eq. (3). This search equation is
derived from Newton's law of motion, based on which the
distance moved by an individual is calculated as follows.

D tð Þ ¼ 1

2
aΔt2 þ v0Δti≥2 ð17Þ

In optimization, time is iteration, t represents the discrep-
ancy between evolutions, so Δt=1, v0 is the initial velocity,
consider v0=0, a is the acceleration and calculate according to
the following equation

a ¼ vfinal−v0
Δt

ð18Þ

When the current individual moves to the position of its
previous individual, its velocity is calculated as follows.

vfinal ¼
xi−1j t−1ð Þ−xij t−1ð Þ

Δt
ð19Þ

where xi−1j and xij represent the position of the current individ-
ual and its previous individual in the jth dimension at the
previous time step (t-1), respectively. Therefore, the individ-
ual moves to the next position according to the following
equation

xij tð Þ ¼ xij t−1ð Þ þ D tð Þ
¼ xij t−1ð Þ þ 1

2
xi−1j t−1ð Þ−xij t−1ð Þ
� � ð20Þ

The search equation used by the algorithm can be obtained
by simplifying Eq. (20), which is Eq. (3) as presented
previously.

Based on the above analysis, the individual moves to the
next position according to Newton's laws of motion, and al-
though this gradual movement can search the solution space,
this pattern is too rigid. Therefore, we improve it by using the
fitness value-based ranking of two individuals in the pop-
ulation as a weighting factor to dynamically adjust the
movement direction and step size of the current individual
so that the next position is closer to the better of the two
search agents, which is the proposed search Eq. (14). In
the experimental section, we will verify the validity of the
proposed search model by rigorous experimentation on
benchmark functions.

Next, we will present a theoretical convergence proof of
OOSSA.

OOSSA is a swarm intelligence optimization algorithm, so
the convergence property of OOSSA is analyzed using the
general approach of analyzing the theoretical convergence of
population-based techniques.

Theorem 1: If the basic SSA is convergent, the developed
OOSSA is also convergent.

Proof of Theorem 1: Let X(t) be the current solution at

generation t, which jumps to eX tð Þ through OLOBL, and their
jth dimension values are Xj(t) and eX j tð Þ, respectively; the
global optimal is X*; the boundary of the search region in jth
dimension is [aj,bj].

Based on Theorem 1, for any individual X(t) in generation
t, it is satisfied as

lim
t→∞

X j tð Þ ¼ X*
j ð21Þ

Since aj(t)=min(Xj(t)), bj(t)=max(xi,j(t)), it follows that

lim
t→∞

aj tð Þ ¼ lim
t→∞

bj tð Þ ¼ X*
j ð22Þ

For the OLOBL-individualeX tð Þ,

eX j tð Þ ¼
aj tð Þ þ bj tð Þ
� �

2
þ aj tð Þ þ bj tð Þ
� �

2k
−
X j tð Þ
k

ð23Þ

When t → ∞,

lim
t→∞

eX j tð Þ ¼ lim
t→∞

aj tð Þ þ bj tð Þ
� �

2
þ a j tð Þ þ bj tð Þ
� �

2kð Þ −
X j tð Þ
k

� �

¼ lim
t→∞

aj tð Þ þ bj tð Þ
� �

2

þ lim
t→∞

aj tð Þ þ bj tð Þ
� �

2kð Þ − lim
t→∞

X j tð Þ
� �

k

¼
X*

j þ X*
j

� �
2

þ
X*

j þ X*
j

� �
2k

−
X*

j

k
¼ X*

j

ð24Þ

From Eq. (24), when Xj(t) converges to X*, eX j tð Þ also
converges to X*. Hence, if the basic SSA algorithm can con-
verge to the global optimal X*, the OOSSA algorithm is also
convergent. It should be noted that the proof does not guaran-
tee that the algorithm converges to the global optimum.

4 Simulation results and discussions

4.1 Benchmark test functions

To authenticate the performance of OOSSA for global opti-
mization problems, a set of 26 widely used benchmark test
functions are utilized in the experiment, the details of which
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are given in Table 1. These benchmark problems can be char-
acterized three various categories: unimodal, multimodal, and
fixed-dimension multimodal. The unimodal problems (f1~f9)
have no local optima, but only one global optimum,
which is used to disclose the local exploitation ability of
stochastic algorithms. On the other hand, there are multi-
ple local optima for the multimodal problems (f10~f19),
which are suitable for revealing the ability of stochastic
algorithms to balance global exploration and local exploi-
tation. The fixed-dimension multimodal problems
(f20~f26) face the existence of a large number of local
optima and more than one global optimum, which are
very appropriate to verify local optimum avoidance and
stability of stochastic algorithms. The search space of
some benchmark functions are illustrated in Fig. 10. The
proposed algorithm is compared with a variety of algo-
rithms including SSA variants and other state-of-the-art
swarm intelligence based methods, and all comparison
algorithms are given in Table 2.

All algorithms are coded on MATLAB R2014b, and all of
the simulation experiments are performed on a computer with
Intel(R) Core(TM) i7-7700 CPU(3.60GHz) and 8.00 GB
RAM.

4.2 Comparison with SSA and improved SSA

To demonstrate the performance of the proposed OOSSA, we
tested it on 26 widely used benchmarks, which are reported in
Table 1. The OOSSA algorithm was compared with other
thirteen SSA-based methods, including the original SSA algo-
rithm [62], the enhanced SSA algorithm (ESSA) [81], the
lifetime scheme-based SSA algorithm (LSSA) [105], the
multi-subpopulation-based SSA with Gaussian mutation
mechanism (MSNSSA) [106], the chaotic SSA algorithm
(CSSA) [80], the self-adaptive SSA algorithm (ASSA)
[107], the SSA algorithm based on PSO (SSAPSO) [88], the
improved SSA algorithm based on opposition-based learning
(ISSA) [108], the Gaussian-SSA algorithm (GSSA) [109], the
enhanced opposition-based SSA algorithm (OBSSA) [110],
the adaptive SSA algorithm with non-linear coefficient de-
creasing inertia weight (ASSO) [111], the SSA algorithm with
random replacement tactic and double adaptive weighting
mechanism (RDSSA) [112], the hybrid enhanced whale opti-
mization SSA algorithm (IWOSSA) [113]. For fair compari-
sons, the population size N for all algorithms was set to 30.
The maximal number of FEs is set to 15000. The dimension is
set as 100. The other parameter settings of SSA, ESSA,
LSSA, MSNSSA, CSSA, ASSA, SSAPSO, ISSA, GSSA,
OBSSA, ASSO, RDSSA, and IWOSSA algorithms are
adapted from the original papers. In the proposed OOSSA
algorithm, k=10000. Each approach runs 30 times indepen-
dently on each benchmark problem, and the average and stan-
dard deviation of objective function values results found by

nine algorithms on these functions as the metrics of perfor-
mance. At the same time, Friedman rank (f-rank) test [114]
was used to test the statistical significance of OOSSA. The
simulation results on benchmark functions f1 to f19 with di-
mensions 100 is shown in Table 3, the statistical results on
fixed-dimension problems (f20~f26) is shown in Table 5.

The statistical results from Table 3 show that except for the
functions f6, f9, f11 and f14, the OOSSA algorithm converges to
the global optimum on the other 15 test cases. Compared with
ESSA, OOSSA finds the similar and better results on six and
13 test functions, respectively. For functions f10, f12, f16, f17,
and f18, two algorithms get the theoretical optimum.
Compared with MSNSSA, OOSSA provides similar and bet-
ter results on four and 15 test functions, respectively. OOSSA
outperforms SSA, LSSA, CSSA, ASSA, SSAPSO, ISSA,
GSSA and IWOSSA significantly in terms of solution accu-
racy on all test problems. With respect to OBSSA, OOSSA
obtains better and similar values for 14 and four benchmarks,
respectively. However, OBSSA shows better performance on
f6, but the gap between the two approaches is negligible.
Compared to ASSO, OOSSA gets similar and better results
on four and 15 test cases, respectively. According to the re-
sults of the comparison between OOSSA and RDSSA, the
performance of the developed approach is better than its rival
on 13 problems. For other six functions, two methods show
similar performance on five of them, while the better value is
achieved by RDSSA on the remaining one. Additionally, ac-
cording to the average ranking values of all optimizers
achieved from the Friedman test, which are reported at the
bottom of Table 3, the OOSSA obtains the top rank, followed
by RDSSA, ESSA, OBSSA, ASSO, MSNSSA, GSSA,
IWOSSA, ASSA, LSSA, ISSA, CSSA, and SSA. In other
words, OOSSA is recommended as the best optimizer among
all its peers.

Moreover, Wilcoxon signed rank test (significance level is
set to 0.05) [114] is used to verify that the proposed method
has significant advantages over other competitors. The p-
values calculated in the Wilcoxon signed rank test of
OOSSA and other compared algorithms for all benchmark
functions with 100 dimensions are given in Table 4. For ex-
ample, if the optimal algorithm is OOSSA, a comparison is
made between OOSSA versus SSA, OOSSA versus ESSA,
OOSSA versus LSSA and so on. Among them, N/A repre-
sents not available, which means that the corresponding meth-
od performs best on this test function, and there is no statistical
data to compare with itself. In the statistical table, the symbols
“-”, “+” and “=” represent the performance of the correspond-
ing approach is worse than, better than, and similar to that of
OOSSA, respectively. According to the Wilcoxon’s rank sum
test, when the p-value is less than 0.05, the zero hypothesis is
rejected, that is, it is considered that there is a significant
difference between the two methods [114]. It should be noted
that when p-values are greater than 0.05, bold is used.

Z. Wang et al.7934



Table 1 26 widely used benchmark test functions

Function name Function formulation Search range fmin

Sphere f 1 xð Þ ¼ ∑
D

i¼1
x2i [−100,100] 0

Schwefel 2.22 f 2 xð Þ ¼ ∑
D

i¼1
jxij þ ∏

D

i¼1
jxij [−10,10] 0

Schwefel 1.2 f 3 xð Þ ¼ ∑
D

i¼1
∑
i

j¼1
x j

 !2

[−100,100] 0

Schwefel 2.21 f4(x)=maxi{|xi| ,1≤ i≤D} [−100,100] 0

Axis paralled hyper-elliposide f 5 xð Þ ¼ ∑
D

i¼2
ix2i [−10,10] 0

Quartic f 6 xð Þ ¼ ∑
D

i¼1
ix4i þ random 0; 1½ Þ [−1.28,1.28] 0

High Conditioned f 7 xð Þ ¼ ∑
D

i¼1
106
� � i−1

D−1x2i [−100,100] 0

Bent Cigar f 8 xð Þ ¼ x21 þ 106 ∑
D

i¼2
x2i [−10,10] 0

Generalized Penalized Function

f 9 xð Þ ¼ π
D

10sin2 πyið Þ þ ∑
D−1

i¼1
yi−1ð Þ2 1þ 10sin2 πyiþ1

� �	 
þ yD−1ð Þ2
� �

þ ∑
D

i¼1
u xi; 10; 100; 4ð Þ yi ¼ 1þ xi þ 1

4
u xi; a; k;mð Þ ¼

k xi−að Þm; xi > a
0;−a < xi < a

k −xi−að Þm; xi < a

8<:
[−50,50] 0

Rastrigin f 10 xð Þ ¼ ∑
D

i¼1
x2i −10cos 2πxið Þ þ 10
	 


[−5.12,5.12] 0

Ackley f 11 xð Þ ¼ −20exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d ∑

D

i¼1
x2i

s !
−exp 1

D ∑
D

i¼1
cos 2πxið Þ

� �
þ 20þ e [−32,32] 0

Griewank f 12 xð Þ ¼ 1
4000 ∑

D

i¼1
x2i − ∏

D

i¼1
cos xiffi

i
p
� �

þ 1 [−600,600] 0

Discus f 13 xð Þ ¼ 106x21 þ ∑
D

i¼2
x2i [−10,10] 0

Zakharov f 14 xð Þ ¼ ∑
D

i¼1
x2i þ ∑

D

i¼1
0:5xi

� �2

þ ∑
D

i¼1
0:5xi

� �4

[−5,10] 0

Schaffer’s F7 f 15 xð Þ ¼ 1
D−1 ∑

D−1

i¼1

ffiffiffiffi
xi

p
sin 50:0x0:2i

� �þ 1
� �� � �2

[−100,100] 0

Non-continuous Rotated
Rastrigin’s

f 16 xð Þ ¼ ∑
D

i¼1
y2i −10cos 2πyið Þ þ 10
	 


yi ¼
xi→ jxij < 1

2

round 2xið Þ=2→ jxij≥ 1

2

8><>:
[−5.12,5.12] 0

Katsuura f 17 xð Þ ¼ 10
D2 ∏

D

i¼1
1þ i ∑

32

j¼1

j2 jxi−round 2 jxið Þj
2 j

 ! 10
D1:2

− 10
D2 [−5,5] 0

Inverted cosine wave f 18 xð Þ ¼ − ∑
D−1

i¼1

exp −
x2i þ x2iþ1 þ 0:5xixiþ1

8

� �
�cos 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ x2iþ1 þ 0:5xixiþ1

q� �
0BB@

1CCA [−100,100] -d+1

Powell f 19 xð Þ ¼ ∑
D=4

i¼1

x4i−3 þ 10x4i−2ð Þ2 þ 5 x4i−1−x4ið Þ2þ
x4i−2−2x4i−1ð Þ4 þ 10 x4i−3 þ x4ið Þ4

 �
[−5,5] 0

Six-Hump Camel-Back Function f 20 xð Þ ¼ 4x21−2:1x41 þ 1
3 x

6
1 þ x1x2−4x22 þ 4x42 [−5,5] −1.0316

Goldstein-Price Function
f 21 xð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 19−14x1 þ 3x21−14x2 þ 6x1x2 þ 3x22

� �h i
�

30þ 2x1−3x2ð Þ2 � 18−32x1 þ 12x21 þ 48x2−36x1x2 þ 27x22
� �h i [−2,2] 3
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Table 1 (continued)

Function name Function formulation Search range fmin

Shekel’s Family f 22 xð Þ ¼ − ∑
5

i¼1
X−aið Þ X−aið ÞΤ þ ci

h i−1
[0,10] −10.1532

Shekel’s Family f 23 xð Þ ¼ − ∑
7

i¼1
X−aið Þ X−aið ÞΤ þ ci

h i−1
[0,10] −10.4028

Shekel’s Family f 24 xð Þ ¼ − ∑
10

i¼1
X−aið Þ X−aið ÞΤ þ ci

h i−1
[0,10] −10.5363

Hartman’s Function f 25 xð Þ ¼ − ∑
4

i¼1
αiexp − ∑

3

j¼1
aij x j−pij
� �2 !

[0,1] −3.86278

Hartman’s Function f 26 xð Þ ¼ − ∑
4

i¼1
αiexp − ∑

6

j¼1
aij x j−pij
� �2 !

[0,1] −3.32237

( f9 ) ( f10 ) ( f11 )

( f12 ) ( f20 ) ( f21 )

( f1 ) ( f3 ) ( f4 )

Fig. 10 Search space of some typical benchmark problems
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From Table 4, the p-values are greater than 0.05 in the
following cases: OOSSA versus ESSA on f6, OOSSA versus
OBSSA on f6, and OOSSA versus ASSO on f6. Except for the
three comparisons mentioned above, the p-values obtained in
all other cases are less than 0.05. This means that the overall
performance of OOSSA is obviously superior to other rivals,
that is, the superiority of OOSSA is statistically significant.
Based on the above discussion, compared with the basic SSA
algorithm and other improved version of SSA algorithms, the
overall performance of OOSSA has a strong competitiveness.

Another issue of interest is the performance of OOSSA on
fixed-dimension problems. The comparison results between
OOSSA and thirteen comparison SSA variants outlines in
Table 5 address this concern. Due to the low dimensions of
these test cases, the optimal solutions obtained by the fourteen
approaches on all functions can basically achieve theoretical
optimum. In terms of average values, the results of OOSSA on
most functions are highly close to the global optimal. With
respect to standard deviation, OOSSA can also obtain satis-
factory results on most cases, indicating that the methodology

has a good stability. According to the average ranking values
of OOSSA and the involved SSA variants on seven test func-
tions provided by Friedman test, we can see that OOSSA
ranks second, behind CSSA, and followed by OBSSA,
GSSA, IWOSSA, SSAPSO, ISSA, ESSA, ASSA, SSA,
RDSSA, MSNSSA, LSSA, and ASSO, which further indi-
cates that OOSSA has a better performance in terms of the
capability to balance diversification and intensification, and is
also highly competitive in respect of stability.

4.3 The influence of improving mechanisms on SSA

In this section, we investigate the effectiveness of different
mechanisms of the proposed OOSSA algorithm. The three
components of OOSSA that differ from SSA are: the number
of leaders changes adaptively, the orthogonal lens opposition-
based learning (OLOBL) strategy, and dynamic learning (DL)
mechanism. To verify the validity of the adjustment strategies,
OLOBL and DL are embedded into the basic SSA algorithm
respectively, and the OLOBL-SSA and DL-SSA algorithms
are obtained. In addition, to compare the effectiveness of
LOBL and OBL strategies, the orthogonal opposition-based
learning using OBL is embedded into the basic SSA to obtain
OOBL-SSA. It should be pointed out that OLOBL-SSA, DL-
SSA and OOBL-SSA all adopt the multi-leader mechanism.
Select all the unimodal and multimodal problems (f1-f19) with
100 dimensions in Table 1 for simulation experiments to com-
pare OOSSA, OLOBL-SSA, DL-SSA and OOBL-SSA. The
parameter settings are the same as those in the previous sec-
tion. Each algorithm runs 30 times independently on each
benchmark problem, and recording the average optimal object
function value, standard deviation, and Friedman ranking re-
sults, as shown in Table 6.

According to the statistical results in Table 6, the conver-
gence accuracy and stability of the OLOBL-SSA, DL-SSA
and OOBL-SSA algorithms embedded with a single compo-
nent are better than the basic SSA algorithm on all functions,
which proves the effectiveness of the different mechanisms of
the proposed method. Compared with DL-SSA, OOSSA
achieved superior results for 16 test functions except f10, f12,
and f16, and for functions f10, f12, and f16, the two algorithms
achieved similar and satisfactory results. Compared with
OOBL-SSA, OOSSA achieved similar and better perfor-
mance on 4 and 15 test functions. The OLOBL-SSA algo-
rithm, like OOSSA, can find the theoretical optimal value in
most functions. But for the test functions f6, f9, and f14, the
convergence accuracy and optimization stability of OOSSA
are obviously better than that of OLOBL-SSA, especially on
the function f9 and f14, OOSSA shows significant advantages.
Therefore, the two components have certain effects, and em-
bedding both of them into the basic SSA algorithm can further
improve the overall performance of the algorithm. In addition,
according to Table 6, compared with OOBL-SSA, OLOBL-

Table 2 Comparison algorithms

Algorithm Year Type Reference

SSA 2017 Basic SSA [62]

CSSA 2018 SSA variant [80]

ESSA 2019 SSA variant [81]

SSAPSO 2018 SSA variant [88]

LSSA 2020 SSA variant [105]

MSNSSA 2021 SSA variant [106]

ASSA 2020 SSA variant [107]

ISSA 2019 SSA variant [108]

GSSA 2021 SSA variant [109]

OBSSA 2021 SSA variant [110]

ASSO 2021 SSA variant [111]

RDSSA 2021 SSA variant [112]

IWOSSA 2021 SSA variant [113]

MPA 2020 Recent algorithm [116]

EO 2020 Recent algorithm [117]

TSA 2020 Recent algorithm [129]

SOGWO 2020 Recent algorithm [130]

IGWO 2021 Recent algorithm [131]

HGS 2019 Recent algorithm [132]

EESHHO 2021 Recent algorithm [133]

ArOA 2021 Recent algorithm [134]

AOA 2020 Recent algorithm [135]

DMMFO 2021 Recent algorithm [136]

WEMFO 2021 Recent algorithm [137]

OGWO 2021 Recent algorithm [138]

OOSSA The proposed algorithm
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SSA shows significant advantages on 15 benchmark functions
except f10, f12, f16, and f18. For the test functions f10, f12, f16,
and f18, the two algorithms show the same performance. This
shows that LOBL in orthogonal opposition-based learning is
more helpful for the algorithm to jump out of the local opti-
mum than OBL. According to Friedman ranking test results,
OOSSA ranks first and OLOBL-SSA ranks second, followed
by DL-SSA, OBL-SSA and SSA, which further verifies the
effectiveness of the components and the performance of
OOSSA is obviously better than that of SSA variants with a
single component.

4.4 High-dimensional performance analysis

To demonstrate the feasibility of applying OOSSA to solve
large-scale problems, 19 test problems listed in Table 1
(f1~f19) are chosen for simulation experiments, and the func-
tion dimension is set to 10000. The parameter settings remain
the same as those used in the previous experiment. Table 7
shows the best solution, worst solution, average and standard
deviation obtained by OOSSA in 30 independent experiments
on 19 large-scale problems. In addition, the success rate
(SR%) metric is used to evaluate the efficiency of the pro-
posed methodology in solving large-scale optimization prob-
lems. The criterion for judging whether a solution is success-
ful is as follows:

j f A− f T j
f

< 10−5; f T≠0

j f A− f T j < 10−5 ; f T ¼ 0

8<: ð25Þ

where fA is the result obtained by the algorithm on the test
function, and fT is the theoretical optimal value of the test
function.

According to the statistical results in Table 7, for large-
scale numerical optimization problems, OOSSA can con-
verge to the theoretical optimal value on 16 test functions
except f6, f9, f11, and f14. From the standard deviation,
OOSSA has the same superior stability while maintaining
high solution accuracy. For functions f6, f9, f11, and f14,
although OOSSA failed to find the theoretical optimal
solution, the results obtained are still satisfactory.
Compared to the results obtained on functions with di-
mensions 100, the result on f6 is in the same order of
magnitude, the results on f9 is slightly inferior, but the
convergence accuracy is still considerable, while on f11,
the same results are obtained, and for f13, the similar re-
sult is obtained. This fully demonstrates that OOSSA al-
gorithm is strongly robust in dealing with large-scale op-
timization problems. In terms of success rate, OOSSA can
achieve 100% on the other 17 test functions except for 0
on test function f9 and 20% on test function f6, which

verifies that OOSSA algorithm is an effective tool for
solving large-scale optimization problems.

4.5 Comparison with other swarm-based intelligent
algorithms

To further testify the overall performance of OOSSA, it is
compared with nine state-of-the-art algorithms. They are
Marine Predators Algorithm (MPA) [116], Equilibrium
Optimizer (EO) [117], Tunicate Swarm Algorithm
(TSA) [129], Selective Opposition Based Grey Wolf
Optimization (SOGWO) [130], Improved Grey Wolf
Algorithm (IGWO) [131], Henry Gas Solubility (HGS)
Optimization [132], Memetic Harris Hawk Optimization
(EESHHO) [133], Arithmetic Optimization Algorithm
(ArOA) [134], Archimedes Optimization Algorithm
(AOA) [135], Moth-Flame Optimization Algorithm Based
on Diversity and Mutation Mechanism (DMMFO) [136],
Moth Flame Optimizer with Double Adaptive Weights
(WEMFO) [137], Opposition-based Learning Grey Wolf
Optimizer (OGWO) [138]. These are cutting-edge algorithms
that have been verified to have good optimization perfor-
mance and have been successfully applied to solve a variety
of optimization problems. Therefore, by comparing with these
algorithms, we can effectively authenticate the effectiveness
and superiority of OOSSA. In this section, some of the test
functions in Table 1 (f1~f19) are selected for simulation exper-
iment, and the function dimension is set to 100. To ensure the
fairness of the comparative experiments, the parameters of the
compared algorithms are consistent with the original paper,
which can provide assurance that each method to take full
advantage of its overall performance. Table 8 shows the aver-
age value and the standard deviation obtained from 30 inde-
pendent experiments by 13 algorithms on 19 test functions,
and the Friedman test is also employed to double-check the
performance of OOSSA. Apart from these, Wilcoxon’s rank
sum test at a 0.05 significance level is applied to analyze the
performance gap between OOSSA and its peers.

According to the comparison results provided in Table 8
between OOSSA and the applied renowned algorithms,
OOSSA outperforms TSA, SOGWO, IGWO, DMMFO, and
OGWOon all test cases.With respect toMPA, EO, AOA, and
WEMFO, OOSSA provides better results on 15, 17, 16, and
12 problems, respectively, and for the remaining cases they
obtain similar performance. Compared with HGS, OOSSA
achieve the better and similar values for 12 and five bench-
marks, respectively. For other two functions f9 and f14, HGS
yields slightly superior results. With regard to ArOA, OOSSA
gets more promising and comparable results on 15 and three
problems, respectively, while the better result is given by
ArOA on the remaining function f6. From the comparison
results of OOSSA and EESHHO on 19 benchmarks, the pro-
posed methodology gets more potential and resemble results
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Table 6 Comparisons of OLOBL-SSA, DL-SSA, OOBL-SSA, and OOSSA on 19 test functions with 100 dimensions

Function Results SSA OLOBL-
SSA

DL-SSA OOBL-
SSA

OOSSA

f1 Mean 1.41E+
03

0 4.82E-39 1.62E-22 0

Std 396.0337 0 2.42E-39 1.90E-22 0

f-rank 5 1 3 4 1

f2 Mean 47.4085 0 5.60E-20 7.63E-12 0

Std 5.8319 0 1.74E-20 3.35E-12 0

f-rank 5 1 3 4 1

f3 Mean 5.06E+
04

0 1.05E-37 1.66E-22 0

Std 2.66E+
04

0 1.10E-37 1.64E-22 0

f-rank 5 1 3 4 1

f4 Mean 28.1304 0 1.88E-20 2.09E-12 0

Std 4.5227 0 5.98E-21 1.47E-13 0

f-rank 5 1 3 4 1

f5 Mean 875.4389 0 2.17E-39 4.66E-23 0

Std 275.0973 0 1.30E-39 3.16E-23 0

f-rank 5 1 3 4 1

f6 Mean 2.6832 8.92E-05 1.04E-04 1.20E-04 4.38E-05

Std 0.6420 8.18E-05 1.05E-04 1.24E-04 5.34E-05

f-rank 5 2 3 4 1

f7 Mean 7.61E+
07

0 3.55E-34 3.25E-18 0

Std 2.95E+
07

0 1.75E-34 3.24E-18 0

f-rank 5 1 3 4 1

f8 Mean 1.29E+
07

0 4.55E-35 1.99E-18 0

Std 4.16E+
06

0 2.49E-35 2.76E-18 0

f-rank 5 1 3 4 1

f9 Mean 33.0015 0.1452 0.1709 0.1629 0.0339

Std 9.8040 0.0345 0.0337 0.0380 0.0062

f-rank 5 2 4 3 1

f10 Mean 249.9030 0 0 0 0

Std 44.9377 0 0 0 0

f-rank 5 1 1 1 1

f11 Mean 10.2687 8.88E-16 4.44E-15 1.61E-12 8.88E-16

Std 1.0978 0 0 8.88E-13 0

f-rank 5 1 3 4 1

f12 Mean 12.8754 0 0 0 0

Std 3.5134 0 0 0 0

f-rank 5 1 1 1 1

f13 Mean 1.01E+
03

0 2.37E-39 1.15E-24 0

Std 610.0508 0 2.74E-39 1.83E-24 0

f-rank 5 1 2 3 1

f14 Mean 72.3570 189.1811 5.61E-41 188.6257 1.63E-76

Std 16.3749 40.3712 3.12E-41 30.0553 5.56E-76

f-rank 3 5 2 4 1

f15 Mean 5.0618 0 9.03E-11 1.03E-06 0
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on seven and 11 test functions, respectively. For the other
benchmark function f9, EESHHO displays better perfor-
mance. Additionally, according to the ranking of all methods
in Friedman test, the OOSSA obtains the top rank, followed
by EESHHO, HGS, AOA, MPA, EO, ArOA, WEMFO,
OGWO, SOGWO, IGWO, TSA, and DMMFO, which indi-
cates that OOSSA has the most outstanding performance
among all competitors.

Table 9 shows the p-values of the Wilcoxon test obtained
for the involved thirteen algorithms on 19 classical functions
with 100 dimensions. As can be seen from the statistical re-
sults, the p-values of the following cases are greater than 0.05:
OOSSA versus HGS on f17, OOSSA versus EO on f9, f16, and
f17; OOSSA versus EESHHO on f7 and f19, OOSSA versus
ArOA on f6, OOSSA versus AOA on f16. All other p-values
are less than 0.05, which implies that the overall performance
of the OOSSA algorithm has a significant advantage over the
other twelve well-performance cutting-edge optimization
algorithms.

4.6 Convergence analysis

To test the convergence performance of the proposed OOSSA
algorithm, we select some representative benchmark functions
in Table 1 with 100 dimensions, and show the convergence
curves of OOSSA, ESSA, LSSA, MSNSSA, CSSA, ASSA,
SSAPSO, ISSA, GSSA, OBSSA, ASSO, RDSSA, IWOSSA
and SSA on these test cases in Fig. 11, and the convergence
graphs of OOSSA, TSA, SOGWO, MPA, HGS, EO,
EESHHO, ArOA, AOA, IGWO, WEMFO, DMMFO, and

OGWO on the applied benchmarks are drawn in Fig. 12.
The convergence plots can help to analyze the convergence
trend of OOSSA in a more intuitive way.

It can be clearly seen from Fig. 11 that OOSSA has a higher
solution accuracy and faster convergence speed for all func-
tions compared to the other thirteen SSA-based competitors. It
is note that for test function f11, although EESSA obtains the
same solution accuracy as OOSSA, it performs significantly
worse than OOSSA in terms of convergence speed. On the
other hand, from the curves presented in Fig. 12, the conver-
gence trend of OOSSA outperforms all involved peers on
most cases. On f11, OOSSA reaches the same solution accu-
racy as EESHHO andHGS, but the suggestedmethod exhibits
a substantial advantage in terms of convergence speed. In
addition, the better solution accuracy is achieved by HGS on
f14, while OOSSA shows a competitive convergence rate in
the early stages, but it falls in to a local optimal in the later
iterations. Based on the above assessment, we can assert that
OOSSA has an outstanding convergence trend, facilitated by
the fact that the developed approach focuses on a delicate
balance between exploratory and exploitative inclinations.

5 OOSSA for engineering design problems

To test the effectiveness of OOSSA in solving practical prob-
lems, we applied OOSSA to three classical engineering design
problems named pressure vessel design, I-beam design, and
cantilever beam design. Even though the problems have sev-
eral constraints, OOSSA still expects to handle these

Table 6 (continued)

Function Results SSA OLOBL-
SSA

DL-SSA OOBL-
SSA

OOSSA

Std 0.2752 0 1.30E-11 2.45E-07 0

f-rank 5 1 3 4 1

f16 Mean 475.4789 0 0 0 0

Std 112.1545 0 0 0 0

f-rank 5 1 1 1 1

f17 Mean 6.91E-12 0 7.89E-12 7.96E-12 0

Std 4.49E-13 0 7.73E-13 8.37E-13 0

f-rank 5 1 5 4 1

f18 Mean −2.6258 −99 −39.3082 −99 −99
Std 0.9471 0 12.2275 0 0

f-rank 5 1 4 1 1

f19 Mean 92.2466 0 4.65E-40 4.14E-24 0

Std 28.3720 0 3.04E-40 4.08E-24 0

f-rank 5 1 3 4 1

Average f-rank 4.8947 1.3157 2.7895 3.2632 1

Overall f-rank 5 2 3 4 1
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constraints and obtain the optimal solution. The experimental
data of the compared algorithms are referred to the original
literature.

5.1 Pressure vessel design

The objective of the pressure vessel design problem is to min-
imize fabrication cost, which include welding, materials and
forming. As shown in Fig. 13, the pressure vessel design
problem can be solved by determining the optimal values of
four design variables: thickness of head Th, thickness of shell
Ts, inner radius R, and length of cylindrical shell L.

The mathematical formulations of this problem are as
follows:

Consider x!¼ x1½ x2 x3 x4� ¼ Ts½ ThRL�.
M i n i m i z e f x!� � ¼ 0:6224x1x2 x3 þ 1:7781x2x23þ

3:1661x21x4 þ 19:84x21x3.
Subject to

g1 x!
� �

¼ −x1 þ 0:0193x3≤0;

g2 x!
� �

¼ −x3 þ 0:00954x3≤0;

g3 x!
� �

¼ −πx23x4−
4

3
πx33 þ 1296000≤0;

g4 x!
� �

¼ x4−240≤0:

Variable range 0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200.
OOSSA is used to solve the pressure vessel design problem

and ten other algorithms are selected for comparison, and the
results obtained are listed in Table 10. It should be noted that
the results of the compared algorithms are directly derived
from the previous work. From Table 10, it can be seen that
for the pressure vessel design problem, OOSSA obtains opti-
mal results and has a greater advantage over the other com-
pared algorithms.

5.2 I-beam design problem

Another practical engineering problem used in this section is
the I-beam design problem. The main objective of this prob-
lem is to design an I-shaped beam within a minimum vertical
deflection. As shown in Fig. 14, this problem includes four
structural parameters: length (b), height (h) and two thick-
nesses (tw and tf).

The mathematical model of this problem can be construct-
ed as below:

(Consider) x!¼ x1½ x2 x3 x4� ¼ bhtw½ t f � :
(Minimize) f x!� � ¼ 5000

tw h−2t fð Þ
3

12þ
bt3

f
6 þ2bt f

h−t f
2

� �2
:

Subject to g x!� � ¼ 2btw þ tw h−2t f
� �

≤0:
Variable range 10 ≤ x1 ≤ 50, 10 ≤ x2 ≤ 80,0.9 ≤ x3 ≤ 5,

0.9 ≤ x4 ≤ 5.
OOSSA was used to solve the I-beam design problem and

compared with eight algorithms, and the results obtained are
given in Table 11. From the results listed in the table, for the I-
beam design problem, OOSSA obtained the same and similar
results as the BWOA and SSA, and significantly
outperformed the other six compared algorithms. This proves
that OOSSA has a strong competitive edge in this problem.

5.3 Cantilever beam design

This section tests the performance of OOSSA using the can-
tilever beam design problem whose main purpose is to mini-
mize the weight of the cantilever beam. As illustrated in
Fig. 15, the cantilever beam contains five hollow cells with
square cross sections, each defined by a variable with a
constant thickness, and thus contains a total of five struc-
tural parameters. The problem can be solved by determin-
ing the optimal values of the five structural parameters.

The mathematical expressions of the cantilever beam de-
sign problem are as follows:

(Minimize) f x!� � ¼ 0:6224 x1 þ x2 þ x3 þ x4 þ x5ð Þ :
Subject to g x!� � ¼ 61

x31
þ 37

x32
þ 19

x33
þ 7

x34
þ 1

x35
≤1:

Variable range 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

Table 7 Results obtained by OOSSA on 10,000-dimensional functions

Function OOSSA

Best Worst Mean Std SR%

f1 0 0 0 0 100

f2 0 0 0 0 100

f3 0 0 0 0 100

f4 0 0 0 0 100

f5 0 0 0 0 100

f6 2.65E-06 2.24E-04 5.45E-05 5.42E-05 20

f7 0 0 0 0 100

f8 0 0 0 0 100

f9 0.2149 0.2770 0.2566 0.0245 0

f10 0 0 0 0 100

f11 8.88E-16 8.88E-16 8.88E-16 0 100

f12 0 0 0 0 100

f13 0 0 0 0 100

f14 9.04E-83 3.09E-75 6.19E-76 1.38E-75 100

f15 0 0 0 0 100

f16 0 0 0 0 100

f17 0 0 0 0 100

f18 −9999 −9999 −9999 0 100

f19 0 0 0 0 100
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OOSSA is used to solve the cantilever beam design prob-
lem and compared with other eleven advanced algorithms,
and the obtained results are listed in Table 12. From the results
listed in the table, OOSSA performs much better than other
compared algorithms for the cantilever beam design problem,
which further validates the superior performance of the pro-
posed methodology for the practical engineering optimization
problem.

5.4 OOSSA for parameter estimation of photovoltaic
model

Solar energy is considered to be an environmentally friendly
renewable energy source and has gained a lot of attention in
recent years. By accurately predicting solar photovoltaic (PV)
characteristics, the performance of PV cell systems can be
optimized. Extracting PV parameters is a hot research problem
in the field of solar PV systems. Among the models describing
solar cell characteristics, the single diode model (SDM) is the
most popular and its structure is shown in Fig. 16. To calculate
the output current of the SDM, the following mathematical
model is used [145].

IL ¼ Iph−Id−I sh

¼ Iph−I sd � exp
q � VL þ RS � ILð Þ

n � k � T
� �

−1
 �

−
VL þ RS þ IL

Rsh

ð26Þ

where IL represents the output current, Iph represents the
photo-generated current, Id denotes the diode current, and Ish
is the shunt resistor current, Isd denotes the reverse saturation
current of diode, n is the ideality factor, k denotes the
Boltzmann constant, q represents the electron charge, the se-
ries and shunt resistances are represented by Rs and Rsh, re-
spectively. In the SDM, five parameters (Iph, Isd, Rs, Rsh, and
n) are needed to be identified.

By introducing root mean square error (RMSE), the PV
parameter identification problem can be reformulated as an
optimization problem and solved by the metaheuristic algo-
rithm. The objective of the optimization is to minimize the
error between the measured data and simulated data. The ob-
jective function of the optimization problem is defined as:

F Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

k¼1
f VL; IL;Xð Þ2

s
ð27Þ

where N represents the number of experimental data.
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Fig. 11 Convergence curves of SSA-based algorithms for twelve representative test functions
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In Eq. (27), for the SDM:

f VL; IL;Xð Þ ¼ Iph−I sd � exp
q � VL þ RS � ILð Þ

n � k � T
� �

−1
 �

−
VL þ RS � IL

Rsh
−IL

X ¼ Iph; I sd;RS ;Rsh; n
� �

8>>>><>>>>:
ð28Þ

where 0≤Iph≤1, 0≤Isd≤1, 0≤RS≤0.5, 0≤Rsh≤100, and 1≤n≤2.
We applied OOSSA to extract the parameters of the SDM

and compared it with the canonical SSA algorithm and the
other nine well-known algorithms. All algorithms were per-
formed 30 times independently, each run evaluating the fit-
ness function 30,000 times. The experimental parameters
were used as provided in the literature [146]. The irradiance
was 1000 W/m2 and the temperature was 33°C. The experi-
mental results are shown in Table 13, and the I-V and P-V
characteristic curves are plotted in Fig. 17.

6 Implementation of OOSSA for mobile robot
path planning

With the sustainable advancement of intelligent technology,
autonomous mobile robots (AMRs) are applied in an ever
increasing number of fields, such as intelligent transport, in-
telligent handling. Path planning is a fundamental and essen-
tial technology in AMRs, the task of which is to generate a
shortest obstacle-free trajectory route from a departure point to
a target point. Nature-inspired population-based intelligence
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Fig. 12 Convergence curves of OOSSA and twelve cutting-edge algorithms for twelve representative test functions

Fig. 13 Pressure vessel design problem
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techniques are enjoying increasing popularity in mobile robot
path planning (MRPP), e.g. PSO, GA, and ABC algorithms
have been implemented to guide AMRs from one location to
another, and safe and less time-consuming tracks have been
projected successfully. In this section, we propose a novel
OOSSA-basedMRPP approach to handle the task of planning
shortest collision-free path for AMRs in different workspace.

6.1 Robot path-planning problem description

Topologically, the MRPP project is associated with the
shortest route issue of discovering a route between initial
and the destination in a diagram. which is generally expressed
as an optimization problem and can be solved using swarm
intelligence techniques. The task to be achieved by optimiza-
tion is to find a shortest possible trail from the source to the
terminal, while all threating regions need to be avoided. The
core of solving this intractable problem is to establish an effi-
cient fitness function, and the developed OOSSA-based
MRPP approach manipulates it through continues evaluation
to derive the optimal solution, i.e. to generate the safe and

shortest path. Based on the above analysis, we designed the
fitness function by considering route path length and conflict
avoidance to evaluate the quality of the trajectories generated
by the OOSSA-based MRPP method, which is calculated as
follows:

F ¼ L 1þϖ � ηð Þ ð29Þ
whereϖ is a control parameter for encouraging safe paths and
rejecting routes that collide with threatening areas, L repre-
sents the path length and to calculate it, the following equation
is employed.

L ¼ ∑
n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1−xið Þ2 þ yiþ1−yi

� �2q
ð30Þ

where (xi,yi) denotes the coordinates of the ith interpolation
point.

In Eq. (29), η is a flag variable that serves to quantify the
safety status of the path. To calculate it, the following equation
is presented.

Table 10 Comparison of
optimization results for pressure
vessel design

Algorithm Th Ts L R Optimal
cost

OOSSA 0.779522 0.390588 40.38971848 199.026456 5902.93731

SSA [62] 0.790678 0.390834 40.96773875 195.91822 6012.1885

GWO [41] 0.8125 0.4345 42.098181 176.75873 6051.5639

WOA [49] 0.8125 0.4375 42.0982699 176.639 6059.741

MFO [115] 0.8125 0.4375 42.098445 176.636596 6059.7143

MVO [46] 0.8125 0.4375 42.0907382 176.73869 6060.8066

MPA [116] 0.8125 0.4375 42.098445 176.636607 6059.7144

EO [117] 0.8125 0.4375 42.0984456 176.6365958 6059.7143

HHO [56 0.817584 0.407293 42.009174576 176.071964 6000.46259

SCA [90] 0.8125 0.43375 42.04861 177.7078 6076.3651

CSS [122] 0.8125 0.4375 42.103624 176.572656 6059.0888

Q

tftw

b

L

P

h

Fig. 14 I-beam design problem
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η ¼ ∑
nobs

k¼1
∑
m

j¼1
max 1−

d j;k

robsk
; 0

� �
ð31Þ

where nobs represents the number of obstacles in the workspace,
m denotes the number of interpolant points in the route, dj,k
indicates the distance from the jth interpolant point to the center
of the kth obstacle, and robsk is the radius of the kth obstacle.
From Eq. (31), if the generated path does not contain any con-
flicts, a small value of η is obtained, and vice versa.

Table 11 Comparison of
optimization results for I-beam
design problem

Algorithm b h tw tf Optimum vertical
deflection

OOSSA 50 80 1.76470588 5 0.0066259581

SSA [62] 50 80 1.76470587 5.0000 0.0066259581

WOA [49] 49.99799 80 1.7647477 5 0. 00662619

MFO [115] 50 80 1.7647 5 0.0066259

BWOA [118] 50 80 1.76470588 5 0.0066259581

SOS [119] 50 80 0.9 2.32179 0.0130741

ARSM [120] 37.05 80 1.71 2.31 0.0157

IARSM [121] 48.42 79.99 0.9 2.4 0.131

CS [120] 50 80 0.9 2.321675 0.0130747

Fig. 15 Cantilever beam problem

Table 12 Comparison of results
on cantilever beam design
problem

Algorithm x1 x2 x3 x4 x5 Optimum
weight

OOSSA 5.7987206 5.2887823 4.5313474 3.2840148 2.1347847 1.3127493670

SSA [62] 6.0151345 5.3093046 4.4950067 3.5014262 2.1527879 1.33995639

MFO [115] 5.9848717 5.3167269 4.4973325 3.5136164 2.1616202 1.339988085

MVO [46] 6.0239402 5.30601123 4.49501132 3.49602232 2.15272617 1.3399595

SOS [123] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

CS [124] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

SaISOS [125] 5.929337 5.314156 4.449033 3.473583 2.1616463 1.33515

ALO [126] 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995

MMA [127] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA-I [127] 6.0100 5.30400 4.4900 3.4980 2.1500 1.3400

GCA-II [127] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GOA [128] 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996

Iph Id Ish

Rsh

Rs

IL
+

VL

Light

Fig. 16 Equivalent circuit of SDM
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6.2 Experiment and results

In this subsection, the proposed OOSSA-based MRPP ap-
proach is fulfilled and the obstacle-free shortest route for a
path planning problem in the AMRs is successfully mimicked
on the Matlab 2014b platform. To validate the performance of
the suggested methodology more authoritatively, five terrains

provided by [147] were utilized for the simulation, and these
environment setups have various characteristics and complex-
ity levels that can help to test the method comprehensively.
After investigating the suitability of the OOSSA method in
MRPP issues, the routes gained by it are compared with those
achieved by several classical swarm-based metaheuristic tech-
niques such as PSO, GWO, FA, SSA, and ABC. For an

Table 13. Comparison results
among different algorithms on
SDM

Algorithm Iph(A) Isd(μA) Rs(Ω) Rsh(Ω) n RMSE

BSA [139] 0.7609 0.37749 0.0358 56.5266 1.4970 1.0398E-03

LBSA [140] 0.7609 0.34618 0.0362 59.0978 1.4881 1.0143E-03

IBSA [141] 0.7607 0.35502 0.0361 58.2012 1.4907 1.0092E-03

BLPSO [140] 0.7607 0.36620 0.0359 60.2845 1.4939 1.0272E-03

HISA [142] 1.0323 2.67736 1.2317 74.8451 47.658 2.0166E-03

PSO-WOA [143] 0.7606 0.34016 0.0361 59.3231 1.4864 1.0710E-03

mGWO [144] 0.7606 0.38534 0.0357 64.6624 1.4991 1.1279E-03

IGWO [144] 0.7627 0.23878 0.0365 30.5388 1.4521 2.3038E-03

WOA [49] 0.7599 0.41702 0.0351 74.4021 1.5072 1.3900E-03

SSA [62] 0.7775 0.14269 0.0068 55.6980 1.9957 1.8300E-02

OOSSA 0.7608 0.33809 0.0361 53.2795 1.4858 9.9966E-04

Table 14 Type of environment
Terrain No. of

obstacles
Initial
coordinates

Final
coordinates

X axis Y axis Obstacle radius

Map 1 3 0, 0 4, 6 [1 1.8 4.5] [1 5.0 0.9] [0.8 1.5 1]

Map 2 6 0, 0 10, 10 [1.5 8.5 3.2 6.0
1.2 7.0]

[4.5 6.5 2.5 3.5
1.5 8.0]

[1.5 0.9 0.4 0.6
0.8 0.6]

Map 3 13 3, 3 14, 14 [1.5 4.0 1.2 5.2
9.5 6.5 10.8
5.9 3.4 8.6
11.6 3.3 11.8]

[4.5 3.0 1.5 3.7
10.3 7.3 6.3
9.9 5.6 8.2 8.6
11.5 11.5]

[0.5 0.4 0.4 0.8
0.7 0.7 0.7 0.7
0.7 0.7 0.7 0.7
0.7]

Map 4 30 3, 3 14, 14 [10.1 10.6 11.1
11.6 12.1
11.2 11.7
12.2 12.7
13.2 11.4
11.9 12.4
12.9 13.4 8
8.5 9 9.5 10
9.3 9.8 10.3
10.8 11.3 5.9
6.4 6.9 7.4
7.9]

[8.8 8.8 8.8 8.8
8.8 11.7 11.7
11.7 11.7
11.7 9.3 9.3
9.3 9.3 9.3 5.3
5.3 5.3 5.3 5.3
6.7 6.7 6.7 6.7
6.7 8.4 8.4 8.4
8.4 8.4]

[0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4]

Map 5 45 0, 0 15, 15 [2 2 2 2 2 2 4 4 4
4 4 4 4 4 4 6 6
6 8 8 8 8 8 8 8
8 8 10 10 10
10 10 10 10
10 10 12 12
12 12 12 14
14 14 14]

[8 8.5 9 9.5 10
10.5 3 3.5 4
4.5 5 5.5 6 6.5
7 11 11.5 12 1
1.5 2 2.5 3 3.4
4 4.5 5 6 6.5 7
7.5 8 8.5 9 9.5
10 10 10.5 11
11.5 12 10
10.5 11 11.5]

[0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4]
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unbiased comparison, the common parameters are set to the
same values and special ones are kept in line with their orig-
inal literature to help the involved approached can perform at
their best. The details of the used terrains are illustrated in
Table 14. Each algorithm plans the path for the robot ten times
in each environmental map and we record the optimal trajec-
tory. The length of the path produced by respective methods
are reported in Table 15, and the corresponding trajectory is
drawn in Figs. 18, 19, 20, 21 and 22.

From the optimal trace created by all algorithms in five
terrains, as recorded in Table 14, the OOSSA-based MRPP
approach planned the collision free shortest paths for all envi-
ronmental setup compared to the competitors. Next, the opti-
mal routes produced by all methods for each terrain are de-
tailed below.

A comparison of optimal routes developed by all methods
for the first terrain is illustrated in Fig. 18(a-f). From the fig-
ure, FA, SSA, and OOSSA design the same trajectory to nav-
igate the AMRs from the starting point to the destination,
while PSO, ABC, and GWO provide an alternative trajectory
route. Clearly, the former are thinking more wisely. The com-
parison between FA, SSA, and OOSSA shows that the sug-
gested method has the competence to circumvents local opti-
mum, while the other two approaches try to give the best path

for the AMRs, but they fall into the local optimal. In general,
OOSSA-based MRPP approach provides competitive paths
under simple terrain.Figure 19(a-f) depicts the optimal perfor-
mance of all involved methods for the second terrain. From
Fig. (a-e), the involved competitors can produce a threatening
area-free safety path to help the AMRs move from the initial
to the goal. However, getting stuck in local optimum leads to
path redundancy. In contrast, the OOSSA-based MRPP ap-
proach builds a most encouraging route, which helps the
AMRs to reach the destination safely while consuming less
fuel. The comparison results between the OOSSA-based
MRPP algorithm and its peers show that the developed ap-
proach can serve as an excellent tool for MRPP.

Figure 20(a-f) visualizes the optimal routes planned by
all methods for the third landscape with 13 threatening
regions of different sizes. From the figure, various trajec-
tories are established while manoeuvring from the starting
point to a destination to create an obstacle-free trial.
Different from the tortuous paths generated by PSO, FA,
GWO, and SSA, OOSSA and ABC forge straightforward
trajectories, which can apparently contribute better to the
robot’s fuel savings. Furthermore, compared to OOSSA,
ABC constructs a route trajectory that seems less sensible,
as it is clearly worse than OOSSA in terms of path length.

Table 15 The minimum path
length comparison of OOSSA-
based MRPP approach and com-
petitors under five terrains

Terrain PSO FA ABC GWO SSA OOSSA

Path length Path length Path length Path length Path length Path length

Map 1 7.7328 7.5281 7.7527 7.7625 8.6017 7.4573

Map 2 14.5037 14.4288 14.8418 14.3565 15.2430 14.3082

Map 3 17.2219 16.1593 17.4818 17.3517 16.9979 15.8140

Map 4 16.1925 16.3031 16.2919 16.3281 16.8157 15.8613

Map 5 21.8520 21.9933 21.8792 22.3073 22.1842 21. 0046

Fig. 17 Comparison between measured data and simulated data obtained by OOSSA for SDM
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Correspondingly, the path lengths counted in Table 15
confirm this conclusion.

The simulation results of the fourth scenario with 30 obsta-
cles shows that two different trajectories are established by
applied methods while maoeuvring from the starting location
to an ending point, as shown in Fig. 21(a-f). On the one hand,
PSO, ABC, GWO, and SSA devises similar tracks, but trav-
elling from the terrain edge is not conductive to assisting the
AMRs in saving fuel, although avoiding collision with threat-
ening regions. On the contrary, better routes are built by
OOSSA and FA, and two algorithms have the competence

to build paths that pass between obstacles, which validates
the superiority of the methods. Moreover, compared to the
sinuous route taken by FA, OOSSA yields a straightforward
trajectory while manoeuvring from the starting point to desti-
nation. Overall, OOSSA is recommended as the optimal path
planner under the complex terrain compared to its
competitors.

Optimal paths generated by six applied approaches for the
fifth terrain are plotted in Fig. 22(a-f). From the figure, we can
conclude that all approaches can be recognized as reliable path
planner. While the involved competitors have achieved

(a) PSO (b) FA

(c) ABC                                 (d) GWO

(e) SSA (f) OOSSA

Fig. 18 Map 1 (a) PSO, (b) FA,
(c) ABC, (d) GWO, (e) SSA and
(f) OBDSSA
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satisfactory results, there is still scope for improvement. The
statistical results listed in Table 15 also show that the OOSSA-
based MRPP approach received the shortest collision-free
path, followed by PSO, ABC, FA, SSA, and GWO. The
OOSSA method can handle the delicate balance between
exploration and exploitation, thus jumping out of the local
optimum solution and planning a directly straightforward
path to navigate the AMRs from the beginning to the
finish. Overall, the superior results allow the recommend-
ed approach to be a promising tool for MRPP problems in
AMRs.

7 Conclusions

In this study, the limitations of canonical SSA are discussed in
detail, including the unreasonable distribution of the number
of leaders and followers, the monotonous follower position
update mechanism, and the lack of a technique to help the
algorithm jump out of the local optimal, which leads to
SSA, like existing metaheuristic algorithms, being easy to fall
into local optimal, lazy convergence, and unbalanced explo-
ration and exploitation. To relieve these drawbacks in a new
manner, a novel version of SSA is developed, called OOSSA,

(a) PSO                        (b) FA

(c) ABC                                   (d) GWO

(e) SSA (f) OOSSA 

Fig. 19 Map 2 (a) PSO, (b) FA,
(c) ABC, (d) GWO, (e) SSA and
(f) OBDSSA
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which introduces three reliable adjustment strategies into the
basic SSA. First, a leader-follower number adaptive mecha-
nism is presented to improve the method’s global search abil-
ity in the early iterations and local exploitation competence in
the later iterations. Second, an enhanced local optimal avoid-
ance ability is obtained by introducing a lens opposition-based
learning operator. In addition, an OLOBL strategy is con-
structed by combining LOBL and OED and embedded in
the basic SSA to improve the exploratory ability of the algo-
rithm while handling the dimensional degradation problem

posed by OBL. To strike a trade-off between boosting the
exploration potential of the method and reducing the number
of FEs, only one leader is selected to perform OLOBL in each
evolutionary iteration. Finally, a ranking-based dynamic
learning strategy is introduced in the follower position update
phase, which effectively improves the local exploitation capa-
bility of the algorithm.

The performance of the developed OOSSA is verified in a
meaningful way on a set of 26 test functions widely used in the
literature with various characteristics. The proposed OOSSA

(a) PSO                        (b) FA

(c) ABC                                   (d) GWO

(e) SSA (f) OOSSA 

Fig. 20 Map 3 (a) PSO, (b) FA,
(c) ABC, (d) GWO, (e) SSA and
(f) OBDSSA
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method is also compared with a comprehensive set of 13 well-
performance SSA variants and 12 cutting-edge swarm-based
metaheuristic approaches. The comparison results show that
the proposed methodology outperforms other peers in a sig-
nificant way. Also, OOSSA exhibits competitive performance
on practical engineering design problems, including pressure
vessel, I-beam, and cantilever beam. Additionally, the sug-
gested approach is successfully applied to estimate the param-
eters of PV model. The test results indicate that OOSSA can
serve as a promising tool for solar PV parameter estimation.

Finally, an OOSSA-based path planning and collision
avoidance approach for autonomous mobile robots is present-
ed. The performance of the introduced path planning approach
is tested on five environmental maps and the outcomes
achieved by this method are compared with those produced
from other nature-inspired swarm-based techniques, including
PSO, GWO, ABC, FA, and SSA. The comparative study
shows that the introduced OOSSA-based path planning ap-
proach can provide the shortest collision-free route among
all competitors under all the environmental setups.

(a) PSO                        (b) FA

(c) ABC                                   (d) GWO

(e)  SSA (f) OOSSA 

Fig. 21 Map 4 (a) PSO, (b) FA,
(c) ABC, (d) GWO, (e) SSA and
(f) OBDSSA
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Overall, the developed strategies are significant to the com-
prehensive performance of metaheuristic techniques.
Research teams interested in metaheuristic algorithms can in-
tegrate our strategies into the used nature-inspired swarm-
based techniques to solve their optimization problems, and it
is recommended that research groups concerned with solving
their optimization tasks using nature-inspired swarm-based
techniques use OOSSA for this purpose. In the future, we
hope to generalize OOSSA and design effective constraint
handling techniques to solve multi-objective optimization

problems. To perform well on multi-objective optimization
assignments, further balancing the diversity and convergence
of OOSSA is a necessary task. Furthermore, we will also
focus on measuring the effectiveness of the developed opera-
tors on other metaheuristic techniques.
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Fig. 22 Map 5 (a) PSO, (b) FA,
(c) ABC, (d) GWO, (e) SSA and
(f) OBDSSA
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