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neighborhood preference of Amino 
Acids in protein Structures and its 
Applications in protein Structure 
Assessment
Siyuan Liu1,2, Xilun Xiang1,2, Xiang Gao1,2 & Haiguang Liu  1,3*

Amino acids form protein 3D structures in unique manners such that the folded structure is stable and 
functional under physiological conditions. Non-specific and non-covalent interactions between amino acids 
exhibit neighborhood preferences. Based on structural information from the protein data bank, a statistical 
energy function was derived to quantify amino acid neighborhood preferences. The neighborhood of one 
amino acid is defined by its contacting residues, and the energy function is determined by the neighboring 
residue types and relative positions. The neighborhood preference of amino acids was exploited to 
facilitate structural quality assessment, which was implemented in the neighborhood preference program 
NEPRE. The source codes are available via https://github.com/LiuLab-cSRc/nepre.

Despite the advances in protein structure determination methods, the discovery rate of new proteins greatly 
exceeds the rate of experimental structure determination. New proteins can be discovered by high-throughput 
genome sequencing using sophisticated genome analysis tools1–3. In contrast, the protein structure determination 
requires complicated procedures to obtain high-quality protein samples that produce sufficiently good exper-
imental signals. For example, the target protein must have a reasonably high expression rate to obtain enough 
sample, after which the protein is purified, followed by the optimization of crystallization cocktail recipes to yield 
high-quality crystals for X-ray crystallography4,5. Alternatively, the molecules must be labeled using isotopes for 
specific atoms for nuclear magnetic resonance6,7. Recent breakthroughs in cryogenic electron microscopy methods 
have indicated that structure determination can be achieved without tedious crystallization or isotopic labelling8. 
However, the technology is not yet highly automated and requires extensive computational analysis of a large vol-
ume of data for each structure. Limitations to experimental structure determination of protein molecules neces-
sitate the development of methods for protein structure prediction using computational modeling approaches.

Protein structure prediction has a long history marked by prediction contests, such as the Critical Assessment 
of protein Structure Prediction (CASP), which was first organized in 19949,10. Structure prediction has achieved 
successes in many cases and is used in numerous applications11. Particularly, predicted structures can be com-
bined with experimental data to comprehensively understand the structure and function of molecules12–16. In 
many cases, it is difficult to determine a high-quality structure based solely on experimental information. Hybrid 
methods that integrate structure prediction results and experimental data are promising for exploiting informa-
tion from both experimental data and computational modeling or predictions16–18. For a structure prediction 
method to be successful, it must have two components: (1) an algorithm to generate a structure ensemble that 
includes good models, i.e., at least some models in the ensemble are similar to the correct structure (or the native 
structure); and (2) a scoring function that can rank the generated structures, so that the good models can be iden-
tified. Scoring functions either can guide the sampling of protein conformations to improve sampling efficiency, 
or can be used independently to assess model quality. The structure ensemble of a protein, also referred to as a 
decoy set, can be generated using several computational methods. The mainstream methods include homology 
modeling19, structure threading20,21, and segment assembly22–24. Advanced sampling algorithms can be applied 
to ensure the diversity of conformations in decoy sets to increase the chance of sampling the structure with the 
lowest energy24. In this study, we focused on the scoring function used to assess the quality and correctness of 
each generated model.
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There are two types of scoring functions. One is based on physiochemical principles—force fields in molec-
ular modeling, such as Amber or Charmm for atomic models25,26 and Martini or UNIRES for coarse-grained 
models27–29. The other type can be classified as empirical energy functions based on statistical knowledge of 
experimentally determined structures. There has been tremendous success in applying empirical energy func-
tions to analyze protein structures. One famous example is the protein main chain dihedral angle distributions, 
known as the Ramachandran plot30, which is widely used for protein structure validation31–33. Representative 
developments in empirical energy functions include PROSA, DFIRE, DOPE, RW, RWplus, and GOAP34–38. 
Orientation-dependent force fields were used to demonstrate the importance of incorporating the relative posi-
tions of amino acids39,40. Recent development in machine learning have also led to new frameworks for inter-
action energy development41–46. Inspired by these pioneering works, we developed a new energy function that 
describes amino acid neighborhood preferences. For each of the 20 natural amino acids, the neighboring amino 
acid was analyzed in detail with a focus on orientation preferences, described using the polar angle parameters. 
Distance-dependent energy functions have been well-studied and incorporated into existing methods, thus we 
focused on orientation-dependent energy functions in this study. Specifically, the preference was determined 
using 400 (20 × 20) matrices that describe the relative positioning (i.e., orientation) of any two amino acids. 
For any two amino acids, the probabilities of being neighbors and their relative positions were extracted from 
a high-resolution structure dataset. The probability distributions were converted to energy functions using the 
Boltzmann relation, and these energy functions were used to assess the quality of the decoy structures. Based 
on the results and the performance comparison with several other methods, we found that the neighborhood 
preference (NEPRE) program is effective for ranking decoy structures and quantifying the correctness of protein 
structures.

Methods
The native state structures of proteins are stabilized mostly by the interactions between atoms that are not cova-
lently bonded, mainly including electrostatic and van der Waals interactions. Although these interactions are 
nonspecific, each amino acid is found to have preferences for its neighboring amino acid types, particularly its 
nearest neighbors. Furthermore, the relative positions of neighboring amino acids are critical for their packing in 
protein 3D structures. With this in mind, we carried out detailed statistical analysis on the neighborhood prefer-
ence of each type of amino acid. First, a local coordinate system was established for each amino acid to describe 
its neighboring amino acid positions; the neighboring residues were mapped to the spherical coordinates defined 
around the amino acid of interest; these analyses were repeated for every amino acids in the protein structure to 
obtain statistics for the overall neighborhood preference. The final statistics were obtained from a non-redundant 
dataset composed of 14,647 PDB structures, with a sequence similarity cutoff at BLAST p-value of 10−7 (https://
www.ncbi.nlm.nih.gov/Structure/VAST/nrpdb.html)47. All chains in the PDB were compared using the BLAST 
algorithm, followed by clustering using a single-linkage clustering procedure. At a p-value cutoff of 10−7, struc-
tures with better sequence completeness and higher resolutions were selected to represent each group. The struc-
tures in this dataset were restricted to single-chain proteins to derive the intra-chain neighborhood preferences.

Local coordinate system for each amino acid. The local coordinate system was defined using the main 
chain atoms of each amino acid, as described previously48. This is the foundation of neighborhood analysis for 
each amino acid. Briefly, the geometry center of each amino acid was calculated as the average position of the 
associated atoms, then the X-Y plane was defined using the geometry center (gc, labeled as “o” in Fig. 1) of the 
amino acid, nitrogen atom (N), and carboxyl carbon atom (Cα). The geometry center, o, is set to be the origin 
point of the local coordinate system for the amino acid (see Fig. 1). The positive x-direction is defined as o → N, 

Figure 1. Schematic drawing of two neighboring amino acids (A and B). Location of amino acid B (represented 
using its geometry center) is shown in the coordinate system of amino acid A, defined with the positions of Cα, 
N atoms, and its geometric center (o).
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and then the positive y-direction can be defined in the X-Y plane such that the carboxyl atom Cα has a positive y 
coordinate. The z-direction is subsequently defined using the right-hand rule (Fig. 1).

The neighboring amino acids were selected based on the distances between the centers of the corresponding 
amino acid side chains. If the distance was within a given cutoff value (rc), they were considered as neighbors. 
Once the neighborhood was defined, statistical analysis was carried out for the amino acids located within the 
cutoff distance. We used two approaches for the distance cutoff: a universal fixed cutoff for all amino acids or the 
cutoffs specific to the types of neighboring amino acids.

For the case of a universal fixed cutoff, algorithm performance was tested using various cutoff values, with rc 
between 4 and 10 Å. For the type-dependent case, the cutoff was determined by summing the radii of two neigh-
boring amino acids. The radii of 20 amino acids were obtained from the same non-redundant structure dataset.

Statistical model for amino acid contacts in protein molecules. The distribution function is related 
to energy via the quasi-Boltzmann’s relation49; particularly, energy can be expressed as:
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The expected values of the distribution of various amino acids are expressed as:
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where k is the Boltzmann constant, T  is the temperature factor, and r( , , )θ ϕ  is the spherical coordinate of amino 
acid j in the local coordinate system of amino acid i. Because absolute energy values are not required for ranking, 
we set kT = 1 in the program implementation. If necessary, the energy can be multiplied by kT to obtain physically 
meaningful values.

For a protein with M amino acids, the total energy E can be expressed as:

∑ ∑ θ ϕ=
= ∈
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where E(…) is the pairwise statistical energy described in Eq. (4), m is the index of the amino acid, {n} is the indi-
ces of neighboring amino acid within the given distance cutoff of the amino acid m, and t(x) is the function that 
maps the amino acid indices to their types.

In the NEPRE implementation, the radial distance r was integrated from 0 to the distance cutoff rc. Therefore, 
the statistics were simplified to the distributions in the sections specified by the angle parameters (θ ϕ, ) within the 
contacting sphere. A regular grid system was used to divide the sphere into 20 × 20 regions (see Discussion sec-
tion for other gridding schemes and the performance comparison in Figures S2 & S3), with angular intervals 
∆θ = π

20
 and ∆ϕ = π2

20
 (because the range for is [0, ) and for is [0, 2 ))θ π ϕ π . The unequal volume divisions 

were corrected by using the appropriate probability in the respective volume (see Eq. 3).

testing decoy datasets. The performance of the algorithms was tested with publicly available decoy data-
sets. After a careful literature survey, we identified five published datasets (390 decoy sets in total): the I-Tasser 
dataset, denoted as I-Tasser(a), and four datasets generated using the 3DRobot programs, including I-Tasser(b), 
3DRobot, Rosetta, and Modeller. Information about the datasets is summarized in Table 1. The I-Tasser(a) data-
set was generated using the original I-Tasser protocol, where Monte Carlo simulation was used to assemble the 
structure scaffolds that can be aligned to models in the database36. The 3DRobot algorithm extended the I-Tasser 
method to allow structure sampling without restraints on the fragments, thus generating more diverse conforma-
tions for scoring function benchmarking50.

The decoy structures were evaluated using the proposed NEPRE scoring function. Two metrics were used to 
characterize the ranking: (1) the success rates in identifying the native structures (or the most native-like struc-
tures); and (2) the Pearson correlation between the energy and root-mean-square-deviation (RMSD) with respect 
to the native structures.
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Results
Type specific neighboring preferences for amino acids. The 20 natural amino acids appear in protein 
molecules with different abundances. The probability of finding a specific type of amino acid in the non-redun-
dant dataset is summarized in Fig. 2a, showing that hydrophobic amino acids, such as leucine, alanine, and valine, 
appear in protein molecules more frequently than the other amino acids. The probabilities of observing two spa-
tially neighboring amino acids for the 20 × 20 pairs were shown in Fig. 2b for the case with a distance cutoff value 
of 6.0 Å. The neighborhood preference was quantified using the “observed to expected ratio”, o/e, defined as 

p i j
p i p j

( , )
( ) ( )

, shown in Fig. 2c. Certain amino acid types exhibited strong preferences for their neighbors, for example, 
cysteine strongly prefers another cysteine in its neighborhood (consistent with the observation of disulfide 
bonds). The type preferences, together with the orientation preferences described in the following, are useful for 
quantifying the packing of amino acids in protein structures.

position preferences of amino acids in the neighborhood of each amino acid. The amino acids 
interact with each other in their preferred positions, as revealed by the non-uniform distribution of one amino 
acid within the neighborhood of another amino acid (i.e., within the sphere centered at one amino acid). This 
provides additional information to the preferred types discussed in the previous section. In Fig. 3a, the pairwise 
energy function in the angle space (θ,ϕ) in the spherical coordinate are shown for all 20 × 20 amino acid pairs 
(see Eq. 4). Figure 3b shows the energy variances for each amino acid pair, corresponding to the distributions 
shown in Fig. 3a. Larger fluctuations (towards red colors) indicate stronger position preferences and vice versa. 
The probability distributions (p) and energies (E) of two examples (CYS around CYS, ALA around GLY) are 
shown in Fig. 3c. Cysteines showed distinguishable preferences for their neighboring cysteine residues, mainly 
concentrated in the red-colored region around (162°, 270°) in the left figure of Fig. 3c, corresponding to the con-
formation of disulfide bonds. For the case of alanine around glycine (two figures on the right-hand side of Fig. 3c), 
the probability distribution was less polarized, indicating that the interactions between alanine and glycine do 
not have particular strongly preferred positions. Next to the probability distributions, the corresponding pairwise 
interaction energy functions (Eq. 4) in the angle space are shown.

NEPRE performance of selecting native structures. As described in the Methods section, the NEPRE 
program has two implementations depending on the choice of neighborhood cutoff values. One implementa-
tion utilizes a fixed cutoff value for all 20 types of amino acids, hereafter named as NEPRE-F (fixed cutoff); the 
second implementation uses cutoff values depending on the neighboring amino acid radii, named as NEPRE-R 
(radius-dependent cutoff).

The cutoff value is critical for the neighborhood boundary in the case of NEPRE-F; hence, we tested the 
scoring function at various cutoff values from 4 to 10 Å for the five datasets described in the Methods section 
(Table 1). The success rates for identifying the native structure from each decoy set are summarized in Table 2.

The overall performance of NEPRE-F was the best when the cutoff = 6 Å, where the native structures were 
scored as those with the lowest energy in 266 of 390 decoy sets. The second-best cutoff value was 7 Å, with 248 
native structures identified, followed by the case with cutoff = 5 Å, identifying 225 native structures. Based on this 
criterion, a cutoff = 6 Å is a good choice for selecting native structures from decoys and was used as the default 
value for structure assessment using NEPRE-F. We also analyzed the correlation between the scoring function 
and structural difference with respect to the native state in each decoy (quantified using the RMSD with respect 
to the native structure, see Figure S4 for an example). Interestingly, we found that the correlation increased as the 
cutoff increased, with the cutoff = 10 Å giving the best Pearson correlation coefficients (Fig. 4). Considering that 
the ultimate goal of the scoring function is to select the native (or near native) structures from decoys, we used a 
cutoff = 6 Å as the default parameter in the following analysis.

For the case of NEPRE-R, the radii for each type of amino acid were extracted from the non-redundant data-
set. The distributions of radii for 20 amino acids are shown in Figure S1 and the mean values are summarized in 
Table 3. These values were used to determine the cutoff values in the neighborhood statistics for specific amino 
acid types. For neighborhood analysis, the associated energy function was derived in the same manner as in the 
case of NEPRE-F.

Performance of native structure selection compared to other methods. Using the five decoy sets, 
we evaluated the performance of several widely used methods with statistical potentials (DFIRE2, DOPE, GOAP, 
RW, and RWplus), whose executable programs can be obtained from internet. The success rates in identifying the 
native structure or narrowing down the native structures to a smaller number of candidates (5 or 10) were used to 
assess performance. As shown in Table 4, NEPRE-R and NEPRE-F showed advantages in recognizing the native 

Dataset 
Name Protein size No. of protein decoy sets

Number of structures 
in each decoy set References

I-TASSER (a) 47–118 aa 56 400 36

I-TASSER (b) 47–118 aa 56 400 36,50

3DRobot 80–250 aa 200 (48 α-, 40 β-, and 112 
α/β-single-domain proteins) 300 50

Rosetta 50–146 aa 58 100 50,55

Modeller 81–340 aa 20 200 50,56

Table 1. Summary of the five datasets.

https://doi.org/10.1038/s41598-020-61205-w
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structures (represented as the number of TOP1 selected by each scoring function). If the success rates for the 
native structure included 5 or 10 structures with the lowest energies (indicated with TOP5 or TOP10 in Table 4), 
rather than the stringent requirement to be the lowest energy structure, we observed that the NEPRE algorithm 
performed well in all decoy sets, and NEPRE-F yielded better results than NEPRE-R. The scoring function with 
the best performance in each dataset is highlighted in bold font in Table 4.

Considering that native structures may not be among the decoy set sampled using the model generation pro-
grams, we tested the NEPRE’s performance on selecting the decoy structures most similar to the corresponding 

Figure 2. Probability of observing amino acids and amino acid neighbors. (a) Amino acid abundance 
(normalized) in the protein dataset; (b) Probability of amino acid pairs in the spatial neighborhood; (c) 
Observed to expected ratios for neighboring amino acids.
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native structures (i.e., those with the smallest RMSD with respect to the native structures). Interestingly, we found 
that the performance was not as good in identifying native structures. For example, for the Modeller dataset, 
NEPRE-R and NEPRE-F identified the native structures in 14 and 13 of 20 cases, respectively, which was much 
better than for all other methods (see Table 4). In identification of the best decoy structure, the numbers were 6 
and 5 (of 20 cases) for NEPRE-R and NEPRE-F, respectively. In contrast, DOPE performed the best in identifying 
the best decoy structures, succeeding in 8 cases for the Modeller dataset. The other scoring functions showed 
similar performance as the NEPRE methods. The detailed comparison results indicate that the NEPRE algorithm 
effectively identified the native (or near native) structures. If no structures are ‘native-like’ in a decoy set, then 
the NEPRE may not select the structure with the smallest RMSD. However, the positive correlation between the 
energy and RMSD is still valid in most cases (see Fig. 4).

Performance on CASP12 decoy datasets. Among the CASP12 targets, we selected a subset of pro-
teins whose native structures have been determined by X-ray crystallography. This dataset contains 39 decoys 
composed of predicted models submitted by participants of the CASP12. The results of best decoy structure 

Figure 3. Distributions of amino acid in the neighborhood of another amino acid. (a) Position-dependent 
energy functions of all 20 × 20 pairs of amino acids. Each row shows the neighborhoods centered at a specific 
amino acid type; and each entry in a row is the interaction energy between a neighboring amino acid and the 
centered amino acid. (b) Energy variances for each amino acid pair shown in (a). (c) Two representative amino 
acid neighboring preferences in the forms of probability distributions and energy functions, showing position 
preferences: cysteine in the neighborhood of cysteine (p(C,C) and E(C,C) shown on the left-hand side) and 
alanine in the neighborhood of glycine (p(G,A) and E(G,A) on the right). The corresponding energy functions 
are enclosed with dashed lines in (a).

Cutoff I-TASSER (a) 3DRobot I-TASSER (b) ROSETTA Modeller

4 Å 9/56 40/200 5/56 7/58 9/20

5 Å 44/56 126/200 18/56 25/58 12/20

6 Å 48/56 149/200 22/56 34/58 13/20

7 Å 49/56 140/200 20/56 25/58 14/20

8 Å 49/56 119/200 19/56 18/58 13/20

9 Å 49/56 104/200 20/56 14/58 11/20

10 Å 49/56 89/200 20/56 9/58 11/20

Table 2. Number of success cases with different neighborhood distance cutoffs.

https://doi.org/10.1038/s41598-020-61205-w
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identification are summarized in Fig. 5, in which the performance of NEPRE-F is compared to that of the DOPE, 
DFIRE, GOAP, and RW programs (the results of the RWplus were very similar to those of RW; see Figure S5). The 
DOPE program performed the best in identifying the decoy structure with the smallest RMSD with respect to 
the native structure, which is consistent with the testing results using the 390 generated decoy sets as summarized 
in the previous section. NEPRE-F outperformed DFIRE and RW in the CASP12 dataset. NEPRE-F identified 
decoy structures with RMSD < 3 Å in 18 of 39 cases. For the other methods, the number of successful cases was 

Figure 4. Overall ranking quality measured using Pearson correlation coefficients. The distributions of Pearson 
correlation coefficients are shown at distance cutoffs from 4 Å to 10 Å.

Amino acid 
type Radius (Å)

Amino acid 
type Radius (Å)

ALA 3.20 LEU 4.24

ARG 5.60 LYS 5.02

ASN 4.04 MET 4.47

ASP 4.04 PHE 4.99

CYS 3.65 PRO 3.61

GLN 4.64 SER 3.39

GLU 4.63 THR 3.56

GLY 1.72 TRP 5.38

HIS 4.73 TYR 5.36

ILE 3.94 VAL 3.55

Table 3. Amino acid radii extracted from the database.

DFIRE2 DOPE RW RWplus GOAP NEPRE-R NEPRE-F

I-TASSER(a) Top1§ 53 48 54 56* 3 50 48

(56)# Top5 55 48 55 56 14 50 48

Top10 55 49 55 56 17 53 50

I-TASSER(b) Top1 0 11 0 0 3 20 22

(56) Top5 2 25 1 2 3 27 28

Top10 2 29 4 4 3 29 33

Rosetta Top1 0 7 0 0 1 26 34

(58) Top5 2 31 2 2 7 45 49

Top10 5 43 8 8 7 51 53

Modeller Top1 2 6 2 2 1 14 13

(20) Top5 4 8 4 4 5 16 16

Top10 6 10 6 7 6 17 18

3DRobot Top1 38 63 0 0 4 129 149

(200) Top5 49 141 5 8 13 160 173

Top10 60 165 9 10 15 176 183

Table 4. Performance comparison of different potentials. #Number of proteins. §The number of cases whose 
native structures are in the n best models selected based on scoring functions. *Numbers in bold font indicate 
the best scoring function for that assessment.

https://doi.org/10.1038/s41598-020-61205-w
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18, 15, and 16 for DOPE, DFIRE, and RW, respectively. Furthermore, for decoy sets containing structures with 
RMSD < 5 Å, NEPRE-F successfully identified at least one of these good structures in 26 out of 31 targets (for all 
participants, eight targets were too difficult to predict any structure with RMSD < 5 Å; see Fig. 5). Thus, NEPRE-F 
made good predictions in 26 decoy sets by successfully identifying structures with RMSD < 5 Å and failed in five 
sets (31 decoy sets in total). In CASP performance evaluation, GDT_TS is often used to measure the similarity 
of the predicted model to the experimentally determined model51. The performance of NEPRE was compared to 
that of the other five potential energies; the results indicate that DOPE and GOAP performed best in selecting 
models with the best GDT_TS scores, and the performance of NEPRE was very similar to that of the other three 
methods (see Figure S7).

Discussion and Conclusion
In protein structures, amino acids exhibit preferences for their neighboring amino acids, in both amino acid types 
and relative positions. This property was systematically studied using experimentally determined structures. 
Based on the results of neighborhood preference, we developed a new algorithm, NEPRE, which is generally 
applicable for structure assessment of single-chain proteins. We tested this algorithm using five published decoy 
datasets (390 decoy sets in total) and a new dataset composed of 39 decoy sets formed the predicted models in 
CASP12. The performance of the NEPRE algorithm showed potentiality for structure prediction. The execution 
time was 3–4 s for proteins in the tested decoy sets, including PDB file parsing and energy calculation. Therefore, 
it is feasible to integrate the NEPRE algorithm in model generation programs to guide the sampling of desired 
structure ensembles. In addition, we have tried to compare the preferences of amino acids in single chains with 
that laying in the interfaces of protein complexes. Using a dataset extracted from the PISA database52, we analyzed 
amino acid packing at the complex interfaces and found that the neighborhood preferences were similar to the 
results presented in this study in most cases (see Figure S8), with pronounced differences observed for alanine, 
cysteine, glycine, and valine. This indicates that the interface specificity of amino acid neighboring preferences are 
different. The application of NEPRE at the interfaces and detailed comparison of the preferences will be reported 
in a separate study.

There are two major considerations when discretizing the angle space into the regular grid: (1) the potential 
energy profile needs to be fine enough to accurately describe the neighborhood (i.e., amino acid packing pref-
erences); and (2) the discretized region is large enough, so that the sampling extracted from the non-redundant 
database is sufficient for statistical significance. For the first consideration, we evaluated the performance of 
NEPRE using four discretization schemes, with 15, 20, 25, and 30 discrete sections. The results showed that finer 
discretization revealed more features, whereas a larger number of discretized regions was under-sampled. As a 
compromise, we chose N = 20 to balance the two considerations. Furthermore, using the decoys in the Modeller 
dataset, we compared the ranking performance and found that the performance in the scenario with N = 20 was 
nearly the same as that in finer discretization cases (see Supplementary materials). It is worthwhile to point out 
that discretization in angle parameter space can be improved to yield regions with nearly uniform volumes by 
using algorithms such as Fibonacci lattice or HEALPix53,54.

The NEPRE algorithm was implemented in two forms depending on the cutoff value defining the neigh-
borhood. The results showed that a cutoff = 6 Å is a good choice for all amino acids types. This performance of 
NEPRE-F was further validated using CASP12 decoy sets that were not used to determine the optimal distance 
cutoff values. The performance of NEPRE-F is better than that of NEPRE-R, whose distance cutoff values depend 
on the neighboring amino acid sizes. Intuitively, type dependent cutoff values should describe more precise 
interactions between amino acids, and therefore should lead to better performance. While the exact causes for 
NEPRE-R’s inferior performance compared to its peer NEPRE-F (with cutoff = 6 Å) remain unclear, there are sev-
eral possibilities. The radius values for each amino acid were obtained from the statistics in the protein structures, 
and the average values may not accurately reflect the neighboring interactions with other amino acids. For exam-
ple, cysteine and serine each has two peak values, and using a single average value may result in misrepresentation 
of the neighborhood (see Supplementary materials). A universal fixed cutoff may define a neighborhood that is 
more suitable for the residue-level scoring function, as the distances between amino acids were measured using 
distances between their geometry centers.

The NEPRE algorithm performed well in recognizing the native structures in all five decoy datasets. In con-
trast, most other methods showed variations in their performances across the datasets. For example, the other five 
methods successfully recognized most of the native structures for dataset I-TASSER(a), but the success rates were 
lower for other four datasets. This reflects the challenges raised by the four datasets generated with the 3DRobot 
algorithm, which enhances the conformational diversity. If the native structure is absent (such as in the case of 
CASP competitions), the performance can be assessed by the success rate in identifying the best decoy structure. 
We found that the performance is worse in identifying the best decoy structures based on statistical energies. This 
is a common challenge for many scoring functions, due to the difficulty in accurate ranking near-native struc-
tures that have similar scores (energies). In some CASP12 cases, the predicted structures could be far from the 
native model (such as in decoys of T0932 and T0933, see Fig. 5). Under such circumstances, none of the predicted 
models are close enough to the native structures, making it very difficult to select the best decoy structures (out 
of bad predicted models).

The parameters of the NEPRE algorithm were not further fine-tuned, except for the cutoff distance in the 
NEPRE-F. The probability distributions of relative locations between amino acids were converted to statisti-
cal potentials using the Boltzmann relation. Therefore, the NEPRE algorithm is mainly built on the position 
preferences of neighboring amino acids in protein structures. The performance of the algorithm indicates that 
the orientation is critical for amino acid packing in protein structures. In this study, both NEPRE-F (with cut-
off = 6 Å) and NEPRE-R considered only the nearest neighbors. The distance dependency of the statistical poten-
tial function is not explicitly described. In principle, by extending the distance cutoff to larger values, longer-range 
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interactions can be described using a similar approach. An immediate extension is to develop a multi-layer 
neighborhood preference-based energy function by dividing the neighbors into layers. We tested this multi-layer 
potential energy and found the performance was comparable the the NEPRE-F (with rc = 6) by including the first 
two layers (r = 6 and r = 7). The inclusion of more layers deteriorated the performance in recognizing the native 
structures from the decoys (see Figure S9 and Table S2). The multi-layer implementation may need a weighting 
scheme and distance-dependent angular space gridding to improve the performance.

Figure 5. Performance of NEPRE-F in ranking the CASP12 decoy sets. The lines indicate the position of 
identified decoy structures with the lowest energies. The performances against three other scoring functions are 
compared: (a) DOPE; (b) DFIRE; (c) RW.
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In summary, the neighborhood of amino acids in protein structures was statistically analyzed, and the dis-
covered preferences were quantified using the types and relative positions of the neighboring amino acids. Based 
on the neighborhood preference, the program NEPRE was implemented to assess protein structure quality. The 
results showed that the NEPRE program can identify native (or near native) structures from decoy sets, providing 
a foundation for extended applications in protein structure assessment and prediction studies.

Data availability
The source codes for NEPRE are available via https://github.com/LiuLab-CSRC/NePre.
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