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Abstract
Purpose: Iodination of rectal hydrogel spacer increases the computed tomog-
raphy (CT) visibility. The effect of iodinated hydrogel spacer material on the
accuracy of proton dosimetry has not been fully studied yet.We presented a sys-
tematic study to determine the effect of iodination on proton dosimetry accuracy
during proton therapy (PT).
Methods: PT plans were designed for 20 prostate cancer patients with rectal
hydrogel spacer. Three variations of hydrogel density were considered. First,
as the ground truth, the true elemental composition of hydrogel true material
(TM), verified by our measurement of spacer stopping power ratio, was used
for plan optimization and Monte Carlo dose calculation. The dose distribution
was recalculated with (1) no material (NM) override based on the CT intensity
of the iodinated spacer, and (2) the water material (WM) override, where spacer
material was replaced by water. The plans were compared with the ground truth
using the metrics of gamma index (GI) and dosimetric indices.
Results: The iodination of hydrogel spacer affected the proton dose distribution
with the NM scenario showing the most deviation from the ground truth. The
iodination of spacer resulted in a notable increase in CT intensity and led to the
treatment planning systems mistreating the iodinated spacer as a high-density
material. Among the structures adjacent to the target, neurovascular bundles
showed the largest dose difference,up to 350 cGy or about 5% of the prescribed
dose with NM. Compared to the WM scenario, dose distribution similarity and
GI passing ratios were lower in the NM scenario.
Conclusion: The inaccurate CT intensity-based material for iodinated spacer
resulted in errors in PT dose calculation. We found that the error was negligible
if the iodinated spacer was replaced with water.Water density can be used as a
clinically accessible and convenient alternative material override to true spacer
material.

Abbreviations and acronyms: PT, proton therapy; RT, radiation therapy; TPS, treatment planning system; MRI, magnetic resonance imaging; HU, Hounsfield unit;
OAR, organ-at-risk; ROI, region of interest; 2D, two dimensional; 3D, three dimensional; CT, computed tomography; CTV, clinical target volume; NM, no material; TM,
true material; WM, water material; NVB, neurovascular bundle; GI, gamma index; DVH, dose–volume histogram; MC, Monte Carlo.
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1 INTRODUCTION

Prostate cancer is one of the most prevalent malignan-
cies in men,and radiation therapy (RT) is shown to be an
effective treatment for localized prostate cancer.1 Dose
escalation improves the treatment outcome2,3 but is lim-
ited due to radiosensitive organs-at-risk (OARs),namely,
the rectum, bladder, and urethra. Depositing the nearly
entire prescription dose to target without exit dose, pro-
ton therapy (PT) can decrease the low-dose radiation to
OARs.4–7

Hydrogel spacer has been used in recent years to
increase the separation between the rectal wall and
prostate, enabling dose escalation to the target.8–12

Recent studies have shown that hydrogel spacer
resulted in a significant reduction of rectal dose during
PT.13–22 However, the standard rectal hydrogel spacer
is not visible on planning computed tomography (CT)
and intraoperative cone-beam CT that lack the adequate
resolution and contrast to distinguish between the soft
tissue (prostate and rectum) and hydrogel.23–30 Thus,
magnetic resonance imaging (MRI) is required to local-
ize the hydrogel spacer, but anatomical changes,patient
intolerance, MRI-incompatible hardware, and the extra
cost and time raise the need for an alternative spacer
localization method. Iodination of the spacer by adding
a small amount of iodine (Z = 53, K-edge = 33.2 keV) is
an effective solution to increase the spacer contrast on
CT.31,32

Accurate material density is critical for the calculation
of proton stopping power and beam range. The mis-
calculation of safety margins will result in more severe
consequences in PT compared to RT.33 Conventionally,
the treatment planning systems (TPS) determine the
proton stopping power based on the CT Hounsfield unit
(HU). Because the iodine K-edge is close to the mean
energy of the planning CT,the iodinated hydrogel spacer
has a high HU on planning CT. The high HU hydro-
gel spacer can be mistaken for a high-density material
with high proton stopping power due to the existence of
high Z atomic number of iodine contrast. Here, we con-
ducted a systematic study to determine the effect of the
iodinated spacer material discrepancy on the accuracy
of PT plans by comparing it to the true material (TM)
composition of iodinated hydrogel spacer. We analyzed
the similarity of the dose distribution using the clinically
meaningful dosimetric and gamma indices and provide a
recommendation on a clinically acceptable and practical
planning strategy.

2 MATERIALS AND METHODS

2.1 Data preparation

20 cases of prostate cancer injected with hydrogel
spacer (SpaceOAR System, Boston Scientific, Marl-
borough, MA) were used for this study. The clinical
target volume (CTV) included the prostate and seminal
vesicles. The scans were acquired with 2-mm slice
thickness, 120-kVp, 200-mA, and 50-cm field of view
as part of patients’ RT treatment, and contours were
delineated by certified physicians.

2.2 Simulation of iodinated spacer

The patients were originally injected with SpaceOAR
that has roughly the same HU as soft tissue (average
HU = 31). As a result, we simulated the iodinated hydro-
gel spacer (SpaceOAR Vue) by overriding the spacer
HU with a normally distributed CT intensity with a mean
value of 120. Spacer and the ROIs for RT planning
were all delineated by a certified physician. The mean
HU of 120 is based on our measurement using solid
water phantom and patient data from our institution and
reported values in previous studies.32,34 3D smoothing
was applied to reduce the pixelation effect and simulate
the realistic texture of hydrogel. All analyses were done
using our MATLAB-based in-house image processing
toolbox.16,35–40 Figure 1 shows a typical case of the orig-
inal SpaceOAR (a) and simulated iodinated spacer (b).
We used the CT scans with simulated iodinated spacer
for the rest of the study.

2.3 Study design

We designed PT plans for three spacer material prop-
erties: (1) no material (NM) override, (2) water material
(WM) override, and (3) hydrogel TM override as the
ground truth. The scenarios differ from each other in
the material property of the spacer used for proton dose
calculation using RayStation TPS (RaySearch Labora-
tories, Stockholm, Sweden). For the NM scenario, TPS
explicitly correlates the HU to the stopping power for
dose calculation.41 As a result, the iodinated spacer with
high HU will be treated as a high-density structure.42

In the WM scenario, we manually overrode the mate-
rial property of the spacer with water. For the TM
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F IGURE 1 An illustration of spacer computed tomography (CT) intensity override: Part (a) shows the prostate (red), the rectum (cyan), the
neurovascular bundle (orange), and the spacer (green). The original CT intensity is close to surrounding soft tissue making the localization of
the spacer challenging. Part (b) shows the same CT slice with simulated iodinated spacer intensity.

scenario, we implemented the true elemental composi-
tion (88% water, 0.7% trilysine, 10.1% PEG, and 1.2%
iodine by weight) of spacer in TPS using the informa-
tion directly provided by the manufacturer for training
purposes.

2.4 Stopping power verification

The SpaceOAR Vue material density was defined as
1.03 g/cm3 and effective z = 14.47, which is consistent
with the previous study.34 However, in clinical practice,
the stopping power ratio (SPR) is measured using a
multilayer ion chamber to detect the shift of integral
depth dose (IDD) due to the presence of the spacer. To
confirm the material density of the spacer, we mea-
sured the SPR of the spacer under proton energies of
198.3 MeV. The spacer gel was prepared in 10-ml pow-
der vial that comes with the spacer prep toolkits. During
the process of spacer gel preparation, the mixture of
powder and liquid is stirred sufficiently to ensure the
uniformity of the gel product. A single spot beam and
multilayer ionization chamber from IBA (IBA Dosimetry,
Schwarzenbruck, Germany) Giraffe are used for IDD
measurement in water phantom. The result indicated
that SPR is 1.03 relative to water, which confirms our
theoretical calculation with the given elemental com-
position. Thus, the TM scenario was considered the
ground truth.

2.5 Proton therapy planning

A total of 60 intensity-modulated PT (IMPT) plans
were designed. The IMPT plans were done using the

RayStation TPS with Hitachi PROBEAT (Hitachi, Ltd.,
Tokyo, Japan) compact-gantry pencil-beam scanning
system. Monte Carlo (MC) simulation with the uncer-
tainty of 0.5% was used for the designed clinical-grade
plans (70 Gy in 28 fractions). Two lateral beams (90◦

and 270◦) centered on the CTV centroid were used.
CTV included the prostate and seminal vesicles. Fol-
lowing the clinical practice in our institution, the plans
were designed with a 5-mm and 3.5% setup and
range uncertainties robustness optimization method.
The clinical target objectives and OAR constraints
were chosen according to our institution guideline: at
least 95% of CTV volume receives 100% prescribed
dose, bladder V70Gy < 10 cm3 (volume receiving
70 Gy), bladder V65Gy < 15%, bladder V61Gy < 25%,
bladder V55Gy < 30%, bladder V44Gy < 50%, blad-
der V39Gy < 60%, rectum V70Gy < 10 cm3, rec-
tum V65Gy < 10%, rectum V61Gy < 15%, rectum
V53Gy < 30%, rectum V35Gy < 50%, right femur
V39Gy < 5%, left femur V39 < 5%, penile bulb
average dose <39Gy, and body D0.03 cm3 (dose at
0.03-cm3 volume) <74.9 Gy. Plans were optimized on
the TM scenario, and the final dose distribution was
recalculated for NM and WM scenarios to directly
observe the material-related deviation from the ground
truth.

2.6 Dose distribution comparison

We quantified the deviation of NM and WM plans from
the grand truth (TM) by comparing the 3D gamma index
(GI) and dosimetric indices for each pair: the TM–NM
pair and TM–WM pair.
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1mm, 1% passing ratio (PR11) 2mm, 2% passing ratio (PR22) passing ratio

F IGURE 2 Boxplot of gamma index passing ratio (PR) showing the variation of gamma index (GI) PRs overall cases using different GI
calculation criteria specific to each different structure and scenario

2.6.1 Gamma index analysis

We implemented a 3D GI calculation as described in Ju
et al.43 The 3D GI matrices were obtained for three crite-
ria: 1%/1 mm (PR11), 2%/2 mm (PR22), and 3%/3 mm
(PR33). Same as the clinical practice in our institution,
the passing ratio (PR) metric was calculated and defined
as the ratio of the number of voxels with GI <1 over the
total number of voxels, excluding the voxels with a dose
less than 10% of the maximum dose. We considered a
PR of more than 90% as insignificant dose difference
in our study. In clinical practice, the 90% threshold is the
clinical passing rate for PR22 and PR33.

2.6.2 Dosimetric analysis

For selected ROIs, we calculated the following dose–
volume histogram (DVH) metrics: (1) D02, D05, D20, D50,
D95,and D98 defined as the minimum dose covering 2%,
5%, 20%, 50%, 95%, and 98%; (2) the mean dose of a
structure is defined as the average dose over voxels of
the structure;and (3) the equivalent uniform dose (EUD)
is calculated using the following formula:

EUDa =

(∑
i

nid
a
i

) 1
a

(1)

where ni is the fraction of structure with the dose di .
a is an ROI-dependent parameter for target structures,
namely, prostate, seminal vesicles, and CTV a = −10,
and OARs, namely, rectum, bladder, and neurovascular
bundles (NVB), a = 8.44,45

2.7 Statistical analysis

The differences were tested using the nonparametric
permutation test (n = 1000) to circumvent the nor-
mality assumption. For the boxplots (Figures 2 and

4), the central mark indicates the median, and the
top and bottom edges of the box indicate 75th and
25th percentiles, respectively. The horizontal mark on
the whiskers shows the most extreme data (maximum
and minimum) defined as 1.5 times of interquartile
range away from the 75th and 25th percentiles, and “+”
indicates the outliers.

3 RESULTS

3.1 Gamma index analysis results

Our measurement of the SPR of the spacer under pro-
ton energies of 198.3 MeV indicated that SPR is 1.03
relative to water, confirming our theoretical calculation
with the given elemental composition. The TM scenario
was considered the ground truth. Figure 2 shows the
boxplot of the structure-specific GI PRs. As seen, PR33
and PR22 were close to one for most structures except
for the NVB. PR11, however, had a noticeable difference
from one, and specifically for NVB, the PR11 got as low
as 0.7 for the NM–TM scenario that is far below the
clinical threshold of 0.9.

3.2 Dosimetric analysis

The maximum deviation from ground truth was 372 cGy
for the case of NVB-D98 when NM override is used.
Figure 3 shows a typical case of the DVH graphs. There
is a stark difference between the three scenarios for
NVB structure (Figure 3). The magnification on the
target volumes revealed a minor decrease for the NM
and WM scenarios compared to the ground truth. As
in NM override, the spacer tends to be considered a
high-density material, and the NM scenario has the
lowest DVH curves among the other scenarios.

Figure 4 breaks down the dosimetric indices for the
selected ROIs. As shown in the top part of Figure 4,
the dose difference for NM–TM reached the maximum
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F IGURE 3 A typical case of the dose–volume histogram (DVH)
graph, with a magnified part focusing on DVH curves of the
high-dose target volumes

of more than 350 cGy in the case of NVB structure.
Moreover, we found a statistically significant difference
among EUD, Dmean, D50, and D95 (p-value <0.01). No
specific pattern was found for the other ROIs. Finally,
we found no strong relationship between spacer volume
and the dose differences. The lower part of Figure 4
shows that the dosimetric indices tend to be lower for the

WM–TM scenario with a maximum of less than 60-cGy
dose difference for NVB, with no statistically significant
difference from zero.

4 DISCUSSION

In clinical practice, the material override is typically used
for the probes and applicators that during the treatment
delivery may not be present. However, for structures
inside the body, the TPS assumes the material prop-
erties were accurately predefined on a voxel basis
throughout the entire CT scan. This approach may lead
to dose discrepancy if the actual and approximated
CT intensity-based material properties do not match.
This study was designed to give an insight into the
consequences of the spacer material discrepancy on
proton dose distribution. Using a controlled setting in
which the same CT scan and PT plan parameters were
used, we exclusively study the error arising from spacer
material variation. Our result showed that the use of
incorrect material density resulted in inaccurate proton
dose distribution, with the NM scenario showing a more
adverse effect.

In agreement with our findings, the previous study has
also shown that HU override is necessary for iodinated
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F IGURE 4 The differences between dosimetric indices between no material override and hydrogel true material (TM) (top figure) and water
material override, and hydrogel TM (bottom figure) are broken down for each structure.



6 of 8 HOOSHANGNEJAD ET AL.

spacer.34 In their study, they suggest HU override as a
possible solution to increase the accuracy of the pro-
ton dose calculation.However,TPSs like RayStation and
Pinnacle (Philips Radiation Oncology Systems, Milpitas,
CA) do not have an HU override option, but rather, they
provide a material density override option. As a result,
in our study, we introduced WM density override as an
alternative solution. The main advantage of water den-
sity override is that it is predefined in all TPSs.Moreover,
it can also be implemented by using the corresponding
HU number that making it a more versatile solution to
the iodinated spacer problem.

A considerably higher magnitude and statistically sig-
nificant differences from the ground truth were observed
for the NM scenario specifically for NVB. We believe this
is due to the location of the NVB, as NVB and spacer
are aligned from the lateral beams view. We also found
an average decrease in dose-to-target volumes for the
NM scenario (Figure 4).This underestimation of the pro-
ton dose due to the spacer’s inaccurate higher stopping
power may give rise to the TPS overcompensating for
the target dose and, thus, increasing the OARs dose
like NVB as shown in Figure 4 top part. As seen, all
the differences from the ground truth were positive. In
this study, we only used two lateral beams arrangement,
in which the spacer, rectum, and target volumes can
potentially be on the beam path. The effect of spacer
material-related dose discrepancy may be different for
other beam arrangements. Hence, further studies to
determine the effect of beam arrangement to find the
optimized beam arrangement and spacer location46,47

are warranted.

5 CONCLUSION

In this study, we presented a detailed analysis of the
effect of iodinated spacer material discrepancy on pro-
ton dose distribution. We found statistically significant
dose inaccuracy, for NM override, which was highly vari-
able with patient anatomy, spacer location, and beam
arrangement. WM override, on the other hand, showed
high agreement with the ground truth. Accordingly, we
argue that the WM is a clinically acceptable and con-
venient overriding strategy for iodinated spacers during
plan optimization and dose calculation.
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