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Abstract: Fresh beef loin was packaged with 0–2% silver nanoparticles (AgNPs) incorporated agar
films to investigate the effect of antimicrobial packaging on meat quality changes in terms of mi-
crobiological and physicochemical properties. Raw beef cuts were directly inoculated with Listeria
monocytogenes and Escherichia coli O157:H7 and stored in the air-sealed packages combined with the
agar films at 5 ◦C for 15 days. Beef samples showed low susceptibility to the agar/AgNP composite
films, resulting in about one log reduction of the inoculated pathogenic bacteria in viable cell count
during storage. However, the composite films could partly prevent beef samples from directly con-
tacting oxygen, maintaining the meat color and retarding oxidative rancidity. Experimental results
suggested that the AgNP-incorporated agar films can potentially be applied in packaged raw meats
as an active food packaging material to inhibit microbial and physicochemical quality deterioration
during distribution and sale.

Keywords: agar; silver nanoparticles; composite film; beef loin; active packaging

1. Introduction

Because meat has a high water activity and is rich in nutrients, it is highly susceptible
to microbial contamination and growth, resulting in off-flavors and off-tastes, changes in
texture, and slime formation. Additionally, rancidity and discoloration of meat are mainly
caused by biochemical reactions such as lipid and myoglobin oxidation. The number of
microorganisms on the surface of fresh meat increases during storage and distribution
according to typical microbial growth patterns in response to temperature, pH, and oxygen
availability. The degree and nature of surface contamination of cut meat are known to
determine its potential shelf life [1].

Microbial growth in raw meat can cause not only poor quality but sometimes the
development of foodborne diseases. Therefore, several techniques have been used to
inhibit growth and retard bacterial activity, including temperature control, vacuum or
modified atmospheric packaging, active packaging, lactic acid bacteria (LAB) application,
organic acids, antioxidants, irradiation, and hot water [1–8]. Antimicrobial packaging
has also shown beneficial effects in inhibiting spoilage and pathogenic microorganisms of
concern in meat to maintain freshness, extend shelf-life and ensure food safety [9–12]. The
effectiveness of antimicrobial packaging is usually assessed by measuring changes in the
number of microorganisms or quality factors related to microbial growth [13].

Biopolymers produced from various natural resources such as polysaccharides, pro-
teins, and their derivatives from plant and animal origins have been considered as attractive
packaging materials because the use of biopolymers is a sustainable development approach
that aids in environmental preservation [14,15]. Moreover, biopolymer-based packaging
materials have beneficial properties in maintaining the quality of packaged foods and ex-
tending their shelf-life [16]. Biopolymers are also suitable for synthesizing and stabilizing
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silver nanoparticles (AgNPs), mainly providing a uniform dispersion of nanoparticles and
structural integrity within the resulting nanocomposites. Silver nanoparticles have many
applications in packaging and medical fields because of their unique properties, such as
large specific surface area and strong antimicrobial activity with high stability [17]. Due to
the potent antimicrobial properties of the biopolymer-based films containing AgNPs, they
can be applied to various types of food packaging to prevent microbial growth and extend
the shelf-life of food products [18,19]. In addition to their potent and broad-spectrum
antimicrobial activity, the benefits of using AgNPs in biopolymer packaging are associated
with few adverse effects on the sensory properties of foods and the potential for increased
consumer acceptance [20].

Application tests of biopolymers, mainly as edible coatings, incorporated with AgNPs,
have already been conducted on several foods such as fruit and vegetables, meats, and
dairy products [20–25]. Ag-chitosan nanocomposites incorporated as edible coatings
could extend the shelf-life of fresh-cut melon [25]. Coated samples with Ag-chitosan
nanocomposites induced a microbial reduction of 0.6 Log units from days 10 to 13 at 5 ◦C.
They showed lower respiration rates, higher vitamin C content, and better sensory scores
than the uncoated samples after 13 days. It was reported that the beef slices sprayed with
bio-composite hydrosols prepared of hydroxypropylmethyl cellulose, chitosan, lysozyme,
and nano colloidal silver, inhibited microorganisms about 2.5 Log CFU/g compared to
the control sample after 4 weeks of storage at 4 ◦C [23]. The edible antimicrobial coating
containing AgNPs was also tested in vacuum packaged sausages and was able to inhibit
lactic acid bacteria for 30 days at 10 ◦C, thus significantly increasing the shelf-life of the
sausages [24]. Incoronato et al. [21] revealed that the silver-montmorillonite embedded
agar coating markedly increased the shelf-life of Fior di Latte cheese due to the ability
of silver cations to control microbial proliferation without affecting the functional dairy
microbiota and the sensory characteristics of the product. Similarly, another study showed
that AgNPs loaded in sodium alginate coating strongly controlled the microbial growth of
Pseudomonas spp. and enterobacteria in Fior di Latte cheese, and the active coating with
modified atmosphere packaging could prolong the cheese shelf-life [22]. However, few
studies have applied eco-friendly produced silver-containing biopolymer films to fresh
beef packaging to maintain storage quality and food safety, to the best of our knowledge.

Therefore, this work investigated the changes in microbiological and physicochem-
ical properties of fresh beef loin packaged with the agar/AgNP composite films using
conventional air-sealed packaging during storage at refrigerated temperature.

2. Materials and Methods
2.1. Materials

Food grade agar was obtained from Fine Agar Co., Ltd. (Damyang, Jeonnam, Korea).
Other analytical grade chemicals, including glycerol, AgNO3, NaCl, and sodium citrate,
were procured from Junsei Chem. Co. (Tokyo, Japan).

2.2. Preparation of Beef Sample

A fresh (6 days after postmortem) boneless beef loin was purchased from a local
butcher, and the samples were sliced into ca. 1.0 cm thick cuts in the shape of a steak.
Beef slices packaged under vacuum were transported to the laboratory and stored at 5 ◦C
before testing. The fat content of sliced beef was 16.2 ± 2.8%, as determined by solvent
extraction [26].

2.3. Preparation of Agar-Silver Composite Films

The silver nanoparticles (AgNPs) were prepared by reducing AgNO3 using the en-
vironmentally friendly method [27]. First, a varied amount (0, 1, and 2 mL) of the stock
solution containing Ag of 0.04 g/mL was dissolved in 150 mL distilled water with boiling,
and 2 mL of 1% trisodium citrate solution was added, and then boiled for one hour to
reduce AgNO3. The solution turned greenish-yellow, indicating that AgNPs were formed.
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Then, agar (4 g) was dissolved into the silver sol containing glycerol (1.2 g) as a plasti-
cizer with vigorous mixing for 30 min at 95 ◦C, and cast uniformly onto a leveled Teflon
film-coated glass plate, dried for 48 h at room temperature to form agar/AgNP composite
films [27]. For comparison, neat agar films were prepared following the same procedure
without AgNPs. The dried films were peeled off the casting surface and conditioned at
25 ◦C, 50% RH at least two days before further testing. Characterization of the prepared
agar/AgNP composite films has already been performed in terms of their optical (color
and transparency), structural (XRD, FE-TEM, FE-SEM, and AFM), chemical (EDS and
FT-IR), mechanical (tensile strength, elongation at break, and elastic modulus), barrier
(water vapor permeability and water contact angle), thermal (TGA and DTG), and antimi-
crobial (viable cell count) properties in our previous study [27,28]. The prepared films were
designated as agar, agar/AgNP1%, and agar/AgNP2% films, respectively, according to the
AgNP concentration.

2.4. Pathogenic Bacteria and Preparation of Inocula

The bacterial strains of L. monocytogenes (ATCC-19111) and E. coli O157:H7 (ATCC-
43895) as representative Gram-positive and Gram-negative bacteria were obtained from
the microbial culture collection at the Korea Food Research Institute. Authorized selective
media were used for the isolation and cultivation: sorbitol MacConkey agar (Difco, Detroit,
MI, USA) for E. coli O157:H7 and Oxford Listeria selective agar with 1 mL/100 mL supple-
ment (Merck, Darmstadt, Germany) for L. monocytogenes. Both the microorganisms were
spread on the corresponding media and incubated at 37 ◦C for 48 h.

2.5. Cultures and Cell Cocktails

The preparation of the cell cocktails followed the method of Lee et al. [29]. At first, each
strain was cultured in tryptic soy broth (Difco) at 37 ◦C for 16 h. The bacterial cultivation
was repeated two times consecutively, and the resulting cultures were used as the mother
cultures. Next, each mother culture was transferred individually into an appropriate broth
and cultured at 30 ◦C for L. monocytogenes and 37 ◦C for E. coli O157:H7 until the late log
phase. These strains were washed twice by centrifugation (PK121R, Thermo Scientific,
Leicestershire, UK) at 7000 rpm for 5 min (4 ◦C) with a 0.85% sterile NaCl solution. Cell
pellets were re-suspended in 30 mL of 0.85% sterile NaCl solution, with the final cell
concentration being approximately 108–109 CFU/mL. Two pathogenic cultures were mixed
at the same proportion to make the inoculation cocktails (about 105–106 CFU/mL). These
culture cocktails were used in the subsequent experiments.

2.6. Inoculated Packaging Test

Two pathogenic bacteria were inoculated onto sliced beef, according to Koseki et al. [30].
First, beef samples were cut into 5 × 7 × 1 cm3 (width × length × thickness) sections
which weighed about 50 g. A given amount (0.5 mL) of the cell cocktails was spotted
onto the surface of sliced beef (ca. 50 g) at a level of 103–104 CFU/g, and then the agar
composite film (11 × 11 cm2) was attached to both surfaces of each inoculated beef piece.
Finally, the samples were hermetically packed in Ny/PE film bags (15 × 17 cm2) with an
electric impulse sealer (TH-300, Tower Industry Co., Seoul, Korea) to avoid excess void
volumes, stored at 5 ◦C and 85–90% RH for 15 days, and periodically analyzed for microbial
population and physicochemical properties.

2.7. Microbial Analysis

The inoculated beef sample of ca. 50 g was mixed with 100 mL of 0.85% sterile NaCl
solution and then homogenized with a stomacher (Bagmixer® 400, Interscience, Bretèche,
France) for 1 min. After homogenization, aliquots (1 mL) of the samples were serially
diluted in 9 mL of 0.1% sterile peptone water, and 0.1 mL of the samples or diluents were
surface plated onto each selective agar for pathogenic bacteria. The selective agar media
were incubated at 37 ◦C for 24 to 48 h, and the viable cell colonies were counted. For
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detection of other microorganisms, 1 mL of the samples or diluents was plated in PCA
(Difco) for mesophilic aerobes, MRS agar (Difco) for lactic acid bacteria, and Chromocult
agar (Merck) for coliforms. These plates were incubated at 37 ◦C for up to 3 days, and then
the viable cell colonies were counted. All the microbial counts were represented as colony
forming units (CFU) per gram of samples.

2.8. Color

The surface color of beef samples was measured using a colorimeter (CR-400, Konica-
Minolta, Tokyo, Japan). Before measurements, the instrument was calibrated on the
CIE-LAB color space system with a standard white plate (L* = 97.79, a* = −0.11, b* = 2.69).
Five readings at least were made separately from both surface sides of each sample,
and the mean values were recorded to determine the color coordinates L* (lightness),
a* (greenness/redness), and b* (blueness/yellowness).

2.9. TBARS Assay

Lipid oxidation of beef samples was measured by the 2-thiobarbituric acid-reactive
substances (TBARS) assay as described by John et al. [31]. Duplicate beef samples (5 g)
were mixed with 25 mL of a stock solution containing 0.375% TBA (Sigma Chem. Co.,
St. Louis, MO, USA), 15% trichloroacetic acid (Wako Pure Chem., Osaka, Japan), and
0.25 N HCl (Showa Chem., Tokyo, Japan). The mixture was homogenized for 2 min
using an Ultra-Turrax tissue homogenizer (T10 digital, IKA, Staufen, German), heated for
10 min in a boiling water bath (100 ◦C) to develop a pink color, cooled in tap water, and
then centrifuged (PK121R, Thermo Scientific, Leicestershire, UK) at 5500 rpm for 25 min.
The absorbance of the supernatant was measured spectrophotometrically (V-550, Jasco,
Tokyo, Japan) at 532 nm against a blank containing all the reagents minus the meat. TBA
reacts to give multiple biomolecular breakdown products that have undergone free radical
attack to form TBA reactive substances (TBARS), malonaldehyde (MDA) or an MDA-like
derivative [32]. The TBARS contents were calculated using an extinction coefficient of
1.56 × 105/M·cm, multiplying the absorbance values by 2.77 [31], and were expressed as
mg of MDA equivalents per kg of beef sample.

2.10. Statistical Analysis

All of the experiments were carried out independently in duplicate, and two analyses
per replication were done. The results are presented as the mean and standard deviation of
multiple measurements (n ≥ 4 for microbial tests and TBARS, n ≥ 20 for color). Significant
differences in experimental data among packaging treatments were analyzed using the
GLM procedure (SAS Institute Inc., Cary, NC, USA) at p < 0.05 with mean separation by
LSD and Duncan’s multiple range test.

3. Results and Discussions
3.1. Packaging Effect on Microbial Population

Microbial populations of beef samples packaged with the agar composite films con-
taining 0, 1, and 2% AgNPs during storage at 5 ◦C are shown in Figures 1 and 2. All the
packaging treatments did not achieve a bactericidal or bacteriostatic effect for mesophilic
aerobes and lactic acid bacteria, resulting in an increase of approximately 2 Log cycles after
15 days of storage. Previously confirmed potent antibacterial activity of the agar composite
films with 1–2% AgNPs could not be observed against the natural beef microorganisms
tested in the present work [27]. Such a result is not reportedly unusual because the inactiva-
tion of silver is favored by the presence of proteins and other biomolecules [11]. However,
in coliform bacteria, viable cell counts increased by 1 Log CFU/g until nine days of storage
and then decreased by more than 1 Log cycle. Thus, the reduction of coliform bacteria was
presumably associated with the growth of lactic acid bacteria on beef samples.
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Figure 1. Changes in viable cell counts of mesophilic aerobes (A), lactic acid bacteria (B), and coliforms (C) in beef samples 
packaged with agar/AgNP composite films. Mesophilic aerobes: LSDtime = 0.12 Log (CFU/g), LSDtreatment = 0.08 Log (CFU/g). 
Lactic acid bacteria: LSDtime = 0.15 Log (CFU/g), LSDtreatment = 0.10 Log (CFU/g). Coliforms: LSDtime = 0.09 Log (CFU/g), 
LSDtreatment = 0.06 Log (CFU/g). 
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Figure 2. Changes in viable cell counts of L. monocytogenes (A) and E. coli O157:H7 (B) in beef samples packaged with 
agar/AgNP composite films. L. monocytogenes: LSDtime = 0.09 Log (CFU/g), LSDtreatment = 0.06 Log (CFU/g). E. coli O157:H7: 
LSDtime = 0.14 Log (CFU/g), LSDtreatment = 0.09 Log (CFU/g). 
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Figure 1. Changes in viable cell counts of mesophilic aerobes (A), lactic acid bacteria (B), and coliforms (C) in beef samples
packaged with agar/AgNP composite films. Mesophilic aerobes: LSDtime = 0.12 Log (CFU/g), LSDtreatment = 0.08 Log (CFU/g).
Lactic acid bacteria: LSDtime = 0.15 Log (CFU/g), LSDtreatment = 0.10 Log (CFU/g). Coliforms: LSDtime = 0.09 Log (CFU/g),
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Figure 2. Changes in viable cell counts of L. monocytogenes (A) and E. coli O157:H7 (B) in beef samples packaged with
agar/AgNP composite films. L. monocytogenes: LSDtime = 0.09 Log (CFU/g), LSDtreatment = 0.06 Log (CFU/g). E. coli
O157:H7: LSDtime = 0.14 Log (CFU/g), LSDtreatment = 0.09 Log (CFU/g).

Inoculated pathogenic bacteria, L. monocytogenes and E. coli O157:H7, on beef samples
could not properly proliferate, and the viable cell counts decreased with time, depending
on packaging treatment. Initial inoculants of L. monocytogenes and E. coli O157:H7 onto beef
samples were at the level of 1.8 ± 0.3 × 104 and 1.6 ± 0.2 × 104 CFU/g, respectively. Each
microbial population reduced noticeably to 7.3 ± 0.1 × 102 and 8.1 ± 0.5 × 102 CFU/g after
15 days of storage at 5 ◦C. Particularly, beef samples packaged with 2% silver-incorporated
agar film showed significantly (p < 0.05) lower viable cell counts than those with neat
agar film over the entire storage period (Figure 2). The difference in antimicrobial activity
against native microorganisms and inoculated pathogens of the agar/AgNP composite
film can be attributed to differences in initial load, dispersion of test bacteria on the surface
of beef samples, and differences in sensitivity to AgNP [33,34]. Similarly, about one log
cycle reduction of Pseudomonas putida inoculated as a psychrotrophic spoilage bacterium
was found on raw beef, pork, and turkey cuts covered with silver ion impregnated wrap-
ping paper compared to those with regular butcher paper during storage at 10 ◦C for
four days [10]. Martínez-Abad et al. [11] also reported similar results on the pathogen
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experiment in which chicken breasts were inoculated with L. monocytogenes and packed
with EVOH film containing 1% and 10% silver ions. Samples with a high amount of silver
(10%) only exhibited microbial count values up to 1 Log CFU/g lower than the control
without silver after 72 h of incubation at 12 ◦C.

Silver damages bacteria by unspecific binding to membrane and respiratory en-
zymes [35,36]. Moreover, silver nanoparticles may accumulate in the bacterial cytoplasmic
membrane, causing a remarkable increase in membrane permeability and leading to cell
death [37]. This antimicrobial action of silver or silver ions exhibits effectiveness for
Gram-positive and Gram-negative bacteria from the previous studies, using a silver so-
lution, silver nanoparticles, and silver-casting film [11,18,27,28,38]. In this study, silver
released from the agar film with 2% AgNPs showed a significant bactericidal effect for L.
monocytogenes and E. coli O157:H7 inoculated on beef samples.

Overall reduction of the inoculated pathogens on beef samples packaged in the agar
films with or without AgNPs was probably due to the proliferation of lactic acid bacteria
during storage. The addition of certain strains of lactic acid bacteria to ground beef
reportedly inhibited the growth of pathogenic bacteria such as Salmonella, E. coli, and
Staphylococcus at refrigeration temperatures [6,39,40]. Reduction of viable cell counts by
2–3 Log cycles for Salmonella and E. coli O157:H7 could be achieved with lactic acid bacteria
of about 107 CFU/g after storage of 5 days at 5 ◦C [39].

3.2. Packaging Effect on Surface Color

Appearance and color values, including L*, a*, and b*, of beef samples with packaging
treatment, are shown in Table 1 and Figure 3. The surface color of meat is one of the
critical quality factors in customer choice because the color is an indicator of freshness [41].
Packaging treatment had no significant effects on L* values that gradually increased
and leveled off in the ranges of 35.9–40.0 during storage. However, in the case of a*
and b*, initial values were kept relatively constant in the beef samples with the silver-
incorporated agar films over time. In contrast, the color values slightly decreased initially
from 13.9 ± 1.0 and 2.8 ± 1.2 down to 10.8 ± 1.0 and 1.1 ± 0.9, respectively, in the
control. The control samples became slightly brownish (i.e., reduced redness) with storage
time. Such a color change in the control group might be presumably attributed to lipid
oxidation and metmyoglobin formation [4,9,42]. Murphy et al. [43] also revealed that
the decrease in a* values coincided with increased lipid oxidation in beef steak after
14 days of storage at 4 ◦C. Present results suggest that the agar/AgNP composite films
could act as an oxygen gas barrier preventing beef from direct contact with oxygen. The
oxygen permeability of neat agar film was evaluated as 2.11 mL·mm/m2·day·atm to be
remarkably reduced by incorporating Ag-Cu nanoparticles and is comparable to that of
a commercial barrier polymer [44]. The hydrocolloid-based biopolymer films reportedly
have excellent oxygen barrier properties under dry conditions, whereas they are very
poor moisture barriers [20]. Thus, oxygen barrier properties under wet conditions become
weaker due to the water vapor absorption, leading to a loss of network by swelling and
plasticization. However, composite materials formed through the polymer blending process
generally exhibit the complementary advantages of each component and minimize their
disadvantages [18]. Consequently, it is notable that the agar composite films have exerted a
positive effect, to some extent, on keeping the characteristic red color of fresh beef samples
during cold storage.
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Table 1. The appearance of beef samples packaged with agar/AgNP composite films.

Initial Storage Time
(day) Agar Film Agar/AgNP1% Agar/AgNP2%
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3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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LSDtime = 0.42, LSDtreatment = 0.27. a* value: LSDtime = 0.48, LSDtreatment = 0.30. b* value: LSDtime = 0.34, LSDtreatment = 0.22. 

3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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LSDtime = 0.42, LSDtreatment = 0.27. a* value: LSDtime = 0.48, LSDtreatment = 0.30. b* value: LSDtime = 0.34, LSDtreatment = 0.22. 

3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 

Membranes 2021, 11, x FOR PEER REVIEW 7 of 11 
 

 

Table 1. The appearance of beef samples packaged with agar/AgNP composite films. 

Initial 
Storage Time 

(day) 
Agar Film Agar/AgNP1% Agar/AgNP2% 

 

0 

   

 5 

   

 9 

   

 15 

   

 

(A) L* 

Time (day)

0 2 4 6 8 10 12 14 16

L
* 

va
lu

e

25

30

35

40

45

50

Agar film 
Agar/AgNP1% 

Agar/AgNP2% 

(B) a* 

Time (day)

0 2 4 6 8 10 12 14 16

a*
 v

al
ue

0

5

10

15

20

25

Agar film 
Agar/AgNP1% 

Agar/AgNP2% 

 

(C) b* 

Time (day)

0 2 4 6 8 10 12 14 16

b*
 v

al
ue

-10

-5

0

5

10

15

Agar film
Agar/AgNP1%

Agar/AgNP2%

 

Figure 3. Changes in L* (A), a* (B), and b* (C) values of beef samples packaged with agar/AgNP composite films. L* value: 
LSDtime = 0.42, LSDtreatment = 0.27. a* value: LSDtime = 0.48, LSDtreatment = 0.30. b* value: LSDtime = 0.34, LSDtreatment = 0.22. 

3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 

15

Membranes 2021, 11, x FOR PEER REVIEW 7 of 11 
 

 

Table 1. The appearance of beef samples packaged with agar/AgNP composite films. 

Initial 
Storage Time 

(day) 
Agar Film Agar/AgNP1% Agar/AgNP2% 

 

0 

   

 5 

   

 9 

   

 15 

   

 

(A) L* 

Time (day)

0 2 4 6 8 10 12 14 16

L
* 

va
lu

e

25

30

35

40

45

50

Agar film 
Agar/AgNP1% 

Agar/AgNP2% 

(B) a* 

Time (day)

0 2 4 6 8 10 12 14 16

a*
 v

al
ue

0

5

10

15

20

25

Agar film 
Agar/AgNP1% 

Agar/AgNP2% 

 

(C) b* 

Time (day)

0 2 4 6 8 10 12 14 16

b*
 v

al
ue

-10

-5

0

5

10

15

Agar film
Agar/AgNP1%

Agar/AgNP2%

 

Figure 3. Changes in L* (A), a* (B), and b* (C) values of beef samples packaged with agar/AgNP composite films. L* value: 
LSDtime = 0.42, LSDtreatment = 0.27. a* value: LSDtime = 0.48, LSDtreatment = 0.30. b* value: LSDtime = 0.34, LSDtreatment = 0.22. 

3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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Figure 3. Changes in L* (A), a* (B), and b* (C) values of beef samples packaged with agar/AgNP composite films. L* value: 
LSDtime = 0.42, LSDtreatment = 0.27. a* value: LSDtime = 0.48, LSDtreatment = 0.30. b* value: LSDtime = 0.34, LSDtreatment = 0.22. 

3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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Figure 3. Changes in L* (A), a* (B), and b* (C) values of beef samples packaged with agar/AgNP composite films. L* value: 
LSDtime = 0.42, LSDtreatment = 0.27. a* value: LSDtime = 0.48, LSDtreatment = 0.30. b* value: LSDtime = 0.34, LSDtreatment = 0.22. 

3.3. Packaging Effect on Rancidity 
TBARS of packaged beef samples increased significantly (p < 0.05) during storage at 

5 °C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually increased 
to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well known to 
correlate with off-flavor development in chill-stored beef [45]. In general, lipid oxidation 
results in odor and flavor degradation as unsaturated fatty acids react with molecular ox-
ygen through free radical transfer reactions to form fatty acyl hydroperoxides or perox-
ides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with 
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously 
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3.3. Packaging Effect on Rancidity

TBARS of packaged beef samples increased significantly (p < 0.05) during storage
at 5 ◦C (Figure 4). TBARS value was initially 1.5 ± 0.1 mg MDA/kg and gradually
increased to 2.2 ± 0.6 mg MDA/kg in the control samples after 15 days. TBARS is well
known to correlate with off-flavor development in chill-stored beef [45]. In general, lipid
oxidation results in odor and flavor degradation as unsaturated fatty acids react with
molecular oxygen through free radical transfer reactions to form fatty acyl hydroperoxides
or peroxides, which cause off-flavors [5]. Lipid oxidation is also reportedly associated with
metmyoglobin formation and meat discoloration [46]. Campo et al. [47] have previously
demonstrated that off-flavors such as rancidity in beef can be detected by humans when
TBARS values are greater than or equal to 2.0 mg MDA/kg meat. Only the control group
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showed TBARS values above 2.0 mg MDA/kg beef after seven days in our present study.
However, in the beef samples packaged with the silver-incorporated agar films, TBARS
values remained below the acceptable threshold of 2.0 mg MDA/kg beef over the storage
period. The results indicate that the agar/AgNP composite films partially working as an
antioxidant could retard oxidative rancidity in the stored meat. Indeed, AgNPs stabilized
with cellulosic polymers have shown the notable antioxidant activity measured as the
DPPH scavenging percentage at the level of approximately 30–40% of ascorbic acid used
as a positive standard [48].
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The practical use of AgNP-containing films in food packaging applications may raise
concerns from a food safety point of view. One of the major concerns about using such
packaging materials is insufficient knowledge about the safety and toxicity of AgNPs [20].
Although AgNPs may kill human cells, as shown in vitro [49], AgNPs-impregnated cellu-
lose nanofibril composite films have shown no significant cytotoxicity to human epithelial
cell or colon cell lines [19,50]. There is little information about the migration or release of
AgNPs from biopolymers to food surfaces and their possible risks to human health [51].
In general, it has been reported that nanoparticles embedded in a host polymer matrix
are not likely to migrate into food when fully embedded in the polymer, and the contact
surface is not altered by mechanical surface stress during application [52]. However, the
antimicrobial function of the agar/AgNP composite films is related to the release of sil-
ver ions or interactions between AgNPs and the microorganisms by direct contact. The
migration process may depend little on the diffusion-controlled mass transfer of AgNPs
within the polymer to the surface but is mainly induced by the oxidative dissolution of
silver from the surface near the AgNPs [52]. In this regard, EU safety regulations have
defined an upper limit for Ag migration in packaging that the presence of silver ions in
the food matrix should not exceed 0.05 mg/kg of food [53]. Meanwhile, in this study, a
green synthesis method was applied to prepare an agar/AgNP complex using citrate as
a reducing agent and agar as a capping agent to overcome the toxicological behavior of
silver and its compounds. Eco-friendly green chemistry methodologies to obtain metal
nanoparticles and biopolymer-based composites are well known to possibly eliminate
toxic chemicals and allow bio-nanocomposites in food packaging and various biological
applications [19,34].
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4. Conclusions

Sealed packaging with the agar/AgNP composite films showed a bactericidal effect
on the foodborne pathogenic bacteria, including L. monocytogenes and E. coli O157:H7, of
beef loins. However, no significant antimicrobial effect was found against the mesophilic
aerobes, lactic acid bacteria, and coliform bacteria. The composite films could also function
as an oxygen gas barrier or an antioxidant to keep the characteristic red color and inhibit
lipid oxidation of stored raw beef cuts. Further research is needed to improve the effective-
ness of sealed packaging with the agar/AgNP composite films. Combining antimicrobial
packaging with modified atmosphere conditions can provide a much more successful way
to maintain the quality attributes of fresh red meats and secure food safety during storage.
For the practical use of AgNP-containing films in food packaging applications, however,
assessing the real amount of silver in contact with food is required to verify the fulfillment
of the EU and other regulations. In this aspect, more research should be carried out on the
migration of AgNPs from the packaging to the food matrix and their cytotoxic effects on
human health.
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