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Coronavirus disease 2019 (COVID-19) shows a wide variation in expression and severity

of symptoms, from very mild or no symptoms, to flu-like symptoms, and in more

severe cases, to pneumonia, acute respiratory distress syndrome, and even death.

Large differences in outcome have also been observed between males and females.

The causes for this variability are likely to be multifactorial, and to include genetics.

The SARS-CoV-2 virus responsible for the infection depends on two human genes:

the human receptor angiotensin converting enzyme 2 (ACE2) for cell invasion, and

the serine protease TMPRSS2 for S protein priming. Genetic variation in these two

genes may thus modulate an individual’s genetic predisposition to infection and virus

clearance. While genetic data on COVID-19 patients is being gathered, we carried out

a phenome-wide association scan (PheWAS) to investigate the role of these genes

in other human phenotypes in the general population. We examined 178 quantitative

phenotypes including cytokines and cardio-metabolic biomarkers, as well as usage of

58 medications in 36,339 volunteers from the Lifelines population cohort, in relation to

1,273 genetic variants located in or near ACE2 and TMPRSS2. While none reached

our threshold for significance, we observed several interesting suggestive associations.

For example, single nucleotide polymorphisms (SNPs) near the TMPRSS2 genes were

associated with thrombocytes count (p = 1.8 × 10−5). SNPs within the ACE2 gene

were associated with (1) the use of angiotensin II receptor blockers (ARBs) combination

therapies (p = 5.7 × 10−4), an association that is significantly stronger in females

(pdif f = 0.01), and (2) with the use of non-steroid anti-inflammatory and antirheumatic

products (p = 5.5 × 10−4). While these associations need to be confirmed in larger

sample sizes, they suggest that these variants could play a role in diseases such as
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thrombocytopenia, hypertension, and chronic inflammation that are often observed in

the more severe COVID-19 cases. Further investigation of these genetic variants in the

context of COVID-19 is thus promising for better understanding of disease variability. Full

results are available at https://covid19research.nl.

Keywords: PheWAS, ACE2, TMPRSS2, NSAIDs (non-steroidal anti-inflammatory drugs), ARBs (angiotensin II

receptor blockers), COVID-19, SARS-CoV-2

INTRODUCTION

The recent outbreak of the coronavirus disease 2019 (COVID-
19) caused by the SARS-CoV-2 virus has quickly become a
pandemic and poses a great threat to public health. COVID-19
has a wide range of clinical manifestations: infected people can
be asymptomatic, symptomatic with mild respiratory symptoms,
or have severe pneumonia (Chen et al., 2020; Huang et al., 2020;
Wu and McGoogan, 2020; Xu et al., 2020). Estimates based
on reported cases from February 2020 in China indicated that
∼20% of patients develop severe respiratory illness requiring
hospitalization, and that overall mortality estimates are around
2.3% (Wu and McGoogan, 2020). These estimates are not fixed
and are becoming more precise as more cases are reported,
screened, and analyzed. Interestingly, there is high variability
in these estimates when comparing countries and continents,
as well as differences in COVID-19 severity between males
and females and between different age groups (Chen et al.,
2020; Wu and McGoogan, 2020; Zhou et al., 2020) [WHO
Situation Report 70, from March 30, 2020]. Differences in
response to SARS-CoV-2 infection between individuals and
countries may be explained by diminished immune response
in the elderly, comorbidities, or smoking habits (Guan et al.,
2020), but severe COVID-19 cases have also been observed
in young individuals, seemingly without risk factors. This
indicates that most factors explaining COVID-19 severity are still
unknown. It is therefore critical to understand the mechanisms
behind COVID-19 severity in order to provide appropriate
prevention measures and adequate triage strategies, guide the
drug discovery process, and ultimately combat the SARS-CoV-
2 pandemic.

The large variation in SARS-CoV-2 infection rates and
COVID-19 severity could potentially be explained by genetic
differences between hosts. While large-scale genetic studies
of COVID-19 patients are being assembled, such as those
coordinated by the COVID host genetics consortium (The
COVID-19 Host Genetics Initiative, 2020; https://www.
covid19hg.org/), it is worthwhile to evaluate the effects of genetic
variants in genes involved in SARS-CoV-2 infection on human
phenotypes, including quantitative traits, taking advantage of
already existing cohorts. In fact, while quantitative phenotypes
are not always directly associated with a disease, knowledge on
the genetic variants that modulate these traits can improve our
understanding of disease onset and the variability in symptoms.
In one example of how this can work, genetic variants in the
BCL11A gene were associated by genome-wide association
studies (GWAS) to fetal hemoglobin (HbF) production in the
general population (Menzel et al., 2007), and these genetic

variants were subsequently found to modulate the severity of
beta-thalassemia and sickle cell diseases (Lettre et al., 2008; Uda
et al., 2008). This observation explained why certain individuals
were naturally predisposed to mild symptoms of these diseases,
while others had very severe clinical outcomes and benefitted
from HbF increasing drugs. Therefore, understanding the
role of genetic variants at genes essential for SARS-CoV-2
infection in human quantitative phenotypes is important to
explain the observed variability in infection susceptibility and
severity of COVID-19 and this understanding may suggest
potential treatments.

Some factors that are necessary for SARS-CoV-2 infection
are known (Hoffmann et al., 2020; Yan et al., 2020). Angiotensin
converting enzyme 2 (ACE2) is necessary for the invasion of
the virus into the host cell through viral spike proteins, and
the transmembrane Serine Protease 2 (TMPRSS2) is necessary
for the correct maturation of these same viral spike proteins
that enter the cell through ACE2 (Yan et al., 2020). According
to the GWAS Catalog1, genetic variants in or near TMPRSS2,
located on chromosome 21, are associated with susceptibility of
prostate cancer and mortality rate in the population, while no
associations have been reported for variants in or near ACE2.
This can be partly explained by the fact that the ACE2 gene
is located on the X chromosome, a part of the genome that
is often not analyzed by large scale genome wide association
studies (GWAS) due to differences in analysis workflow
with the autosomal chromosomes. Potential associations
with human phenotypes near ACE2 could have therefore
been missed.

Here we investigated the association of genetic variants
within or near (±100Kb) ACE2 and TMPRSS2 transcripts
through a phenome-wide association scan (PheWAS) in 36,339
volunteers from the Lifelines population cohort. We analyzed 72
quantitative phenotypes and the medication usage of 58 different
drug categories in the entire cohort, and 92 protein levels in
plasma, and 14 cytokines in a subset of ∼600 individuals. The
quantitative phenotypes selected are anthropometric traits and
measurable parameters of lung, hearth, kidney, hematological,
immune, and cardio-metabolic functions. Finally, in a sex-
stratified anaysis we evaluated whether these variants were sex-
specific or differed in their association between males and
females to explore potential differences between sexes that could
modulate SARS-CoV-2 infection.

11000 Genomes study: https://www.internationalgenome.org/; Sanger imputation

server: https://imputation.sanger.ac.uk; GWAS catalogue: https://www.ebi.ac.uk/

gwas/home (accessed on April 6, 2020); UK biobank all phenotype associations:

http://www.nealelab.is/uk-biobank.
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MATERIALS AND METHODS

Lifelines Cohort
The Lifelines cohort (Scholtens et al., 2015) is amulti-disciplinary
prospective population-based cohort study, with a unique three
generation design, that is examining the health and health-
related behaviors of 167,729 individuals living in the North
of the Netherlands. It was approved by the medical ethics
committee of the University Medical Center Groningen
and conducted in accordance with Helsinki Declaration
Guidelines. All participants signed an informed consent
form prior to enrollment. Lifelines employs a broad range of
investigative procedures to assess the impact of biomedical,
socio-demographic, behavioral, physical, and psychological
factors on multi-morbidity, and complex genetics.

Genotyping Data
A subset of 38,030 volunteers were genotyped using the Infinium
Global Screening Array R© (GSA) MultiEthnic Disease Version,
according to manufacturer’s instructions, at the Rotterdam
genotyping center and the Department of Genetics, University
Medical Center Groningen. We performed standard quality
controls on both samples and markers, including removal of
samples and variants with a low genotyping call rate (<99%),
variants showing deviation from Hardy-Weinberg equilibrium
(p < 1 × 10−6) or excess of Mendelian errors in families (>1%
of the parent-offspring pairs), and samples with very high or
low heterozygosity. We further checked and removed samples
that did not show consistent information between reported
sex and genotypes on the X chromosome, between reported
familial information and observed identity-by-descent sharing
with family members, and between genotypes available from this
and previous studies (Francioli et al., 2015; Tigchelaar et al.,
2015). A detailed description of the process can be found at
the following link: https://covid19research.nl (van der Velde
et al., 2019). After quality checks, a total of 36,339 samples and
571,420 autosomal and X-chromosome markers were available
for analysis.

The genotyping dataset was then imputed using the
Haplotype Reference Consortium (HRC) panel v1.1 at the Sanger
imputation server1 (Consortium, 2015), and variants with an
imputation quality score higher than 0.4 for variants with a
minor allele frequency (MAF) > 0.01 and higher than 0.8 for
rare variants (MAF < 0.01) were retained. 58.40% (21,241) of the
36,339 individuals whose genotype passed quality control were
female, and the average age at phenotype collection was 39.9 years
(±16.3 years).

Phenotypes
Quantitative phenotypes were measured as previously
described (Scholtens et al., 2015). We removed illegal zero
or negative values for the “QRS,” “QT,” “HALB,” “MAP,”
“MOP,” “EOP,” “BAP,” “U24HVOL,” “ALT,” “HR,” “EO,” “PQ,”
“MO,” and “BA” phenotypes, and removed−999 values from
the electrocardiogram phenotypes “P_AXIS,” “T_AXIS,”
and “QRS_AXIS” (Table S1). Protein levels in plasma for
92 cardiovascular-related proteins were determined using

Olink Proseek Multiplex CVD III panel (OLINK, Uppsala,
Sweden), and concentrations of plasma citrulline and cytokines
were measured by ProcartaPlexTM multiplex immunoassay
(eBioscience, USA) as described previously (Zhernakova et al.,
2016, 2018). Medication use was recorded based on drug
packaging brought in by the participant’s on their first visit to the
Lifelines inclusion center. Registration of medication use in this
way has been shown to be fairly to highly concordant with health
record information (Sediq et al., 2018). After conversion to
anatomical therapeutic chemical classification (ATC) codes, the
first four letters (level 3) were used to define drug categories for
association analyses. ATC codes with less than 100 observations
were not considered for analysis, leaving 58 drug categories for
analysis (Table S2).

Statistical Analyses
We analyzed quantitative phenotypes using linear-mixed models
implemented in SAIGEgds v1.0.0 so as to correct for familial
relationships and cryptic population structure (Zheng et al.,
2017; Zhou et al., 2018). For the X chromosome, genotypes
in males were considered diploid. We tested the additive
effect of 1,273 genetic variants within and near (±100Kb)
ACE2 (chrX:15,579,156-15,620,271, GRCh37) and TMPRSS2
(chr21:42,836,478-42,903,043, GRCh37) transcripts. These are
all single-nucleotide polymorphisms (SNPs) with minor allele
frequency (MAF) > 0.005 that were genotyped or imputed
and that passed our quality controls as described above.
Analysis through SAIGEgds was carried out for 72 quantitative
phenotypes available for all, or a subset of the 36,339 samples
(Table S1). Drug categories were analyzed as binary traits
(1 = if medication currently in use, 0 otherwise) and restricted
only to 1,240 genetic variants with MAF > 0.01. In both
analyses age and sex were used as covariates. Inverse-normal
transformation was applied to all quantitative traits prior to
model fit. We searched for sex-specific effects by analyzing
males and females separately (sex-stratified analyses), using only
age as covariate and the same transformations as used for the
analysis on the entire cohort. We also used the sex-stratified
anaysis results to investigated differential genetic effects between
sexes at suggestive associations identified in the combined
analysis. This approach is typically used in small to moderate
studies as an alternative to an analysis with an interaction term
(Winkler et al., 2015).

The 92 circulating plasma proteins and 14 cytokines were
measured in a small subset of unrelated individuals and thus
did not require correction for familial relationships. These
were analyzed using PLINK v2.00a3LM. We performed the
association mapping with both sexes jointly, or separately as
described above, and using inverse-normal transformation on
the traits. We analyzed each variant and trait combination with
or without the inclusion of age and sex covariates, as some
genetic variants were too highly correlated due to the small
sample size, and thus an estimate with covariates included in
the model was not possible. To evaluate the statistical power of
our study we used the package GeneticsDesign in R (Weilang
et al., 2019). For quantitative variable analyses, we used the
function GeneticPower.Quantitative.Numeric() and calculated
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TABLE 1 | Most-significant associations with phenotypes at ACE2 and TMPRSS2 loci.

Trait Gene rs.id Chr:position Ref/Alt AF.Alt Analysis N beta (SE) p

EO ACE2 rs17264937 X:15647332 T/C 0.312 All 35,494 0.416 (0.11) 1.49 × 10−4

Males only 14,751 0.357 (0.146) 0.0146

Females only 20,743 0.531 (0.159) 8.17 × 10−4

TGL ACE2 rs5980163 X:15521666 C/G 0.016 All 36,112 0.071 (0.019) 1.63 × 10−4

Males only 15,004 0.108 (0.031) 4.12 × 10−4

Females only 21,108 0.014 (0.021) 0.488

CHIT1 TMPRSS2 rs150965978 21:42942652 C/A 0.063 All 526 −0.630 (0.131) 2.13 × 10−6

Males only 241 −0.502 (0.209) 0.017

Females only 285 −0.555 (0.175) 0.002

TR TMPRSS2 rs28401567 21:42951813 C/T 0.166 All 36,049 −2.50 (0.583) 1.77 × 10−5

Males only 14,975 −1.82 (0.788) 0.0210

Females only 21,074 −2.74 (0.775) 4.04 × 10−4

The table reports summary statistics for the two most-associated phenotypes at ACE2 and TMPRSS2 loci. Positions refer to genome build GRCh 37. Beta indicates the effect for

each copy of the alternative allele, in standard deviation units. Ref, reference allele; Alt, alternative allele; AF.Alt, alternative allele frequency; SE, Standard Error; EO, Eosinophils; TGL,

triglycerides; CHIT1, plasma levels of CHIT1 protein; TR, thrombocytes.

the minimum detectable additive effect (variance explained) with
80% power and at a significance threshold of 5 × 10−8, for an
increasing number of samples up to 36,339 (our study size). For
binary variables analysis, we used the function GPC.default() and
calculated the minimum detectable additive effect size (genotype
relative risk) with 80% power and at a significance threshold of 5
× 10−8, for an increasing number of cases in a cohort of 36,339
and for a risk allele frequency varying from 0.05 to 0.5. We set
the number of cases up to 4,000 to reflect the maximum number
of users for the analyzed drug categories in our study. We also
assumed that the causal variant was included in our genotyping
data set, therefore we constrained full linkage disequilibrium
(Dprime= 1) with the tag marker. Since disease prevalence (pD)
could also impact power, we calculated the minimum detectable
effect for pD varying from 1 to 20%.

RESULTS

Quantitative Phenotypes
Using a linear-mixed model, we analyzed 1,273 common and
low frequency (MAF > 0.005) genetic variants in and near
(+/−100Kb) ACE2 and TMPRSS2 transcripts for association
with 178 quantitative traits (Table S1). None were found to be
significant at the standard genome-wide level (p = 5 × 10−8)
or at the Benjamin-Hochberg false discovery rate (FDR < 0.1).
The most significant associations found with quantitative traits
at the ACE2 locus were with triglycerides (rs5980163, p = 1.6
× 10−4) and with the eosinophil counts (rs17264937, p = 1.5
× 10−4) (Table 1) (Figure 1). The strongest associations at the
TMPRSS2 locus were with plasma levels of CHIT1 (rs150965978,
p = 2.1 × 10−6) and thrombocytes (rs28401567, p = 1.7 ×

10−5) (Table 1) (Figure 2). Only the association at rs5980163
with triglycerides at ACE2 showed a differential effect between
males and females (Cochran Q-test pdiff = 0.01), with most of
the signal being attributable to males, although the association
remains only suggestive (p = 4.12 × 10−4). We did not find any

signal that was restricted to either males or females (p > 1 ×

10−6 for all associations in the sex-stratified analyses). The SNP-
trait associations reported in Table 1 were not replicated in the
UK Biobank, based on summary statistics from an analysis that
included at least 343,992 samples1 (all p > 0.05). No replication
was observed also for the association with CHIT1 plasma levels
using results from the INTERVAL study (Sun et al., 2018).

Medication Use
For this analysis, we focused on 1,240 variants with MAF > 0.01.
As with the quantitative phenotypes, none of the genetic variants
showed genome-wide significant association with medication
use (Table S2). The strongest associations at the ACE2 locus
were observed for the group of drugs that contains non-
steroid anti-inflammatory and antirheumatic products (NSAIDs)
(ATC = M01A) [odds ratio (OR) = 1.34, 95% C.I. = 1.14–1.58,
p= 5.5× 10−4 for the G allele of rs4646190] (Table 2) (Figure 1),
and for the group that contains angiotensin II receptor blockers
(ARBs) in combination with other antihypertensive drugs
(ATC=C09D) (OR= 1.35, 95% C.I.= 1.14–1.62 p= 5.7× 10−4

for the T allele of rs4646156) (Table 2) (Figure 1). These SNPs are
both located in intron eight of the ACE2 transcript and only 525
bp apart, but they are not in linkage disequilibrium (r2 = 0.05 in
1,000 Genomes Europeans).

NSAIDs are used for treating pain, fever and inflammation,
and include ibuprofen. The significance of rs4646190 was
stronger in males (p = 3.7 × 10−4) than in females (p = 0.08),
but the effect sizes were not statistically different (pdiff = 0.054).

The second group of drugs encodes for a combined therapy
used to treat hypertension. Combination therapy of ARBs
with other hypertensive drugs is usually initiated as a second
option when the antihypertensive effect of an ARB alone is
not sufficient (Ram, 2004; Flack, 2007). Our results indicate
that individuals carrying at least one T allele at the rs4646156
polymorphism were more likely to take this combined therapy
compared to individuals with the other allele. The effect of
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FIGURE 1 | Regional associations plot at the ACE2 locus. Graphical representation of the association results at the ACE2 locus for the SNP-trait associations

reported in Table 1 (A,B) and Table 2 (C,D). In each panel, each dot represents a genetic variant, and shown is the association strength (expressed as negative

(Continued)
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FIGURE 1 | log10 P-values, Y-axis) vs. the genomic position (on the hg19/GRCh37 genomic build, X-axis). The strongest associated variant is depicted with a purple

diamond, while other variants are color-coded to reflect their linkage disequilibrium with it (taken from pairwise r2 values calculated from the 1,000 Genomes

Europeans). A legend for color-coding is provided in (A). In (D), an additional box shows the location of associations reported in the GWAS catalog (no associations

were reported at this locus) and below this box the location of genes is shown with specification of exons and direction of transcription. This figure was drawn using

LocusZoom web tool (Pruim et al., 2010).

this SNP was also not significant when considering only ARBs
intake (ATC = C09C, p = 0.66). Thus, the association with
ARB combination therapies could indicate that individuals in
whom it is difficult to manage hypertension may be genetically
predisposed to this state by rs4646156. Interestingly, when
analyzing males and females separately, we found that the
signal of rs4646156 on ARB combination therapy was mostly
attributable to females, even when accounting for differences in
number of users (OR = 1.78, 95% C.I. = 1.35–2.34, p = 4.7 ×

10−5 in females vs. OR= 1.14, 95% C.I.= 0.92–1.42, p= 0.23 in
males, pdiff = 0.01).

We reiterate that none of these associations (in the combined
and in the sex-specific analyses) meet either the genome-wide or
FDR thresholds for significance. To confirm these findings larger
sample sizes are necessary.

The strongest associations at the TMPRSS2 locus were
observed for the group of drugs containing antimycotics
prescriptions (ATC = J02A) (p = 3.65 × 10−5) and for
corticosteroids (ATC = D07A) (p = 1.0 × 10−4) (Table 2)
(Figure 2). No significant difference in effect size between sexes
was observed for these two associations (pdiff > 0.2). These SNPs
were independent from each other and from the top associations
with quantitative traits described in Table 1.

We attempted to validate our findings on medication use
using again the UK Biobank public GWAS summary statistics1,
although their data refers to the use of individual medications
rather than drug categories. When considering the medications
most commonly used (>1,000 users in the UK Biobank cohort)
in the categories of interest (M01A, C09D, J02A, and D07A), we
found nominal association with the same direction of effects only
for glucosamine use (ATC = M01A, p = 0.002 in the combined
analysis and p = 0.008 in males only) and with candesartan
cilexetin (ATC = C09D, p = 0.008 in females only) (Table S3).
A similar detailed analysis in our cohort was underpowered to
detect an association signal for single medications of C09D and
M01A categories (Table S4). This lack of replication could be
attributable to differences in medication usage reporting between
studies.While both are based on self-reported information, in the
Lifelines study records are confirmed by medication packaging
collected by a nurse during the recruitment.

DISCUSSION

Recent studies have demonstrated that SARS-CoV-2 uses ACE2
as the key receptor to invade cells (Yan et al., 2020) and
that ACE2-mediated cell invasion is enhanced by TMPRSS2
expression (Hoffmann et al., 2020). Genetic variations in these
two genes that interfere with the gene function may thus be
involved in the observed variability of SARS-CoV-2 susceptibility

and COVID-19 severity. The association of these genetic
variants with human phenotypes in the general population may
suggest potential treatments and help to better identify at-risk
individuals. Here we used a cohort of 36,339 individuals from
the Lifelines general population cohort to investigate the impact
of variants near and within these two genes on 178 quantitative
traits including measurable parameters of lung, hearth, kidney,
hematological, immune, and cardio-metabolic functions.

We found no significant evidence that common and low
frequency variants in these loci were associated with the
measured quantitative traits in the general population. We did
observe suggestive signals for phenotypes (triglycerides and
thrombocytes) that are involved in cardiovascular diseases, which
are considered risk factors for COVID-19 diseases (Wu and
McGoogan, 2020), but none of the genetic variants reached
statistical significance despite our large sample size. Nevertheless,
we cannot exclude a role of these variants in the regulation
of COVID-19 severity through other relevant phenotypes such
as specific immune cell types or cytokine levels that were not
measured in our cohort.

To evaluate the effect of genetic variation in clinically
relevant phenotypes, we investigated the association of genetics
with medication use. We observed a marginal association of
variants within ACE2 with use of ARBs combination therapy
(ATC = C09D, rs4646156) and with use of non-steroidal anti-
inflammatory and antirheumatic drugs (NSAIDs, rs4646190).
Interestingly, a marginal association with ARBs (C09C category)
was also observed at the TMPRSS2 locus (rs75833467, p = 3.5
× 10−4). These results are intriguing considering the current
debate about whether the use of ARBs and NSAIDs could worsen
COVID-19 severity (Kuster et al., 2020; Little, 2020; Russell et al.,
2020), and their potential effect on increasing ACE2 expression.
No significant associations were found for these variants with
blood pressure measurements or inflammatory markers in our
cohort (p < 0.05), not even when the use of such drugs were
added as covariates (data not shown). Association with diastolic
and systolic blood pressure was also not observed in the large UK
Biobank cohort. Thus, these variants are likely to be associated
only with clinical conditions such as hypertension and chronic
inflammation or with a better drug response. It has to be
noted that our sample size allowed sufficient statistical power
to detect genetic variants with small effects (down to 0.001 of
variance explained), and thus we are confident in claiming lack
of association at TMPRS22 and ACE2 loci with the quantitative
phenotypes assessed. For analyses on medication usage we were
instead sufficiently powered to find small effects (genotype
relative risk ∼1.1) only for very common SNPs (frequency
>0.3), but we are underpowered for smaller effects and, in
general, at less common variants (Figure S1). Therefore, our
suggestive results for medication usage could indicate a real
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FIGURE 2 | Regional associations plot at the TMPRSS2 locus. Graphical representation of the association results at the TMPRSS2 locus for the SNP-trait

associations reported in Table 1 (A,B) and Table 2 (C,D). In each panel, each dot represents a genetic variant and shown is the association strength (expressed as

(Continued)
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FIGURE 2 | negative log10 P-values, Y-axis) vs. the genomic position (on the hg19/GRCh37 genomic build, X-axis). The strongest associated variant is depicted with

a purple diamond, while other variants are color-coded to reflect their linkage disequilibrium with it (taken from pairwise r2 values calculated from the 1,000 Genomes

Europeans). A legend for color-coding is provided in (A). In (D), an additional box shows the location of associations reported in the GWAS catalog (associations here

reported from left to right are: melanoma, age-related diseases and mortality, and prostate cancer) and below this box the location of genes is shown with

specification of exons and direction of transcription This figure was drawn using LocusZoom web tool (Pruim et al., 2010).

TABLE 2 | Most-significant associations with medications use at ACE2 and TMPRSS2 loci.

Drug ATC code Gene rs.id Chr:position Ref/Alt AF.Alt Analysis N users OR (95%C.I.) p

M01A ACE2 rs4646190 X:15597568 A/G 0.045 All 1,274 1.34 (1.14–1.58) 5.5 × 10−4

Males only 412 1.54 (1.22–1.97) 3.7 × 10−4

Females only 862 1.16 (0.92–1.46) 0.213

C09D ACE2 rs4646156 X:15597043 A/T 0.646 All 202 1.36 (1.14–1.62) 5.71 × 10−4

Males only 88 1.14 (0.92–1.42) 0.231

Females only 114 1.78 (1.35–2.34) 4.69 × 10−5

J02A TMPRSS2 rs457274 21:42792485 C/G 0.406 All 523 1.33 (1.16–1.51) 3.36 × 10−4

Males only 234 1.23 (1.01–1.50) 0.041

Females only 289 1.41 (1.25–1.60) 1.46 × 10−4

D07A TMPRSS2 rs9975623 21:42920296 A/G 0.304 All 897 1.23 (1.07–1.36) 1.04 × 10−4

Males only 348 1.29 (1.09–1.51) 2.52 × 10−3

Females only 549 1.19 (1.04–1.35) 0.011

The table reports summary statistics for the two most-associated drug categories (given in ATC codes) at ACE2 and TMPRSS2 loci. Positions refer to genome build GRCh 37. The Odds

Ratio refers to the alternative allele. Ref, reference allele; Alt, alternative allele; AF.alt, alternative allele frequency; OR, Odds ratio; M01A, Anti-inflammatory and antirheumatic products,

non-steroids; C09D, Angiotensin II receptor blockers (ARBs), combinations; J02A, Antimycotics for systemic use; D07A, Corticosteroids, plain.

effect for which we were underpowered to find a genome-wide
significance evidence. Further exploration of these associations
is needed.

ARBs are the preferred alternative for patients who experience
ACE-inhibitor induced coughing. However, as rs4646156 is not
associated with this adverse drug reaction (ADR), our results
are likely independent of the switch to ARBs due to ACE-
inhibitor induced coughing (Mas et al., 2011). Interestingly,
the association of this SNP with ARBs was specific to ARBs
combination therapy, thus pointing to individuals with difficult-
to-manage hypertension. The major allele (T) of rs4646156 has
different frequencies across populations: 0.653 in Europeans,
0.997 in East Asians and 0.797 South Asians, according to
1,000 Genomes1. Likewise, the G allele at the rs4646190 SNP,
associated with a higher probability of NSAIDs use, shows
substantial different frequencies among populations. It is mostly
absent in Asians but not in Europeans: 0.03 in Europeans,
0 in East Asians and 0.003 in South Asians, according to
1,000 Genomes1.

The suggestive genetics associations we find for NSAIDs
and ARBs combination therapy indicate that, depending on
their genotype, certain individuals are predisposed to take
these drugs, and thus to suffer from hypertension and chronic
inflammation, diseases often described among COVID-19
comorbidities. This, together with the observed different allele
frequencies across continents and the sex-related differential
effects could explain the observed variation in COVID-19
severity between countries and sexes. Unfortunately, we could
only speculate around this hypothesis as this study is not suited
to prove that these genetic associations are directly related to

SARS-CoV-2 susceptibility or COVID-19 severity, nor we can
determine if ARBs or NSAIDs improve or worsen COVID-19
severity. A role of ARBs in worsing severity seems however
unlikely (Gill et al., 2020; Mancia et al., 2020; Mehra et al.,
2020).

We acknowledge the following limitations in our study. First,
only age and sex were used as covariates in our analyses,
which may not be sufficient to correct for confounders for
all traits, such as drug usage or diseases, although the effect
of these confounders should be mitigated by our sample size.
Secondly, our analyses on medication use are underpowered
given the limited number of individuals in the general population
who use the medications that we tested, and thus none of
the associations found here met the multiple-testing adjusted
significance. Third, our results for medication use did not include
low frequency and none of the analysis include rare variants
(MAF < 0.005) which could still be relevant. Fourth, while
we can speculate about potential connections of our results
with current knowledge of COVID-19, longitudinal and well-
characterized data on patients is needed to further explore
our hypothesis.

In conclusion we carried out an extensive screening of
potential genetic associations at common and low frequency
variants in the ACE2 and TMPRSS2 genes, and found a
lack of substantial effect in human quantitative phenotype
variation in the general population. Genetic analyses in more
phenotypes are needed to evaluate their functional role in other
physiological processes.

Finally, since genetic variation in other genes, for example
those involved in regulating the immune system, could also be
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important in determining SARS-CoV-2 susceptibility and disease
severity, large scale genetic initiatives like the COVID-19 host
genetics consortium (The COVID-19 Host Genetics Initiative,
2020; https://www.covid19hg.com/) that directly involve patients
with COVID-19 and deeply characterization of genomes and
phenotypes are urgently needed.
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Figure S1 | Statistical power estimates. (A–D) show statistical power estimates

for binary trait analyses, and (E) for quantitative trait analyses. In (A–D), each line

shows the minimum detectable additive effect size (genotype relative risk, Y-axis)

with 80% power and at a significance threshold of 5 × 10−8, for an increasing

number of cases in a cohort of 36,339 (X-axis). The different lines depict these

values when risk allele frequency varies from 0.05 to 0.5. The label of the X-axis

indicates the disease prevalence (pD) considered in each panel. In (E), the line

shows the minimum detectable additive effect (variance explained, Y-axis) with

80% power and at a significance threshold of 5 × 10−8, for an increasing number

of samples up to 36,339 (X-axis).
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