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Abstract: Methylation is a crucially important ubiquitous biochemical process, which covalently
adds methyl groups to a variety of molecular targets. It is the key regulatory process that determines
the acquisition of imprinting and epigenetic marks during gametogenesis. Methylation processes are
dependent upon two metabolic cycles, the folates and the one-carbon cycles. The activity of these
two cycles is compromised by single nucleotide polymorphisms (SNPs) in the gene encoding the
Methylenetetrahydrofolate reductase (MTHFR) enzyme. These SNPs affect spermatogenesis and
oocyte maturation, creating cytologic/chromosomal anomalies. The two main MTHFR SNP variants
C677T (c.6777C>T) and A1298C (c.1298A>C) together with serum homocysteine levels were tested in
men with >3 years’ duration of infertility who had failed several ART attempts with the same partner.
These patients are often classified as having “idiopathic infertility”. We observed that the genetic
status with highest prevalence in this group is the heterozygous C677T, followed by the combined
heterozygous C677T/A1298C, and then A1298C; these three variants represent 65% of our population.
Only 13.1% of the patients tested are wild type (WT), C677C/A1298A). The homozygous 677TT and
the combined heterozygote 677CT/1298AC groups have the highest percentage of patients with an
elevated circulating homocysteine level of >15 µMolar (57.8% and 18.8%, respectively, which is highly
significant for both). Elevated homocysteine is known to be detrimental to spermatogenesis, and the
population with this parameter is not marginal. In conclusion, determination of these two SNPs and
serum homocysteine should not be overlooked for patients with severe infertility of long duration,
including those with repeated miscarriages. Patients must also be informed about pleiotropic medical
implications relevant to their own health, as well as to the health of future children.

Keywords: hypofertility; MTHFR SNP; C677T; A1298C; homocysteine; Caucasian men population

1. Introduction

Methylation is a ubiquitous biochemical process that covalently adds methyl groups
to several types of molecules. It contributes to the tertiary structure of lipid membranes
and transport/receptor systems and is involved in the synthesis of various hormones and
biogenic amines and completes brain maturation. Via methylation of proteins (mainly
histones) and DNA, it plays a critical role in two major regulatory and developmental pro-
cesses during reproduction: imprinting and epigenesis [1–4]. Methylation determines the
complementary regulatory characteristics of male and female genomes [1,2]. Methylation
processes rely on two interconnected metabolic cycles: the folates (FolC) and the one carbon
cycle (1-CC), (Figure 1). Post-methylation by the universal methylation co-factor SAM (S
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adenosylmethionine), SAH, S-adenosyl homocysteine, and then homocysteine (Hcy) are
released. Both compounds are inhibitors of methylation processes. [5]
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zyme, methylene tetrahydrofolate reductase, which converts 5-methylene tetrahydro-
folate to MTHF. The MTHFR enzyme is subject to single nucleotide polymorphisms 
(SNPs) that affect its activity [6,7]. The two most significant SNPs are C677T(Ala222Val) 
and A1298C(Glu429Ala); they impair MTHFR activity resulting in defective Hcy recy-
cling, characterized by an increase in circulating Hcy, a cause and consequence of oxida-
tive stress (OS) [8]. OS is a well-known hazard in the methylation process [9,10]. Carriers 
of these 2 MTHFR isoforms may reduce their methyl folate production up to 17% for 
MTHFR A1298C and 70% for MTHFR C677T. The resulting folate deficiency jeopardizes 

Figure 1. Interrelations between the one carbon cycle (methionine cycle) and the folates cycle. B6: vita-
min B6, B12: vitamin B12, DHFR: dihydrofolate reductase, CBS, cystathionine beta synthase pathway,
MS: methionine synthase, MTHFR: methylene tetrahydrofolate reductase, THF: tetrahydrofolate.
SAH: S adenosylhomocysteine, SAM: S adenosyl methionine, CpG: cytosine phosphate guanine,
Zn: zinc.

The 1-CC allows recycling of homocysteine (Hcy) to methionine (Met). The 1-CC is
supported through associated metabolic pathways, but the FolC is crucial; this supplies
a methyl group for 5 methyltetrahydrofolate (MTHF) formation via methionine synthase
(MS). This formation of 5MTHF encounters a critical step at the level of the MTHFR en-
zyme, methylene tetrahydrofolate reductase, which converts 5-methylene tetrahydrofolate
to MTHF. The MTHFR enzyme is subject to single nucleotide polymorphisms (SNPs)
that affect its activity [6,7]. The two most significant SNPs are C677T(Ala222Val) and
A1298C(Glu429Ala); they impair MTHFR activity resulting in defective Hcy recycling,
characterized by an increase in circulating Hcy, a cause and consequence of oxidative stress
(OS) [8]. OS is a well-known hazard in the methylation process [9,10]. Carriers of these
2 MTHFR isoforms may reduce their methyl folate production up to 17% for MTHFR
A1298C and 70% for MTHFR C677T. The resulting folate deficiency jeopardizes DNA sta-
bility and methylation processes [11]. The trilogy MTHFR SNP, Hcy and folate deficiency
have a major impact on male [12–20] and female [21–25] gametogenesis, embryogenesis
implantation/miscarriages [26–28], and even pregnancy complications “from gametes to
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infant delivery”. Associations between maternal, paternal, and then fetal MTHFR gene
C677T and A1298C polymorphisms will affect DNA stability [21].

The maternal impact on embryo development is always highlighted and emphasized
in relation to neural tube defects and the other obstetrical complications; the impact of
paternal MTHFR SNP is generally overlooked. However, a correct methylation process
facilitates correct timing of the first embryo cleavages and blastocyst formation [29]. As
mentioned earlier, [12] homocysteine has a negative impact, and DNA methylation anoma-
lies as a negative factor in sperm quality is now well documented [12–14,30,31]. All of
our patients with a history of idiopathic infertility of long duration, two miscarriages or
two failed IVF/ICSI attempts, and with no specific shifts in classical fertility parameters
in either partner, are now tested for these two isoforms. We present here the epidemio-
logic distribution of these SNPs and the resulting impact on circulating homocysteine in
2127 men.

2. Materials and Methods
Population and Ethical Considerations

Determination of the two SNPs and serum homocysteine levels has been a standard
procedure in our infertility units since 2019. In our practice, these tests are classically
recommended for patients suffering infertility of at least two years’ duration with two
failed IVF/ICSI attempts and/or at least two miscarriages. The test is not performed
in patients with nonobstructive azoospermia. They are submitted to the classical ethics
regulations recommended by the French “Agence de Biomedecine”. Ethical committee
approval is not required, but testing must be prescribed by a certified (by agence Regional de
Santé: Regional Health Agency) andrologist, gynecologist/obstetrician, or endocrinologist,
for patients seeking fertility treatments in authorized/approved clinics or hospitals. Signed
informed consent is mandatory; testing for the purpose of building a control group in
a fertile population is not permitted. Patient informed consent is also required to allow
anonymous publication of the data. The analyses must be performed in certified/licensed
laboratories and are not reimbursed by social security. From February 2019 to December
2021, 2439 women and 2127 men were tested. Some of the patients declined testing.

Serum Homocysteine: The protocol has been previously described [32]. Briefly: Fasting
blood samples were collected in the morning, and serum Hcy measured using the VYTROS
kit, which allows determination of homocystine and homocysteine. Homocystine is reduced
to homocysteine with tris(2-carboxyethyl), and total homocysteine is then transformed
into cystathionine in the presence of cystathionine beta synthase (CBS). Cystathionine
is hydrolyzed by cystathionine lyase to form Hcy, ammonia, and pyruvate. Pyruvate is
reduced to form lactate; the amount of NAD+ produced by lactic acid dehydrogenase
is proportional to all the homocysteine present in the sample, and this is measured by
spectrophotometry at 340 nm. The assay is linear from 1 to 90 µM-homocysteine.

MTHFR SNPs: The LAMP (loop isothermal amplification) human MTHFR mutation
kit based on a hybridization technique was employed, which requires a 5-µL blood sample.
Amplification is performed at 65 ◦C, using several sets of primers simultaneously. Six
specific primers covering the locus of the mutation are used for the C677T SNP. The same
protocol was used for A1298C SNP, with 6 specific primers covering the region of the
mutation. Two loop primers are used in both, and the probes simultaneously amplify
the wild type gene. The results were evaluated by comparing the curves obtained by
fluorescence (Figure 2). The full protocol has been previously described [33].
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Figure 2. Several patients’ samples are represented in this figure: Amplification for A1298C patient
071,153. The blue line represents patient homozygous C1298C (one peak at 60.8).

3. Results
3.1. Distribution of the Two SNP Combinations

The genetic status with highest prevalence is C677T, followed by the combined het-
erozygote C677T/A1298C, and then A1298C; these three variants represent 65% of our
population. Only 13% of our patients tested as wild type (WT), C677C/A1298A. (Table 1).

Table 1. MTHFR SNP combinations in our male hypo-fertile population (percentage of the total
male population).

SNP Combination Number
(% of the Population)

Number, (%) of the
Patients w Hcy >15 µM)

C677C/A1298A (WT) 278(13.1%) 24 (8.6%)
T677T/A1298A 278(13.1%) 159 (57.8%)
C677T/A1298A 502(23.5%) 56 (11.2%)
C677T/A1298C 454 (21.4%) 86 (18.8%)
C677C/C1298C 186(8.7%) 22 (11.8%)
C677C/A1298C 422(19.7%) 40 (9.5%)
C677T/C1298C 4(0.2%) -
T667T/A1298C 3 (0.2%) 1

Total 2127 (100%) 388 (18.2%)
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3.2. Impact of the SNP Combinations on Hcy Levels >15 µMolar

The percentage of patients showing elevated serum Hcy (>15 µMolar) is strongly
dependent on the type of MTHFR SNP (Table 2, Figure 3). Variant combinations with
the greatest impact are T677T, the combined heterozygous mutation C677T/A1298C, and
heterozygous C677T. Homozygous T677T/A1298A and the combination of C677T/A1298C
significantly increase serum Hcy levels compared to the WT (57.8% and 18.8%, respectively,
vs. 8.6%). No significant difference is observed for the other combinations. Compared to
WT, the Hcy level is elevated by 14.1× in the homozygous 677TT group and by 2.5× in the
combined 677CT/1298AC group.

Table 2. Odd ratios of the two main isoform combinations that significantly increase circulating homocysteine.

Odds Ratio Lower 95% Upper 95%

C677T/A1298C 2.47 1.5 4
T677T/A1298A 14.14 8.7 22.9
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In total 387 patients were found to have Hcy >15 µMolar (387/2127 = 18.2%).

4. Discussion and Conclusions

The presence of MTHFR variants and homocysteine levels are parameters that are
usually neglected in physiopathology. However, these are not benign and are a source of
several pathologies [34–36]. They do affect fertility [13–17,19,21,28,37]. These isoforms are
highly prevalent in Mediterranean and Latino populations and in Chinese Han and Zhuang
ethnicities, where it can reach 70% of the population. Only 13.1% of the male patients and
11% of the 2439 women tested are completely free of any mutation. This is much lower than
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is observed in two fertile populations (between 50% and 60% [38,39]). The most hazardous
combination is the homozygous T677T. More than one half (57.8%) of affected patients have
an elevated Hcy; its prevalence is 13.1% in our overall male population and 11% in the
women tested. This is much higher than has been described in fertile populations (between
6 and 9% [38,39]). The combined C677T/A1298C heterozygous variant population is 21.4%
in males and 19.6% in the 2439 women tested; this also presents a hazard, as it significantly
increases the risk of elevated serum Hcy (18.8% of the population). The prevalence of this
double heterozygosity is between double and triple of the prevalence observed in fertile
male parents [38,39]. Globally, 18.2% of our male population has an elevated circulating
homocysteine; only 82/2439 = 3.4% of the women tested have an elevated homocysteine.
This is essentially due to an estrogen-dependent capacity to activate the cystathionine beta
synthase pathway [40] that eliminates homocysteine and releases cysteine but does not
solve the problem of methylation. In the wild type group, 8.6% of the male population
shows elevated homocysteine; this represents 1.1% of the total population tested. A very
small portion (8/2127) of our population has a triple mutation; this type of combination
has been previously observed [7]. Clearly, a quadruple mutation must be lethal. The
consequences of these MTHFR SNPs on male gametes have been reported in several
meta-analyses [17] all over the world. Recent observations have emphasized the negative
impact of the resulting hypomethylation on decline in fertility [30,31] and on the decreased
developmental capacity of the early embryos carrying these variants [21].

Homocysteine also has a major negative impact as a cause and a consequence of
oxidative stress [8,11], an important issue in infertility. The Rotterdam Periconception
cohort has recently recommended “routine analysis of homocysteine levels in preconceptional
and pregnant women and their partners” [41] in order to avoid the negative impact of homo-
cysteine imbalance on gametogenesis and early embryo development. Therefore, both
isoforms must be tested, although 1298AC appears to be of lesser interest. Determining
a critical level of Hcy for health is also a matter for debate. The pathological impact of
elevated serum Hcy and methylation defects is recognized in cardiology, psychiatry, and
cancer and in obstetrics in relation to neural tube defects. The latter problem has led to
national fortification programs that supplement foodstuffs with folic acid. MTHFR SNPs
are generally not considered as a problem in patients consulting for infertility, although
they are a source of gestational/obstetrical complications. The negative association of
MTHFR SNPs with environmental endocrine disruptors that are detected with increasing
frequency in body fluids may contribute to their increased impact [10]. Gametogenesis
requires methylation/epigenetic resetting, during embryogenesis in the male and at the
onset of puberty in females.

This is the first large-scale epidemiologic study that addresses the relationship be-
tween MTHFR SNPs and long-standing infertility in a Caucasian male population and not
restricted to female patients alone. These two SNPs should not be overlooked for patients
with severe infertility of long duration, including repeat miscarriages. MTHFR SNPs in
women affect oocyte quality and increase the risk of neural tube defects, miscarriages, and
pregnancy complications. In considering therapeutic options, it has been clearly demon-
strated that high doses of folic acid are not a reasonable option [13,14]. Supplementation
with 5-methyl tetrahydrofolate (5MTHF), the compound immediately downstream from
the MTHFR bottleneck, has shown real efficacy [18,32,37,42]. After the first preliminary
publications [18,37], more than 300 pregnancies, mostly spontaneous, were followed by
deliveries in the treated couples, with not a single report of NTD or adverse obstetrical
problems. One must also consider the additional factor of slow metabolic capacity of
synthetic folic acid, due to poorly efficient DHFR (dihydrofolate reductase) activity [43]
upstream from the MTHFR enzyme in the folate cycle. Patients must also be informed
about pleiotropic medical implications relevant to their own health, as well as to the health
of future children, especially in the case of boys, as they are more sensitive to the risk of
elevated homocysteine. With the consent of their parents, we have undertaken a follow-up
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study on homocysteine levels in children with a putative 677TT or compound heterozygous
677AC/677CT, based on parental genetic background, starting at the age of 2 years.
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